Sim-U-Sketch: A Sketch-based interface for Simulink

Levent Burak Kara
Mechanical Engineering Department
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Ikara@andrew.cmu.edu

ABSTRACT

SiM-U-SKETCH is an experimental sketch-based interface we
developed for Matlab®’s Simulink® software package. With
this tool, users can construct functional Simulink models
simply by drawing sketches on a computer screen. To sup-
port iterative design, SIM-U-SKETCH allows users to interact
with their sketches in real time to modify existing objects
and add new ones. The system is equipped with a domain-
independent, trainable symbol recognizer that can learn new
symbols from single prototype examples. This makes our
system easily extensible and customizable to new domains
and unique drawing styles.

Categories and Subject Descriptors

D.2.2 [Software Engineering|: Design Tools and Tech-
niques— User Interfaces; 1.3.6 [Computer Graphics]:
Methodology and Techniques [Interaction Techniques]

1. INTRODUCTION

Our work aims to create sketch understanding techniques
to enable natural, sketch-based user interfaces. While hand-
drawn sketches serve an important role as a problem solving
tool in many disciplines, current computational tools are not
designed to work from such representations. Our goal is to
change this by combining the freedom of freeform sketching
with the unique affordances of existing computer software.

To provide a test bed for our work, we have developed
SiM-U-SKETCH, a sketch-based user interface for Matlab’s
Simulink software package. Simulink is an add on package
for Matlab, and is used for analyzing feedback control sys-
tems and other similar dynamic systems. A typical session
in Simulink involves a number of processes. Typically, the
user navigates through a multi-level symbol palette to find,
select and drag the components one at a time onto an empty
canvas. Objects are connected to one another with arrows
formed by extending directed lines from specific terminals
on the source symbols, such as a Sine Wave, to specific ter-
minals on the target symbols, such as a Scope block. Model

Permission to make digital or hard copies of al or part of this work for
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

AVI'04, May 25-28, 2004, Gallipoli (LE), Italy

© 2004 ACM 1-58113-867-9/04/0500..$5.00

Thomas F. Stahovich
Mechanical Engineering Department
University of California, Riverside
Riverside, California 92521

stahov@engr.ucr.edu

parameters such as signal magnitudes, transfer function con-
stants and the number of input/output terminals are speci-
fied by clicking on the objects and typing in the relevant val-
ues using the keyboard. Finally, simulations are performed
using the Matlab engine running in the background.

SiM-U-SKETCH, on the other hand, allows the user to ac-
complish the same task in a more straightforward manner.
We have designed our system so that the user can draw
as he or she ordinarily would on paper, with minimal con-
straints imposed by our sketch understanding engine. For
instance, rather than having to navigate a symbol palette
to locate and choose an object, the user simply draws the
symbols and combines them with hand-drawn arrows®. Dur-
ing this process, the system does not restrict the order in
which the symbols must be drawn, and it does not require
the user to indicate when one symbol ends and the next
one begins. Also, users need not explicitly specify the num-
ber of input/output terminals for each symbol; the program
automatically determines this by analyzing the spatial con-
figurations of the arrows.

Once the user’s sketch is interpreted by our system, it
becomes a functional Simulink model that the user can in-
teract with. For example, users can modify the parameters
of various symbols and run a simulation of their models all
in real-time. Another unique aspect of our interface is that
users can customize the system to their own drawing styles
by providing a single prototype example of each object they
would like to use. This ability to quickly train the system
frees the user from having to memorize the appearance of
each Simulink symbol.

2. USER INTERACTION

SiM-U-SKETCH is deployed on a 9”x12” digitizing LCD
display with stylus. Figure 1 shows a snapshot of our in-
terface in use. As shown, our program demonstrates its un-
derstanding by placing a bounding box around each symbol,
and indicating the symbol type with text. Once the sketch
has been processed, the user can choose to view a cleaned
up version of the sketch in which the symbols are replaced
by beautified iconic images, and the arrows are straightened
out into line segments.

The objects interpreted by SiM-U-SKETCH are live from
or the moment they are recognized, thus enabling the user to
5 aréinteract with them. For instance, the user can edit the prop-
OIS erties of a Simulink object by clicking a button on the side

CI]EI(‘; of the stylus while it is pointing to the object. This brings

LCurrently our program’s library contains 16 Simulink ob-
jects.

354

~l0I%

e e v‘> o
Sine Wave -
r_— e —_ R m@ h 7 k_.
TramiSer an
/
/ =
Coulsmb & Viscews | riction
Numbirr
Figure 1: Owur system interprets the sketch and

displays its understanding by marking each of the
Simulink objects and arrows.

up a sketch-based dialog box that allows the user to change
numerical values by simply crossing out the old ones and
writing in new ones; the new values are recognized using a
digit recognizer we developed. After completing the sketch,
the user can run a simulation of the system and view the
results directly through our sketch-based interface. At any
time, the user can sketch new objects into the model, and a
new simulation is automatically performed.

3. BEHIND THE SCENES

To create our sketch understanding system we had to ad-
dress two key technical challenges. The first is symbol recog-
nition, the recognition of the individual objects placed on
the drawing surface. The ability to distinguish between, say
a Sine Wave and a Transfer Function, is the focus of symbol
recognition. The second issue has to do with ink parsing, the
task of grouping a user’s pen strokes into clusters represent-
ing intended symbols, without requiring the user to indicate
when one symbol ends and the next one begins. However,
this is a difficult problem as the strokes can be grouped in
many different ways, and moreover, the number of stroke
groups to consider increases exponentially with the number
of strokes. To alleviate this difficulty, many of the current
systems require the user to explicitly indicate the intended
partitioning of the ink. This is often done by pressing a
button on the stylus or by pausing between symbols [4, 7].
Alternatively some systems require each object to be drawn
in a single pen stroke [6]. However, such constraints usually
result in a less than natural drawing environment.

Our approach is based on a hierarchical mark - group
- recognize architecture. The first step is to examine the
stream of pen strokes and identify “markers,” symbols that
are easily and reliably extracted from a continuous stream
of input. These markers are then used to efficiently cluster
the remaining strokes into distinct groups corresponding to
individual symbols. The key here is that stroke clustering
is driven exclusively by the marker symbols identified in the
first step, without need for search. In the last step, the iden-
tified stroke groups are evaluated using a symbol recognizer
we developed. Although our working example is Simulink,
these techniques are equally applicable to other types of data
flow diagrams such as organizational charts and algorithmic
flowcharts, and various graphical representations including
finite state machines, Markov models and Petri nets.

355

(@)

01 A B Q D

7 13 19 25 31 97 43 49 55 61 67 73 79 85 91 97 103 109 15 121 127 133 139 145

Time

Figure 2: Arrow recognition. (a) A one-stroke arrow
with the key points labeled. (b) Speed profile. Key
points are speed minima.

3.1 Preliminary Recognition

One key to successful sketch understanding lies in the abil-
ity to establish the ground truths about the sketch early on,
before costly mistakes take place. Our approach is based on
the use of “marker symbols,” symbols that are easy to recog-
nize and that can guide the interpretation of the remainder
of the sketch. To be useful, such markers must serve as nat-
ural delimiters between the other symbols. In the domain
of data flow diagrams such as Simulink, we have found ar-
rows to be this kind of pattern. Our program thus begins
by using a prerecognizer to find the arrows in the sketch.

Our user studies have indicated that users typically draw
arrows with either a single pen stroke or two consecutive
strokes. Either way, they are invariably drawn from tail to
head. Thus, our arrow prerecognizer examines the end of
each pen stroke to determine if it is an arrowhead. This
determination is made on the basis of pen speed informa-
tion. As shown in Figure 2, the characteristic corner points
of an arrowhead typically occur when the pen speed is at a
minimum. Once these points are determined from the pen
speed profile, a series of geometric tests is performed to de-
termine whether or not the stroke really is an arrow. For
example, we require angles ABC and BCD to both be less
than 90°, and the lines defined by BC and DC to be short
compared to the total length of the pen stroke. Because the
approach need not consider the shape of the arrow shaft, it
can recognize a wide variety of arrows.

3.2 Stroke Clustering

Once the arrows have been recognized, the next step is to
group the remaining strokes into clusters representing indi-
vidual symbols. In data flow diagrams, each arrow connects
a source object at its tail to a target object at its head.
Hence, different clusters can be identified by grouping to-
gether all of the strokes that are near the end of a given
arrow.

Stroke clustering begins by assigning each non-arrow stroke
to the nearest arrow end (Figure 3a). Strokes assigned to the
same arrow end are grouped to form a cluster (Figure 3b).
Clusters with partially or fully overlapping bounding boxes
are then merged (Figure 3c). Finally, each arrow end that
has no cluster is linked to the nearest stroke cluster (Fig-
ure 3d). This helps to ensure the intended connectivity of
the diagram by ensuring that each arrow has a cluster at its
tail and head.

(a)

L O

@/,,-—--—‘}

(b)

/-—""_"
,____3\5

/"“".
,____3\5

/"“".

=

(c)

=

l’.

Figure 3: Illustration of the cluster analysis.

3.3 Generating Symbol Candidates

After identifying the stroke clusters, the next step is to
recognize the symbols suggested by each of the clusters.
SiM-U-SKETCH combines contextual knowledge with shape
recognition to achieve accuracy and efficiency. One form of
contextual knowledge in the Simulink domain comes from
the examination of the number of input and output termi-
nals associated with each symbol. Certain objects can have
only output terminals and therefore will have only outgoing
arrows. For example source signals such as the Sine Wave,
Chirp Signal, Random Number Generator and Step Func-
tion are of this type. Likewise, some symbols can have only
input terminals, such as the Scope block, or may have an
arbitrary number of input and output terminals such as the
Sum block.

By examining the number of input and output arrows for
a given cluster, the program is able to narrow down the set
of possible interpretations of a symbol. This reduces the
amount of work the recognizer must do. It also helps in-
crease accuracy by reducing the possibilities for confusion.
For example, while the Sum block and the Clock look quite
similar (the two circular symbols in Figure 3), context dic-
tates that a Sum block must have at least two incoming
arrows while the Clock must have none. With this addi-
tional knowledge, the recognizer would never consider the
Sum block and the Clock as two competing candidates dur-
ing shape recognition.

3.4 Symbol Recognition

SiM-U-SKETCH employs a novel image-based recognizer
to find the best interpretations of the stroke clusters. In-
put symbols are internally described as 24x24 quantized
bitmap images which we call “templates”. This represen-
tation has a number of desirable characteristics. First, seg-
mentation — the process of decomposing the sketch into con-

356

Designed Curve __Target Cunve

(a)

Figure 4: (a) A sketch-based interface for analyzing
vibratory mechanical systems.(b) A sketch-based 4-
bar linkage design tool.

stituent primitives such as lines and curves — is eliminated
entirely. Second, the representation is well suited for rec-
ognizing “sketchy” symbols such as those with heavy over-
tracing, missing or extra segments and different line styles
(solid, dashed, etc.). Lastly, this recognizer puts no restric-
tions on the number of strokes used for a symbol, or the
order in which the strokes are drawn.

Our recognizer uses an ensemble of four different classi-
fiers to evaluate the match between an unknown symbol and
a candidate definition symbol. These classifiers are exten-
sions of the following methods: (1) Hausdorff distance [9],
(2) Modified Hausdorff distance [2], (3) Tanimoto coefficient
[3] and (4) Yule coefficient [10]. Each classifier provides a
similarity score between two symbols by superimposing their
template representations and measuring the match between
their black pixels. The classifiers differ in the way they mea-
sure this similarity. During recognition, the classifiers eval-
uate the unknown against each of the symbol definitions,
and each outputs a list of definitions ranked according to
their similarity to the unknown. Results of the individual
classifiers are then synthesized, and the candidate definition
with the best combined score is assigned to the symbol.

The recognizer is versatile in that we use it both for graph-
ical symbol recognition and digit recognition. One advan-
tage of this recognizer over traditional ones is that it can
learn new definitions from single prototype examples. For
training, the user creates a new symbol definition by sim-
ply presenting an example of it to the system. With this
approach, users can seamlessly train new symbols, and re-
move or overwrite existing ones on the fly, without having
to depart the main application.

4. OTHER EXAMPLES

To further explore the use of our techniques, we have de-
veloped other sketch-based interfaces for analyzing vibra-
tory mechanical systems (Figure 4a) and 4-bar linkages (Fig-
ure 4b). The first tool allows users to sketch out a mechani-
cal system and study its dynamic behavior. Once the user’s
sketch is interpreted, our program can directly animate the
user’s hand-drawn sketch. During the animation, the masses
move, the springs compress and stretch, etc. The simulation
results are also displayed in the form of graphical plots in-
cluding a position vs. time plot for each of the masses in
the system. The second tool allows users to sketch out a
4-bar linkage mechanism and see its animation. This visual
feedback is useful in that users can immediately determine
the type of their mechanism, such as a crank-and-rocker,

double-crank, or double rocker.? During the animation, one
can also see the trajectory followed by the coupler point
(the apex of the triangle in Figure 4b), whose motion is
usually the main design objective. Users can also design
new mechanisms by simply sketching a target trajectory to
be traversed; using an optimization algorithm, our program
produces a new mechanism that minimizes the difference be-
tween the target curve and the curve produced by the 4-bar
linkage the user sketched.

5. RELATED WORK

Recent years have seen the development of experimental
sketch-based interfaces for a number of different disciplines
including engineering design, user interface design and ar-
chitecture. Alvarado and Davis [1] describe a system that
can interpret and simulate a variety of simple, hand-drawn
mechanical systems. The system uses a number of heuristics
to construct a recognition graph containing the likely inter-
pretations of the sketch. The best interpretation is chosen
using a scoring scheme that uses both contextual informa-
tion and user feedback. In their approach, each time a new
stroke is entered, the entire recognition tree is updated. By
contrast, we defer analysis until the user finishes sketching.
Also, their shape recognizers are sensitive to the results of
segmentation (i.e., fitting line and arc segments to the raw
ink), forcing the user to be cautious during sketching. Our
approach does not rely on segmentation, thus allowing for
more casual drawing styles.

Rubine [8] describes a trainable gesture recognizer for di-
rect manipulation interfaces. A gesture is characterized by
a set of 11 geometric and 2 dynamic attributes. Based
on these attributes, a linear discriminant classifier is con-
structed whose weights are learned from the set of training
examples. Because this method was developed exclusively
for gesture-based interfaces, it is only applicable to single-
stroke sketches and is sensitive to the drawing direction.

Landay and Myers [6] present an interactive sketching tool
called SILK that allows designers to quickly sketch out a
user interface and transform it into a fully operational sys-
tem. As the designer sketches, SILK’s recognizer (adapted
from Rubine’s method) matches the pen strokes to symbols
representing various user interface components, and returns
the most likely interpretation. Their recognizer is limited
to single-stroke shapes drawn in certain preferred orienta-
tions. Our method handles multi-stroke shapes drawn in
any orientation.

Hong and Landay [5] describe a program called SATIN
designed to support the creation of pen-based applications.
SATIN consists of a set of mechanisms for manipulating,
handling, interpreting and viewing strokes; a set of policies
to distinguish between the type (gesture vs. symbol) of the
input stroke;®> and a number of beautification techniques
to organize and clean up sketches. Their system employs
Rubine’s algorithm as the primary recognition engine and
hence is limited to single stroke objects.

6. CONCLUSION

2 Although this distinction is central to the design process,
it is usually not discernable from the static image of the
mechanism.

3They rely on buttons located on the mouse or the stylus to
distinguish the type of the stroke.

We described an experimental system called SiM-U-SKETCH
designed to enable sketch-based interaction with the Simulink
software package. This work addresses two key technical
challenges in sketch understanding. The first is the recogni-
tion of the objects implied by a user’s pen strokes. For this,
we developed a domain-independent, multi-stroke, trainable
symbol recognizer. One advantage of this recognizer over
traditional ones is that it can learn new definitions from sin-
gle prototype examples. The second challenge was parsing
- identifying distinct symbols from a continuous stream of
pen strokes. We developed a multi-level parsing scheme that
allows users to continuously sketch, without needing to in-
dicate when one symbol ends and a new one begins. The
parser uses contextual knowledge to both improve accuracy
and reduce recognition times.

We are currently in the process of conducting formal user
studies to test and improve our system. Several users tested
our interface and all had highly favorable opinions of it.
Most users found it easy and straightforward to use, al-
though some had difficulty using the LCD tablet (they feared
that resting their hand on the display would break it). The
preliminary results have indicated that we have a sound
parsing and recognition algorithm but that the arrow recog-
nition could be improved to accommodate a wider variety
of users. Nevertheless, we have found the latter to be only
a minor issue as even first-time users quickly become adept
at using our system.

7. REFERENCES

[1] C. Alvarado and R. Davis. Resolving ambiguities to
create a natural sketch based interface. In
1JCAI-2001, 2001.

[2] M.-P. Dubuisson and A. K. Jain. A modified hausdorff
distance for object matching. In 12th International
Conference on Pattern Recognition, pages 566—568,
Jerusalem, Israel, 1994.

[3] M. Fligner, J. Verducci, J. Bjoraker, and P. Blower. A
new association coefficient for molecular dissimilarity.
In The Second Joint Sheffield Conference on
Chemoinformatics, Sheffield, England, 2001.

[4] M. J. Fonseca, C. Pimentel, and J. A. Jorge. Cali-an
online scribble recognizer for calligraphic interfaces. In
AAAI Spring Symposium on Sketch Understanding,
AAAT Technical Report SS-02-08, pages 51-58, 2002.

[5] J. I. Hong and J. A. Landay. Satin: A toolkit for
informal ink-based applications. In ACM UIST 2000
User Interfaces and Software Technology, pages 63-72,
San Diego, CA, 2000.

[6] J. A. Landay and B. A. Myers. Sketching interfaces:
Toward more human interface design. IEEE
Computer, 34(3):56—64, 2001.

[7] S. Narayanaswamy. Pen and Speech Recognition in the
User Interface for Mobile Multimedia Terminals. Ph.d.
thesis, University of California at Berkeley, 1996.

[8] D. Rubine. Specifying gestures by example. Computer
Graphics, 25:329-337, 1991.

[9] W. J. Rucklidge. Efficient Visual Recognition Using
the Hausdorff Distance. Number 1173 Lecture Notes
in computer Science,. Springer-Verlag, Berlin, 1996.

[10] J. D. Tubbs. A note on binary template matching.
Pattern Recognition, 22(4):359-365, 1989.

