
Hierarchical Parsing and Recognition of
Hand-Sketched Diagrams

Levent Burak Kara
Mechanical Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213

lkara@andrew.cmu.edu

Thomas F. Stahovich
Mechanical Engineering Department
University of California, Riverside

Riverside, CA 92521
stahov@engr.ucr.edu

ABSTRACT
A long standing challenge in pen-based computer interaction
is the ability to make sense of informal sketches. A main
difficulty lies in reliably extracting and recognizing the in-
tended set of visual objects from a continuous stream of pen
strokes. Existing pen-based systems either avoid these issues
altogether, thus resulting in the equivalent of a drawing pro-
gram, or rely on algorithms that place unnatural constraints
on the way the user draws. As one step toward alleviat-
ing these difficulties, we present an integrated sketch parsing
and recognition approach designed to enable natural, fluid,
sketch-based computer interaction. The techniques presented
in this paper are oriented toward the domain of network di-
agrams. In the first step of our approach, the stream of pen
strokes is examined to identify the arrows in the sketch. The
identified arrows then anchor a spatial analysis which groups
the uninterpreted strokes into distinct clusters, each repre-
senting a single object. Finally, a trainable shape recognizer,
which is informed by the spatial analysis, is used to find the
best interpretations of the clusters. Based on these concepts,
we have built SimuSketch, a sketch-based interface for Mat-
lab’s Simulink software package. An evaluation of Simu-
Sketch has indicated that even novice users can effectively
utilize our system to solve real engineering problems with-
out having to know much about the underlying recognition
techniques.

Categories and Subject Descriptors: H.5.2 [User Inter-
faces]: Graphical User Interfaces (GUI), Interaction Styles;
I.5.5 [Pattern Recognition]: Implementation, Interactive sys-
tems

Additional Keywords and Phrases: Sketch understand-
ing, pen computing, symbol recognition, visual parsing, sketch
understanding, SimuSketch, Simulink

INTRODUCTION
Pen-based computer interaction is becoming increasingly ubiq-
uitous as evidenced by the growing interest in Tablet PC’s,
electronic whiteboards and PDA’s. Many of these devices

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright c© 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

now come equipped with robust handwriting recognition,
making them an attractive alternative to the keyboard and
mouse for text entry. However, when it comes tographi-
cal input, such as sketches and diagrams, such devices ei-
ther leave the pen strokes uninterpreted, or offer only limited
support in the form of stroke beautification or simple shape
recognition.

We believe that among the many issues that remain to be
solved, there are two particular challenges that hinder the de-
velopment of robust sketch understanding systems. The first
is ink parsing, the task of grouping a user’s pen strokes into
clusters representing intended symbols, without requiring the
user to indicate when one symbol ends and the next one be-
gins. This is a difficult problem as the strokes can be grouped
in many different ways, and moreover, the number of stroke
groups to consider increases exponentially with the number
of strokes. The combinatorics thus clearly render approaches
based on exhaustive search infeasible. To alleviate this diffi-
culty, many of the current systems require the user to explic-
itly indicate the intended partitioning of the ink. This is often
done by pressing a button on the stylus, or more commonly,
by pausing between symbols [11, 25]. Alternatively, some
systems avoid parsing by requiring each object to be drawn
in a single pen stroke [20, 27, 17]. However, such constraints
usually result in a less than natural drawing environment.

The second issue issymbol recognition, the task of recogniz-
ing individual hand drawn figures such as geometric shapes,
glyphs and symbols. While there has been significant recent
progress in symbol recognition [27, 11, 6, 24], many recog-
nizers are either hand-coded or require large sets of training
data to reliably learn new symbol definitions. Such issues
make it difficult to extend these systems to new domains with
novel shapes and symbols. Additionally most symbol rec-
ognizers have been built as stand alone applications without
addressing the issue of integration into high-level sketch un-
derstanding systems.

In this paper, we address the issue of parsing and recognition
of hand-drawn sketches in the domain of network diagrams.
The types of sketches we consider can be broadly character-
ized as a set of symbols (nodes) connected by a set of arrows.
The techniques we present are thus well-suited to a variety of
diagrams such as signal flow diagrams, organizational charts
and algorithmic flowcharts, and to various graphical models

Context

User

Raw Sketch

Simulink Model

Preliminary Recognition

Stroke Clustering

Symbol Candidates

Symbol Recognition

Error Correction

Figure 1: Recognition Architecture.

such as finite state machines, Markov models and Petri nets.

Our approach is based on the hierarchical mark-group-recognize
architecture shown in Figure 1. The first step focuses on
identifying the arrows in the sketch. We refer to these arrows
as “markers” because of two important properties: First, their
geometric and kinematic characteristics enable them to be
easily extracted from a continuous stream of strokes, and
second, they serve as delimiters, which allow the remaining
strokes to be efficiently clustered into distinct groups corre-
sponding to individual symbols. The key here is that stroke
clustering is driven exclusively by the arrows identified in
the first step, without need for search. Next, informed by
the result of the clustering algorithm, our approach employs
contextual knowledge to generate a set of candidate interpre-
tations for each of the stroke groups. The groups are then
evaluated using a symbol recognizer to determine which of
these interpretations is correct. The key advantage of our rec-
ognizer is that it can learn new symbol definitions from single
prototype examples, thus allowing users to easily customize
the system to their unique styles. The underlying image-
based pattern recognition techniques allow our recognizer to
be applicable to multiple-stroke symbols without restricting
the order in which the strokes are drawn. In cases of mis-
recognitions, the last step involves error correction where the
user rectifies the mistakes.

OVERVIEW
To provide a test bed for our work, we have created Simu-
Sketch; a prototype sketch-based front-end to Matlab’s Simu-
link package (Figure 2). Simulink is used for analyzing feed-
back control systems and other similar dynamic systems. It
has a typical drag and drop interface in which the user nav-
igates through a nested symbol palette to find, select and
drag the components, one at a time, onto an empty canvas.
With SimuSketch, on the other hand, the user can construct
functional Simulink models by simply sketching them on a
computer screen. The sketch interface does not restrict the

Figure 2: (Top) SimuSketch, (Bottom) Automatically
derived Simulink model.

order in which the symbols must be drawn nor the number
of strokes used to draw them. Furthermore, it does not re-
quire the user to indicate when one symbol ends and the next
begins. Likewise, the user need not complete one symbol be-
fore moving onto another, and thus the user may come back
to a previous location to add more strokes at any time.

The objects interpreted by SimuSketch are live from the mo-
ment they are recognized, thus enabling users to interact with
them. For example users can edit the objects through dialog
boxes or alter their sketch using traditional means such as se-
lection and deletion. Once the user’s model is recognized,
a simulation can be run and viewed directly in SimuSketch.
At the end, users can save their work either in their original
sketchy form or in a format compatible with Matlab, thus al-
lowing users to resume their work either in the SimuSketch
or the conventional Matlab environments.

In the next section, we present a survey of previous research
on sketch-based systems with an emphasis on parsing and
recognition approaches. Further detail about interaction with
SimuSketch and the underlying parsing and recognition tech-
niques are detailed in the subsequent sections.

RELATED WORK
Inspired by the advances in speech recognition, some sys-
tems facilitate parsing by requiring visual objects to be drawn
with a predefined sequence of pen strokes [30, 33]. While
useful at reducing computational complexity, the strong tem-

poral dependency in these methods forces the user to remem-
ber the correct order in which the strokes must be drawn.
The nature of these approaches thus makes them more suit-
able to handwriting recognition rather than sketch recogni-
tion. Other approaches employ constrained search methods,
where the idea is to generate a multitude of partial interpre-
tations from the strokes, and later support or refute these in-
terpretations based on new evidence [13]. Such approaches
are often faced with the difficulty of non-optimal thresholds
that either prematurely terminate a promising path, or retain a
futile one for too long. Alvarado [3], on the other hand, pro-
posed an extension to this idea in the form of Probabilistic
Relational Models but has not yet presented formal evalua-
tions.

A number of techniques have been devised for parsing and
recognition in visual scenes. Shilman et. al. [31] present
a statistical visual language model for ink parsing. During
training, a number of spatial relationships between objects
are used to construct the object models. During recogni-
tion, the models are matched against the users’ strokes using
a Bayesian framework. Their approach requires a descrip-
tion of a visual grammar, which is currently encoded manu-
ally. The trainable parser, on the other hand, requires a large
number of training examples. Costagliola and Deufemia [7]
present an approach based on LR parsing for the construc-
tion of visual language editors. They employ “extended po-
sitional grammars” to encode the attributes of the graphical
objects and present a set of production/reduction rules for the
grammar. Saund et. al. [29] present a system that uses Gestalt
principles to determine the salient objects represented in a
line drawing. Their work only concerns the grouping of the
strokes and does not employ recognition to verify whether
the identified groups are in fact the intended ones. Jacobs
[16] describes a system to recognize objects with straight-
line perimeter representations. The system uses a number of
heuristic rules to group edges that likely come from a sin-
gle object, and then uses simple recognizers to identify the
objects represented by the edges. However the rules rely on
the presence of straight line segments and sharp corners, and
thus are not well-suited to less structured patterns such as
sketches.

A number of systems that support sketch-based interaction
have been developed in recent years. For user interface de-
sign, Landay and Myers [20] present an interactive sketching
tool called SILK that allows designers to quickly sketch out a
user interface and transform it into a fully operational system.
Hong and Landay [14] describe a program called SATIN de-
signed to support the creation of pen-based applications. Lin
et al [22] describe a program called DENIM that helps web
site designers in the early stages of the design process. All
three programs use Rubine’s single-stroke gesture recognizer
[27] as their main recognition tool and are thus not concerned
with parsing. Alvarado and Davis [4] describe a system that
can interpret and simulate a variety of simple, hand drawn
mechanical systems. The system uses a number of heuristics
to construct a recognition graph containing the likely inter-
pretations of the sketch. The best interpretation is chosen us-
ing a scoring scheme that uses both contextual information
and user feedback. In their approach, each time a new stroke
is entered, the entire recognition tree is updated. By contrast,

we allow recognition to be controlled by the user. Also, their
shape recognizers are sensitive to the results of segmentation
(i.e., fitting line and arc segments to the raw ink) forcing the
user to be cautious during sketching. Our approach does not
rely on segmentation, thus allowing for more casual drawing
styles.

Matsakis [24] describes a system for recognizing handwrit-
ten mathematical expressions. The work presents an interest-
ing idea based on minimum-spanning trees used for uncover-
ing the spatial structure of the expressions. However the ap-
proach requires a large amount of training samples to learn
new symbols, and each training sample needs to be drawn
using the same number of strokes in the same direction and
order. Similarly, recognition is sensitive to the number of
strokes and order. Kurtoglu and Stahovich [18] describe a
program that augments sketch understanding with qualitative
physical reasoning to understand schematic sketches of phys-
ical devices. One key feature of their system is that it allows
users to incorporate shapes from several different domains,
instead of limiting them to one particular domain.

In the field of shape recognition, some methods either rely
on single stroke methods in which an entire symbol must
be drawn in a single stroke [27, 17], or constant drawing
order methods in which two similarly shaped patterns are
considered different unless the pen strokes leading to those
shapes follow the same sequence [26, 33]. Systems such as
[5, 12] allow for multiple stroke symbols, however the rec-
ognizers are manually coded. While trainable, systems such
as [11, 6, 24, 15] typically require a multitude of training ex-
amples. By contrast, we present a multiple stroke symbol
recognizer that can learn definitions from single prototype
examples.

INTERACTION WITH SIMUSKETCH
SimuSketch is deployed on a 9 inx 12 in Wacom Cintiq dig-
itizing tablet with a cordless stylus. The drawing surface of
the tablet is an LCD display, which enables users to see vir-
tual ink directly under the stylus. Data points are collected as
time sequenced (x,y) coordinates sampled along the stylus’
trajectory. As shown in Figure 2-top, SimuSketch’s interface
consists of a drawing region and a toolbar that contains but-
tons for commonly used commands.

The user draws as he or she ordinarily would on paper. As
the user is drawing, SimuSketch does not attempt to inter-
pret the scene. Instead, it employs arecognize on demand
(ROD) strategy in which the user taps the “Recognize” but-
ton in the toolbar whenever he wants the scene to be inter-
preted. This command invokes the sketch recognition engine
which then parses the current sketch, recognizes the objects,
and produces a Simulink model. As shown Figure 2-top, the
program demonstrates its understanding by displaying a faint
bounding box around each object, along with a text label in-
dicating what the object is. Recognized arrows are delineated
with small colored points at each of their two ends.

The ROD strategy has a number of advantages over the sys-
tems that try to interpret the scene after each input stroke.
First, as the users are not distracted by display of potentially
premature interpretation results, they can focus exclusively
on sketching. Second, as very little internal processing takes

Figure 3: The user can interact with the system through
sketch-based dialog boxes. The simulation results are
displayed through conventional Simulink graphs.

place after each stroke, the program is better able to keep up
with the user’s pace1. Third, by delaying recognition in a
user controlled manner, it allows the system to acquire more
context that would help improve the recognition accuracy of
earlier strokes. Note that ROD does not require the model
to be entirely completed before it can be used. In fact, it en-
courages an iterative construction process in which the user
draws a portion of the final model, asks SimuSketch to rec-
ognize it, tests the model, and continues with the rest of the
model.

Once the sketch is recognized, the user can run a simula-
tion of it by pressing the “Simulate” button. This command
simply hands the model over to Simulink (which runs in the
background) for processing. The results of the simulation
can be viewed directly in the sketch interface by double tap-
ping on the Scope blocks. As shown in the right part of Fig-
ure 3, this brings up a window showing the simulation re-
sults. At any time, the user can add new objects to the model
by simply sketching them.

Object Manipulation: SimuSketch offers a number of ges-
tures for different tasks. To select an object or an arrow,
the user either taps on it or circles it with the stylus; the
selected item is highlighted in a translucent blue color in-
dicating its selection. The circular selection gesture is differ-
entiated from a drawing stroke based on its end points and
the region it encircles. If the distance between the stroke’s
first and last points is less than 10% of the total stroke length
(i.e., the stroke forms a nearly closed contour) and the stroke
encircles one or more objects or arrows, the stroke is taken
as a selection gesture. Once an object is selected, one of four
things can happen depending on the subsequent input stroke.
First, if the stroke is simply a quick tap in the blue region, a
pop dialogmessage is dispatched, which brings up a dialog
box pertinent to the selected object. Second, if the stroke is
not a tap but its initial contact point is still within the blue re-
gion, amovemessage is dispatched and the selected object(s)
is moved to the lift point of the stroke. Third, if both the con-
tact and lift points of the stroke are outside the blue region
but the midpoint is in the blue region, adeletemessage is

1Systems that interpret the sketch after each stroke, such as [2], often
force the user to pause for a short duration between the strokes.

dispatched and the object is removed from the visual scene.
A typical manifestation of this gesture is a stroke through the
selected object. Finally, if the entirety of the stroke is out-
side the blue region, all selected objects arede-selectedand
the stroke is added to the raw sketch. An alternative to de-
selection is a tap in the white space.

Object Dialogs: For objects with variable parameters, se-
lecting and tapping on the object brings up a dialog box for
editing its parameters. The left part of Figure 3 shows an ex-
ample. Interaction in these dialog boxes is also sketch-based
in that users can cross out the old value with a delete gesture
(a stroke through the number) and simply write in the new
value. The program can recognize negative and/or decimal
numbers using a digit recognizer we have developed.

Views: Once the user’s sketch has been interpreted, the user
has the option of viewing the model in its sketchy or cleaned
up form. In the cleaned up view, the sketchy symbols are
replaced by their iconic forms and the arrows are straight-
ened out into line segments. Users can toggle between these
two views by tapping the “Toggle view” button. Subjects
in our user studies have indicated that the informality of the
sketchy view gave a sense of freedom and creativity, while
the cleaned up view gave a sense of completeness and defi-
niteness. Despite these perceived differences, the cleaned up
view is just as functional as the sketchy view in that it sup-
ports the same interaction mechanisms, including sketching,
object selection, object manipulation and editing.

SYSTEM DETAILS
In the following sections, we detail each of the steps of our
multi-level parsing and recognition approach outlined in Fig-
ure 1.

Preliminary Recognition
One key to successful sketch understanding lies in the abil-
ity to establish the ground truths about the sketch early on,
before costly mistakes take place. Based on this idea, we in-
troduce the concept of “marker symbols,” symbols that are
easy to recognize and that can guide the interpretation of the
remainder of the sketch. In the domain of network diagrams,
arrows fulfill this purpose. This approach is similar in spirit
to the construction of “islands of certainty” in the Hearsay-II
speech understanding system [9].

There are several reasons why arrows are useful marker sym-
bols. First, they occur relatively frequently in network di-
agrams, thus providing good resolution for separating the
other symbols. Second, arrows have unique geometric and
kinematic (e.g., pen speed) features that allow them to be re-
liably extracted from the input stream. Third, as explained
later, arrows help guide the interpretation of the other sym-
bols in the sketch by narrowing down the set of possible in-
terpretations. SimuSketch thus begins by recognizing the ar-
rows.

Our observational tests on a small set of users during the de-
sign stages of our system indicated that, despite some excep-
tions, arrows were usually drawn as either a single pen stroke
or two consecutive strokes, one for the shaft and one for the
head. We thus developed two types of arrow recognizers to
account for these two styles. To simplify our analysis, we
require that both types of arrows be drawn from tail to head.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145

Time

S
p

e
e
d

A B C
D

A

B

C

D

(a)

(b)

R

R

Figure 4: Arrow recognition. (a) A one-stroke arrow
with the key points labeled. (b) Speed profile. Key
points are speed minima.

(a)

(b)

Figure 5: Examples of (a) arrows and (b) arrow heads,
that are correctly recognized.

Here we describe only the single-stroke arrow recognizer, as
the two-stroke recognizer is a minor extension of it.

Arrow recognition is based on the identification of five key
points, labeled A, B, C, D and R in Figure 4a. Points A, B
and C correspond to the sharp corners on the arrowhead. The
distinguishing characteristic of these points is that they all
correspond to pen speed minima, as can be seen in the pen
speed profile in Figure 4b. These points are thus identified
by locating the last three global minima in the speed profile,
excluding the end point, which is labeled point D. Finally, R
is a “reference” point on the arrow shaft and is obtained by
moving a small distance backwards from point A.

Once these points are determined, a series of geometric tests
is performed to determine whether or not the stroke really is
an arrow. We require the four angleŝABC, B̂CD, R̂AB and
R̂AD to all be less than90◦, and the length of line segments
BC and DC to be less than 20% of the total stroke length.
These geometric tests were designed empirically by collect-
ing a corpus of positive and negative examples of arrows
from several users, and experimenting with different levels
of specificity and thresholds until the best classification per-
formance was obtained. With the resulting recognizer, a va-
riety of arrow shapes with different arrowhead styles can be
recognized as shown in Figure 5.

Stroke Clustering
Once the arrows have been recognized, the next step is to
group the remaining strokes into different clusters, represent-
ing different symbols. The key idea behind stroke cluster-
ing is that strokes are deemed to belong to the same sym-
bol only when they are spatially proximate. The challenge
is reliably determining when two pen strokes should be con-

(a)

(b)

(c)

(d)

Figure 6: Illustration of the cluster analysis. (a) Each
stroke is assigned to the nearest arrowhead or tail.
(b) Strokes assigned to the same arrow are grouped
into clusters. (c) Clusters with overlapping bounding
boxes are merged. (d) Arrows that did not receive any
strokes are attached to the nearest cluster.

sidered close together. Here, we rely on the arrows to help
make this determination. In network diagrams, each arrow
typically connects a source object at its tail to a target ob-
ject at its head. Hence, different clusters can be identified by
grouping together all the strokes that are near the end of a
given arrow. In effect, two strokes are considered spatially
proximate if the nearest arrow is the same for each. Based on
this observation, we developed the following procedure for
identifying symbol clusters:

Step-1 Assign each non-arrow stroke to the nearest ar-
row: Stroke clustering begins by assigning each non-arrow
stroke to the nearest arrow (Figure 6a). The distance between
a stroke and an arrow is defined to be the Euclidean distance
between the median point of the stroke and either the head or
tail of the arrow, whichever is closer. The head is taken to be
the apex, which is shown as point C in Figure 4.

Step-2 Combine strokes into clusters:Strokes assigned to
the same arrow end in Step-1 are grouped to form a stroke
cluster. These clusters will form the basis of the symbols.
Figure 6b shows the results of this step.

Step-3 Merge overlapping clusters: Next, clusters with
partially or fully overlapping bounding boxes are merged.
The bounding box of a cluster is the minimum sized rectan-
gle, aligned with the coordinate axes, that fully encloses the
constituent strokes. As shown in Figure 6c, this process com-
bines strokes that are part of the same symbol but which were
initially assigned to different arrows in Step-1. If bounding

Sine Wave Sum Switch

Figure 7: Examples of symbol templates.

boxes of different symbols overlap, this process could erro-
neously merge the symbols. However, in our experience, we
have found that users rarely draw in such a way that this hap-
pens. Thus, at the completion of this step, each cluster is
assumed to be a distinct symbol.

Step-4 Connect empty arrowhead/tails to the nearest clus-
ter: Step-1 guarantees that each non-arrow stroke is attached
to the nearest arrow end. However, some of the arrow ends
might remain devoid of any strokes. In this step, empty arrow
ends are linked to the nearest stroke cluster (Figure 6d). This
step helps to ensure the intended connectivity of the diagram
by ensuring that each arrow has a cluster at its tail and head.

Generating Symbol Candidates
After identifying the stroke clusters, the next step is to rec-
ognize the symbols they represent. Our approach combines
contextual knowledge with shape recognition to achieve ac-
curacy and efficiency. In particular, we examine the num-
ber of input and output arrows associated with each stroke
cluster to help constrain its possible interpretations. For ex-
ample, function generators such as the Sine Wave can have
only output terminals, and therefore, must have only outgo-
ing arrows. Likewise, certain symbols can have only input
terminals, such as the Scope block, or may have an arbitrary
number of input and output terminals such as the Sum block.

By examining the number of input and output arrows for a
given cluster, SimuSketch identifies a set ofcandidatesym-
bols for the cluster. This reduces the amount of work the
subsequent shape recognizer must do and additionally helps
increase accuracy by reducing the possibilities for confusion.
For example, while the Sum block and the Clock look quite
similar (the two circular symbols in Figure 6), context dic-
tates that a Sum block must have at least two incoming ar-
rows while the Clock must have none. With this additional
knowledge, the shape recognizer would never consider the
Sum block and the Clock as two competing candidates dur-
ing shape recognition.

Symbol Recognition
We have developed a novel image-based symbol recognizer
that can recognize shapes independent of their position, size
and orientation.2 However, it is sensitive to non-uniform
scaling, and thus we can distinguish between, say, a square
and a rectangle. A distinguishing feature of this recognizer is
that it is used for recognizing both the Simulink objects, and
the digits in the objects’ dialog boxes.

2Our recognizer uses a polar coordinate representation to efficiently ac-
count for changes in orientation, but that is beyond the current scope.

Input symbols are internally described as 24x24 quantized
bitmap images which we call “templates”. Figure 7 shows
example symbol templates. This representation has a number
of desirable characteristics. First, segmentation – the process
of decomposing the symbol into constituent primitives such
as lines and curves – is eliminated entirely. Second, the rep-
resentation is well suited for recognizing “sketchy” symbols
such as those with heavy overtracing, missing or extra seg-
ments, and different line styles (solid, dashed,etc.). Lastly,
this recognizer puts no restrictions on the number of strokes,
or the order in which the strokes are drawn.

Unlike many traditional methods, our shape recognizer re-
quires only asingleprototype example to learn a new sym-
bol definition. Using the “Train New” button in the interface,
the user can create a new symbol definition by simply draw-
ing a shape and assigning a name to it. With this approach,
users can seamlessly train new symbols or overwrite existing
ones on the fly, without having to depart the main application.
This feature makes it easy for users to extend and customize
their symbol libraries.3

Our recognizer uses an ensemble of four different classifiers
to evaluate the match between an unknown symbol and a
candidate definition symbol. The classifiers we use are ex-
tensions of the following methods: (1) Hausdorff distance
[28], (2) Modified Hausdorff distance [8], (3) Tanimoto co-
efficient [10] and (4) Yule coefficient [32]. The Hausdorff
methods reveal thedissimilarity between two templates by
measuring the distance between the maximally distant pix-
els in the two point sets. The Tanimoto coefficient on the
other hand reveals thesimilarity between two templates by
measuring the amount of overlapping black pixels. The Yule
coefficient is also a similarity measure except it considers the
matching white pixels in addition to the matching black pix-
els. The motivation for using a multiple classifier scheme lies
in the pragmatic evidence that, although individual classifiers
may not perform perfectly, they usually rank the true defini-
tion highly, and tend to misclassify differently [1]. Hence,
by advocating definitions ranked highly by all four classi-
fiers, while suppressing those that are not, we can determine
the true class more reliably.

During recognition, each classifier outputs a list of symbol
definitions ranked according to their similarity to the un-
known. Results of the individual classifiers are then synthe-
sized by first transforming the similarity measures into dis-
similarity measures, then normalizing the classifiers’ output
into a unified scale (to make them compatible), and finally
combining the modified outputs of the classifiers. The defi-
nition symbol with the best combined score is chosen as the
symbol’s interpretation.

Error Correction
Our system provides several means to correct recognition er-
rors when they occur. Our techniques have strong parallels
with the mediation techniques presented in [23]. When an

3Currently SimuSketch has the operational knowledge of 16 Simulink
objects. However, the extension to other Simulink objects is straightfor-
ward, requiring only code for linking the objects in SimuSketch to those in
Simulink.

object is misrecognized, the user canrepeatthe object by se-
lecting, deleting and redrawing it. A more direct way is by
choosing the correct interpretation from achoice list, which
is revealed by bringing the stylus near the misrecognized ob-
ject and pressing one of the buttons on its side. This list con-
tains only the candidate symbols previously determined us-
ing contextual information, and is ranked according to the re-
sults of the shape recognizer. Hence, the list is typically short
with the correct interpretation usually occurring near the top.
Finally, if an arrow goes undetected, and hence becomes part
of an object, the user candictatethe correct interpretation by
drawing a small circle on or near the stroke. This gesture,
which we call the ‘o’ gesture, explicitly forces the stroke in
question to be an arrow. The ‘o’ gesture is distinguished from
a regular drawing stroke based on its absolute size and its two
end points. If the gesture fits in a 30x 30 square on a 1024x
768 screen, and the stroke forms a closed contour (similar to
a selection gesture) without encircling any object, the stroke
is interpreted as an ‘o’ gesture. Once a misrecognized arrow
is corrected, SimuSketch automatically rectifies the portion
of the sketch that was affected by the missed arrow.

USER STUDIES
We conducted two user studies to evaluate our system. The
first study focused on the performance of our symbol recog-
nizer and was conducted with a simple interface designed for
this study. The second investigated users’ reactions to Simu-
Sketch as a pen-based interaction system, and the evaluation
was more observational compared to the first study.

Evaluation of the Symbol Recognizer:Our evaluation of
the symbol recognizer consisted of two experiments. In the
first experiment, we used a set of 20 graphic symbols shown
in Figure 8. Five users participated in this experiment, each
of whom was asked to provide three sets of the symbols using
the digitizing tablet. In the second experiment, we used digit
recognition as our test bed. Nine users participated in the
second study and each was asked to provide six sets of dig-
its from “0” to “9”. Both experiments were conducted in a
user-dependent setting in which the recognizer was evaluated
using the user’s own training symbols. The last set from each
user was used for training while the previous ones were used
for testing. Each session involved only data collection; the
data was processed at a later time. This approach was chosen
to prevent users from adjusting their writing style based on
our program’s output.

When the top-one classification performance is considered,
the recognition rate from the graphic symbol study was 87%.
However when top-two classification performance is consid-
ered,i.e., the rate at which the correct class is either the high-
est or second highest ranked class, the accuracy was 97.5%.
We consider the top-two classification performance to be of
considerable importance, as it provides a measure of how fre-
quently the correct class will appear in the list of alternatives
suggested by our program during error correction.

For the digit recognition study, the top-one accuracy was
93.8% and the top-two accuracy was 98.0%. State-of-the-
art hand-drawn digit recognition systems achieve recognition
rates above 96-97% in user-independent settings [19, 21],
however, these systems usually work from scanned images

Figure 8: Symbols used in the graphic symbol recog-
nition experiment.

which adds another level of complexity to their task. We
achieve about 94% accuracy in a setting where the recogni-
tion is user-dependent and the input data is not affected by
poor image quality. Nevertheless, we consider our approach
to be quite attractive given that it works from asingletraining
example. To have a point of comparison, LeCun’s neural net-
work recognizer [21] for handwritten digits, one of the best
in its class, uses a total of 60,000 digits for training purposes.
As one would expect, if the problem is to recognize digits
only, it is better to use a dedicated digit recognizer. However,
if the problem involves user defined symbols, such as those
shown in Figure 8, our approach has distinct advantages.

Evaluation of SimuSketch: The focus of this study was to
assess the performance of SimuSketch. Among the various
aspects that we investigated, we were particularly interested
in SimuSketch’s ease of use, its parsing and recognition accu-
racy, users’ adaptability to the system, their success at recov-
ering from recognition errors, and their short and long term
view of SimuSketch as a practical front-end to Simulink.

A total of 14 graduate and undergraduate students – 12 engi-
neering and 2 computer science majors – participated in the
studies. Nearly half of the users either regularly used Simu-
link or had previously used it once or twice, while the other
half had never used Simulink before. 10 users had no prior
experience with the digitizing tablet or the stylus, while 4
users had once used the hardware in a previous study. How-
ever, none of the users had previously used SimuSketch, nor
had seen it in use by others.

Each session lasted approximately 30 to 40 minutes. For
those who were not familiar with Simulink, we first described
what Simulink is and gave a brief demonstration on its inter-
face. Next, we introduced SimuSketch. Using simple exam-
ples, we demonstrated the means for creating a sketch, select-
ing, deleting and moving objects, editing object properties,
correcting recognition errors, running simulations, training
new symbols and switching between views. During this pe-
riod, we elaborated on SimuSketch’s arrow recognizer as our
experience with the first few users had indicated the arrow
recognition to be fragile at times. Particularly, we told the
users that only single or two stroke arrows were permitted
and both types had to be drawn from a source object toward
a target object. Other than the recognition of arrows, no fur-

Figure 9: Test problems employed in the user studies.

ther explanation was given regarding the underlying parsing
and recognition algorithms. At the end of this introduction, a
brief warm up period of approximately 5 minutes was given
to let the users become familiar with the hardware and Simu-
Sketch’s interface.

The main test involved the two Simulink models shown in
Figure 9. Users were asked to use SimuSketch to construct
these models, run a simulation of each, and view the re-
sults with minimal help from us. The first model involved
changing the parameters of several objects through their dia-
log boxes while in the second model the default values were
accepted. Because the users were not involved in the train-
ing of the object shapes, none of them knew what the trained
shapes looked like. Although users were given the option to
train their own set of symbols before starting, none of them
chose to do so. Hence, we provided a sketched version of
each of the two models as a quick reference. Both the origi-
nal models and the sample sketches were presented on paper.
Similarly, all users decided to use the pre-trained digit rec-
ognizer rather than training their own set of digits. However,
in this case we did not provide sample figures of the trained
digits. Although no time constraints were set, we encouraged
users to complete their tasks in a total of 20 minutes.

Observations, Evaluations and Discussions

One consistent pattern among the users was that their en-
counter with SimuSketch began with great excitement as ob-
served from their reactions during the demo session. This
was followed by a period of frustration at the beginning of
the warm up period, and finally reached a favorable equilib-
rium toward the end of the warm up period and during the
actual testing. At the end, all users completed the first task
successfully, while all but four users completed the second
task. In the case of the four users, either the program crashed
unexpectedly and they did not have time to redo it, or it was

taking too long for them to finish the task.
The users’ main remark about SimuSketch was that it was
intuitive and fast to use, and easy to learn. They particularly
liked the idea of simply drawing the objects without having
to navigate through an object library to find them. Most users
found the interaction mechanisms to be “natural” and “famil-
iar.” Many highlighted the ability to quickly train a custom
set of symbols as an outstanding attribute, although they did
not make use of it.

The user studies enabled us to evaluate the individual accu-
racies of our arrow recognizer, parsing algorithm, and sym-
bol recognizer. In its current implementation, our program
saves only the user’s final sketch, and any objects that are
deleted during a drawing session are lost. Our initial accu-
racy calculations thus do not reflect errors that users repaired
by deleting and redrawing objects. This does not produce a
significant error in our accuracy calculations, however, be-
cause users in the study rarely repaired interpretation errors
in this way. In the results presented below, we include es-
timates of the accuracy that would have been obtained if all
interpretation errors had been considered.

The study has shown the main strength of SimuSketch to be
its parsing algorithm. In cases where the arrows were all cor-
rectly recognized, or the misrecognized ones were corrected
by the user, the parsing algorithm had an accuracy above
95%. In the few cases it failed, two distinct symbols were
drawn too close to each other and thus their strokes were
grouped into a single cluster.

In cases where all stroke clusters were correctly identified,
the symbol recognition accuracy was between 85 and 90%.
Note that while this result is obtained in a user-independent
setting (i.e., the training and test symbols belong to different
individuals), it is similar to the result of the user-dependent
study explained in the previous section. We believe that
SimuSketch’s ability to maintain the same level of accuracy
in a more difficult setting can be attributed to its use of con-
textual knowledge for narrowing down the set of interpreta-
tions of a symbol prior to recognition. Nevertheless, when
errors occurred, they were mostly due to: (1) the confusion
between similarly shaped objects, or (2) the recognizer’s sen-
sitivity to non-uniform scaling. Figure 10 shows examples
of these issues. However, contrary to our expectation, users
did not seem to mind such occasional errors, mainly because
they found the means for recovery – either by deleting and
redrawing, or by selecting the right interpretation from the
list of alternatives – to be intuitive and undemanding. In the
latter case, the correct interpretation was always in the list of
alternatives suggested by SimuSketch.

The main complaint about SimuSketch centered around the
arrow recognizer being too restrictive. Although several
users quickly became adept at drawing arrows during the
warm up period, most users continued having difficulty dur-
ing the main test session. As we expected, the majority of
the errors thus occurred due to the misrecognized arrows.
For the most successful users, the arrow recognition accu-
racy was above 90%. However, when considering all users,
the average accuracy for arrow recognition was between 65
and 70%. These results indicate that our arrow recognizer
must be further improved to accommodate a wider variety of

(a)

Random Chirp Coul. & Visc. Friction Sign

(b)

Definition of Transfer Function One user’s Transfer Function

Figure 10: (a) Pairs of most frequently confused ob-
jects. (b) A misrecognition due to non-uniform scaling.
(Left) Definition symbol, (Right) One user’s misrecog-
nized symbol.

styles. One approach in this direction would be to replace
the hard-coded thresholds of the geometric constraints with
thresholds that are tunable to individual users.

Besides the issue with arrows, some users had difficulty tap-
ping the stylus to select an object or to bring up a dialog box.
Usually, faulty taps were either too gentle, in which case the
program did not receive a tap message, or persisted too long
on the tablet, in which case the tap was interpreted as a draw-
ing stroke. Another observed difficulty was with the digit
recognition in the dialog boxes. While our pre-trained digit
recognizer had acceptable performance for certain users, it
could not accommodate the vastly dissimilar digit styles that
it was not trained for. In cases where the numbers were mis-
recognized, we asked the users to re-enter them until they
got it right. If each user had trained his or her set of digits,
we expect that the accuracy would have been similar to the
results presented in the previous section.

To obtain the users’ evaluation of SimuSketch’s performance,
we asked each user to complete a questionnaire at the end of
the session. The results shown in Table 1 indicate that, while
there are a number of usability issues that must be addressed,
most users viewed SimuSketch as a promising alternative to
Simulink.

Because SimuSketch is still at an early stage, we have delib-
erately avoided a head-to-head comparison between Simu-
Sketch and Simulink in our user studies. Nevertheless, as
a subjective test of how an individual who is proficient in
both environments would perform, one of the authors used
the two programs to construct and simulate a variation of the
second model shown in Figure 9. The test involved creating
the model, changing the default properties of several objects,
and viewing the simulation results. While the task took 241
seconds to complete in Simulink, it took only 183 seconds
in SimuSketch. Although simplistic, we believe this experi-
ment helps reveal the latent value of SimuSketch as a practi-
cal tool.

CONCLUSIONS
We have presented a multi-level parsing and recognition ap-
proach designed to enable natural sketch-based computer in-
teraction. This approach allows users to continuously sketch
without indicating when one symbol ends and a new one be-
gins. Additionally, it does not restrict the number of strokes,

Score
As I was using SimuSketch , I was able to 8.2
adapt to it easily
The software was fast enough to keep up 7.8
with my pace
Most of the time, SimuSketch interpreted my 7.4
sketch the way I intended
Most of the time, SimuSketch behaved expectedly8.2
and when it did not, I felt I was in control to fix it
The visual feedback on the interpretation results 9.1
was adequate and unobtrusive
The editing operations (select, move, delete 8.3
deselect) were intuitive and easy to use
I was comfortable using objects’ dialog 7.7
boxes to enter numeric values
Currently, the overall performance 7.6
of SimuSketch is
Assuming that SimuSketch was significantly more9.4
robust I would use it in my projects
Overall, my rating of SimuSketch is 8.7

Table 1: Average scores obtained from user question-
naire. Scale: 1-10, 10 being excellent.

or the order in which they must be drawn.

Our approach is based on a mark-group-recognize architec-
ture. In the first step, our program identifies the arrows in the
sketch, which serve as useful markers that separate the unin-
terpreted strokes into distinct clusters. After the symbol clus-
ters are identified, an image-based symbol recognizer, which
is informed by clustering and domain specific knowledge, is
used to find the best interpretations of the strokes. One ad-
vantage of this recognizer over traditional ones is that it can
learn new definitions from single prototype examples. The
recognizer is versatile in that we use it both for graphical
symbol recognition and digit recognition.

We have demonstrated our approach with SimuSketch, a
sketch-based interface for Simulink. User studies have indi-
cated that we have sound algorithms for parsing and symbol
recognition, and useful means for error recovery. However,
our current arrow recognizer should be improved to enhance
the user’s experience with SimuSketch. Overall, most users
had highly favorable opinions of our prototype system, and
found it easy and straightforward to use.

While useful for the practicing engineer, SimuSketch is likely
to have distinct advantages in engineering education. By
its nature, SimuSketch is ideally suited for electronic white-
board applications and thus can be readily integrated into the
classroom environment. In the near future, we plan to ex-
plore this possibility with pilot studies.

Finally, although the techniques presented in this paper are
tailored toward the domain of network diagrams, our prelimi-
nary studies suggest that our mark-group-recognize approach
may be applicable to other domains as well. We are currently
working to apply this approach to several other domains in-
cluding electrical circuits and mechanical systems.

References

1. Fevzi Alimoglu and Ethem Alpaydin. Combining mul-
tiple representations for pen-based handwritten digit
recognition. ELEKTRIK: Turkish Journal of Electrical
Engineering and Computer Sciences, 9(1):1–12, 2001.

2. Christine Alvarado.A Natural Sketching Environment:
Bringing the Computer into Early Stages of Mechanical
Design. Master thesis, MIT, 2000.

3. Christine Alvarado. Dynamically constructed bayesian
networks for sketch understanding. Technical report,
MIT Project Oxygen Student Workshop Abstracts, 2003.

4. Christine Alvarado and Randall Davis. Resolving am-
biguities to create a natural sketch based interface. In
IJCAI-2001, 2001.

5. Ajay Apte, Van Vo, and Takayuki Dan Kimura. Recog-
nizing multistroke geometric shapes: An experimental
evaluation. InUIST 93, pages 121–128, 1993.

6. Chris Calhoun, Thomas F Stahovich, Tolga Kurtoglu,
and Levent Burak Kara. Recognizing multi-stroke sym-
bols. InAAAI Spring Symposium on Sketch Understand-
ing, pages 15–23, 2002.

7. Gennaro Costagliola and Vincenzo Deufemia. Visual
language editors based on lr parsing techniques. In
8th International Workshop on Parsing Technologies
(IWPT’03), Nancy, France, 2003.

8. Marie-Pierre Dubuisson and Anil K Jain. A modified
hausdorff distance for object matching. In12th Interna-
tional Conference on Pattern Recognition, pages 566–
568, Jerusalem, Israel, 1994.

9. Lee D Erman, Frederick Hayes-Roth, Victor R Lesser,
and D Raj Reddy. The hearsay-ii speech understand-
ing system: Integrating knowldge to resolve uncertainty.
Computing Surveys, 12(2):213–253, 1980.

10. Michael Fligner, Joseph Verducci, Jeff Bjoraker, and
Paul Blower. A new association coefficient for molecular
dissimilarity. InThe Second Joint Sheffield Conference
on Chemoinformatics, Sheffield, England, 2001.

11. Manueal J Fonseca, Cesar Pimentel, and Jaoquim A
Jorge. Cali-an online scribble recognizer for calligraphic
interfaces. InAAAI Spring Symposium on Sketch Under-
standing, pages 51–58, 2002.

12. Manuel J Fonseca and Joaquim A Jorge. Using fuzzy
logic to recognize geometric shapes interactively. In
Proceedings of the 9th Int. Conference on Fuzzy Systems
(FUZZ-IEEE 2000). San Antonio, USA, 2000.

13. W Eric L Grimson. The combinatorics of heuristic
search termination for object recognition in cluttered en-
vironments.IEEE PAMI, 13(9):920–935, 1991.

14. Jason I Hong and James A Landay. Satin: A toolkit
for informal ink-based applications. InACM UIST 2000
User Interfaces and Software Technology, pages 63–72,
San Diego, CA, 2000.

15. Heloise Hse and A. Richard Newton. Sketched symbol
recognition using zernike moments. Technical report,
EECS, University of California, 2003.

16. David W Jacobs. The use of grouping in visual object
recognition. Technical Report Technical Report 1023,
MIT AI Lab, 1988.

17. T D Kimura, A Apte, and S Sengupta. A graphic dia-
gram editor for pen computers.Software Concepts and

Tools, pages 82–95, 1994.
18. Tolga Kurtoglu and Thomas F Stahovich. Interpreting

schematic sketches using physical reasoning. InAAAI
Spring Symposium on Sketch Understanding, pages 78–
85, 2002.

19. Ernst Kussul and Tatyana Baidyk. Improved method of
handwritten digit recognition tested on mnist database.
In 15th International Conference on Vision Interface,
Calgary, Canada, 2002.

20. James A Landay and Brad A Myers. Sketching inter-
faces: Toward more human interface design.IEEE Com-
puter, 34(3):56–64, 2001.

21. Y LeCun, L D Jackel, L Bottou, A Brunot, C Cortes, J S
Denker, H Drucker, I Guyon, U A Muller, E Sackinger,
P Simard, and V Vapnik. Comparison of learning algo-
rithms for handwritten digit recognition. InInternational
Conference on Artificial Neural Networks, pages 53–60,
Paris, 1995.

22. James Lin, Mark W. Newman, Jason I. Hong, and
James A. Landay. Denim: Finding a tighter fit between
tools and practice for web site design. InCHI Letters:
Human Factors in Computing Systems, pages 510–517.
ACM Press, 2000.

23. Jennifer Mankoff, Gregory D. Abowd, and Scott E Hud-
son. Oops: a toolkit supporting mediation techniques
for resolving ambiguity in recognition-based interfaces.
Computers and Graphics, 24(6):819–834, 2000.

24. Nicholas E Matsakis.Recognition of Handwritten Math-
ematical Expressions. Master thesis, MIT, 1999.

25. Shankar Narayanaswamy.Pen and Speech Recognition
in the User Interface for Mobile Multimedia Terminals.
Ph.d. thesis, University of California at Berkeley, 1996.

26. Omer Faruk Ozer, Oguz Ozun, C Oncel Tuzel, Volkan
Atalay, and A Enis Cetin. Vision-based single-stroke
character recognition for wearable computing.IEEE In-
telligent Systems and Applications, 16(3):33–37, 2001.

27. Dean Rubine. Specifying gestures by example.Com-
puter Graphics, 25:329–337, 1991.

28. W J Rucklidge. Efficient Visual Recognition Using the
Hausdorff Distance. Number 1173 Lecture Notes in
computer Science,. Springer-Verlag, Berlin, 1996.

29. Eric Saund, James Mahoney, David Fleet, Dan Larner,
and Edward Lank. Perceptual organisation as a founda-
tion for intelligent sketch editing. InAAAI Spring Sym-
posium on Sketch Understanding, pages 118–125, 2002.

30. Tevfik Metin Sezgin. Generic and HMM based ap-
proaches to freehand sketch recognition. Technical re-
port, MIT Project Oxygen Student Workshop Abstracts,
2003.

31. Michael Shilman, Hanna Pasula, Stuart Russell, and
Richard Newton. Statistical visual language models for
ink parsing. InAAAI Spring Symposium on Sketch Un-
derstanding, pages 126–132, 2002.

32. Jack D Tubbs. A note on binary template matching.Pat-
tern Recognition, 22(4):359–365, 1989.

33. H Yasuda, K Takahashi, and T Matsumoto. A discrete
HMM for online handwriting recognition.International
Journal of Pattern Recognition and Articial Intelligence,
14(5):675–688, 2000.

