
An Image-Based Trainable Symbol Recognizer for Sketch-Based Interfaces

Levent Burak Kara
Mechanical Engineering Department

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

lkara@andrew.cmu.edu

Thomas F. Stahovich
Mechanical Engineering Department
University of California, Riverside

Riverside, California 92521
stahov@engr.ucr.edu

Abstract

We describe a trainable, hand-drawn symbol recognizer
based on a multi-layer recognition scheme. Symbols are in-
ternally represented as binary templates. An ensemble of four
template classifiers ranks each definition according to simi-
larity with an unknown symbol. Scores from the individual
classifiers are then aggregated to determine the best definition
for the unknown. Ordinarily, template-matching is sensitive
to rotation, and existing solutions for rotation invariance are
too expensive for interactive use. We have developed an ef-
ficient technique for achieving rotation invariance based on
polar coordinates. This techniques also filters out the bulk of
unlikely definitions, thereby simplifying the task of the multi-
classifier recognition step.

Introduction
A long standing challenge in pen-based interaction con-
cernssymbol recognition, the task of recognizing individual
hand-drawn figures such as geometric shapes, glyphs and
symbols. While there has been significant recent progress
in symbol recognition (Rubine 1991; Fonseca, Pimentel,
& Jorge 2002; Matsakis 1999; Hammond & Davis 2003),
many recognizers are either hard-coded or require large sets
of training data to reliably learn new symbol definitions.
Such issues make it difficult to extend these systems to new
domains with novel shapes and symbols. The work pre-
sented here is focused on the development of a trainable
symbol recognizer that provides (1) interactive performance,
(2) easy extensibility to new shapes, and (3) fast training ca-
pabilities.

Our recognizer uses an image-based recognition ap-
proach. This approach has a number of desirable character-
istics. First, segmentation – the process of decomposing the
sketch into constituent primitives such as lines and curves –
is eliminated entirely. Second, our system is well suited for
recognizing “sketchy” symbols such as those shown in Fig-
ure 1. Lastly, multiple pen strokes or different drawing or-
ders do not pose difficulty. Many of the existing recognition
approaches have either relied on single stroke methods in
which an entire symbol must be drawn in a single pen stroke
(Rubine 1991; Kimura, Apte, & Sengupta 1994), or constant
drawing order methods in which two similarly shaped pat-
terns are considered different unless the pen strokes leading

Copyright c© 2004, UCR Smart Tools Lab. All rights reserved.

Figure 1: Examples of symbols correctly recognized by our
system. The top row shows symbols used in training and
the bottom row shows correctly recognized test symbols. At
the time of the test, the database contained 104 definition
symbols.

to those shapes follow the same sequence (Ozeret al. 2001;
Yasuda, Takahashi, & Matsumoto 2000).

Unlike many traditional methods, our shape recognizer
can learn new symbol definitions from asingle prototype
example. Because only one example is needed, users can
seamlessly train new symbols, and remove or overwrite ex-
isting ones on the fly, without having to depart the main ap-
plication. This makes it easy for users to extend and cus-
tomize their symbol libraries. To increase the flexibility of
a definition, the user can provide additional examples of a
symbol.

Ordinarily, template-matching is sensitive to rotation, and
existing solutions for rotation invariance are too expensive
for interactive use. We have developed an efficient tech-
nique for rotation invariance based on a novel polar coor-
dinate analysis. The unknown symbol is transformed into a
polar coordinate representation, which allows the program
to efficiently determine which orientation of the unknown
best matches a given definition. During this process, defi-
nitions that are found to be markedly dissimilar to the un-
known are pruned away, and the remaining ones are kept for
further analysis. In a second step, recognition switches to
screen coordinates where the surviving definitions are ana-
lyzed in more detail using an ensemble of four different clas-
sifiers. Each classifier produces a list of definitions ranked
according to their similarity to the unknown. In the final step
of recognition, results of the individual classifiers are pooled
together to produce the recognizer’s final decision.



Figure 2: Examples of symbol templates: A mechanical
pivot, letter ‘a’, digit ‘8’. The examples are demonstrated
on 24x24 templates to better illustrate the quantization.

The analysis in polar coordinates precedes the analysis
in screen coordinates. However, for the sake of presenta-
tion, we have found it useful to begin the discussion with
our template representation and the four template matching
techniques, since some of those concepts are necessary to
set the context for the analysis in polar coordinates.

Template Matching

Symbols are drawn using a 9 x 12 Wacom Intuos2 digitiz-
ing tablet and a cordless stylus. Data points are collected as
time sequenced (x,y) coordinates sampled along the stylus’
trajectory. There is no restriction on the number of strokes,
and symbols can be drawn anywhere on the tablet, in any
size and orientation.

Input symbols are internally described as 48x48 quantized
bitmap images which we call “templates” (Figure 2). This
quantization significantly reduces the amount of data to con-
sider while preserving the patterns’ distinguishing charac-
teristics. The template representation preserves the original
aspect ratio so that one can distinguish between, say, a circle
and an ellipse.

During recognition, the template of the unknown is
matched against the templates in the database of definitions.
We use four different methods to evaluate the match be-
tween a pair of templates. The first two methods are based
on the Hausdorff distance, which measures the dissimilar-
ity between two point sets. Hausdorff-based methods have
been successfully applied to object detection in complex
scenes (Rucklidge 1996; Sim, Kwon, & Park 1999), but only
a few researchers have recently employed them for hand-
drawn pattern recognition (Cheung, Yeung, & Chin 2002;
Miller, Matsakis, & Viola 2000). Our other two recognition
methods are based on the Tanimoto and Yule coefficients.
The Tanimoto coefficient is extensively used in chemical in-
formatics such as drug testing, where the goal is to iden-
tify an unknown molecular structure by matching it against
known structures in a database (Flower 1998). The Yule co-
efficient has been proposed as a robust measure for binary
template matching (Tubbs 1989). To the best of our knowl-
edge, the Tanimoto and Yule measures have not previously
been applied to handwritten pattern recognition. In the fol-
lowing paragraphs we detail these four classification meth-
ods.

Hausdorff Distance

The Hausdorff distance between two point setsA andB is
defined as:

H(A,B) = max(h(A, B), h(B, A))

where

h(A,B) = max
a∈A

(min
b∈B

‖a− b‖)

‖a− b‖ represents a measure of distance (e.g., the Euclidian
distance) between two pointsa andb. h(A,B) is referred to
as the directed Hausdorff distance fromA to B and corre-
sponds to the maximum of all the distances one can measure
from each point inA to the closest point inB. The intuitive
idea is that ifh(A,B) = d, then every point in setA is at
most distanced away from some point inB. h(B,A) is the
directed distance fromB to A and is computed in a similar
way. Note that in generalh(A,B) 6= h(B, A). The Haus-
dorff distance is defined as the maximum of the two directed
distances.

In its original form, the Hausdorff distance is too sensi-
tive to outliers. ThePartial Hausdorff distance proposed
by Rucklidge (1996) eliminates this problem by ranking the
points inA according to their distances to points inB in de-
scending order, and assigning the distance of thekth ranked
point ash(A,B). The partial Hausdorff distance fromA to
B is thus given by:

hk(A, B) = kth

a∈A
min
b∈B

‖a− b‖

The partial Hausdorff distance, in effect, softens the distance
measure by discarding points that are maximally far away
from the counterpart point set. The results reported in the
following sections are based on a rank of 6%,i.e., in the
calculation of the directed distances, the most distant 6%
of the points are ignored. We determined this cutoff value
empirically based on the user experience with our system.

Modified Hausdorff Distance

Modified Hausdorff Distance (MHD) (Dubuisson & Jain
1994) replaces themax operator in the directed distance cal-
culation by the average of the distances:

hmod(A,B) =
1

Na

∑

a∈A

min
b∈B

‖a− b‖

whereNa is the number of points inA. The modified Haus-
dorff distance is then defined as the maximum of the two
directed average distances:

MHD(A, B) = max(hmod(A,B), hmod(B, A))

Althoughhmod(A,B) may appear similar tohk(A,B) with
k = 50%, the difference is that the former corresponds to
the mean directed distance while the latter corresponds to
the median. Dubuisson and Jain argue that for object match-
ing purposes, the average directed distance is more reliable
than the partial directed distance mainly because as the noise



level increases, the former degrades gracefully whereas the
latter exhibits a pass/no-pass behavior.

Tanimoto Similarity Coefficient
The Tanimoto Similarity coefficient (Fligneret al. 2001)
between two binary imagesA andB is defined as:

Tsc(A,B) = α · T (A,B) + (1− α) · TC(A,B)

where T (A,B) and TC(A, B) are the Tanimoto coeffi-
cient and the Tanimoto coefficient complement, respectively.
T (A,B) is a measure of matching black pixels and is de-
fined as:

T (A,B) =
nab

na + nb − nab

wherena andnb are the total number of black pixels inA
andB respectively.nab is the number of overlapping black
pixels.TC(A,B) is defined in a similar way except it takes
into account the number of matching white pixels as op-
posed to the matching black pixels.α is a weighting fac-
tor that controls the relative contributions ofT (A,B) and
TC(A,B). We typically set the value ofα in the range
[0.5,0.75]. This choice is justified by the fact that hand-
drawn symbols usually consist of thin lines (unless excessive
over-tracing is done), which makes the match of black pixels
more informative than the match of white pixels. Hence, for
our problem, the Tanimoto Similarity coefficient should be
controlled more byT (A,B) than byTC(A,B).

Similarity measures that are based exclusively on the
number of overlapping pixels, such as the Tanimoto coef-
ficient, often suffer from slight misalignments of the raster-
ized images. We have found this problem to be particularly
severe for hand-drawn patterns where rasterized images of
ostensibly similar shapes are almost always disparate, either
due to differences in shape, or more subtly, due to differ-
ences in drawing dynamics. The latter commonly occurs as a
result of irregular drawing speed, often manifesting itself as
unevenly sampled digital ink. Hence, for two shapes drawn
at different speeds, the resulting rasterized images will likely
exhibit differences. In order to absorb such variations during
matching, we use a thresholded matching criterion that con-
siders two pixels to be overlapping if they are separated by
a distance less than 1/15th of the image’s diagonal length.
For a 48x48 image grid, this translates into 4.5 pixels,i.e.,
two points are considered to be overlapping if the distance
between them is less than 4.5 pixels.

Yule Coefficient
The Yule coefficient, also known as the coefficient of colli-
gation, is defined as:

Y (A, B) =
nab · n00 − (na − nab) · (nb − nab)
nab · n00 + (na − nab) · (nb − nab)

where the term(na − nab) corresponds to the number of
black pixels inA that do not have a match inB. Similarly,
(nb − nab) is the number of black pixels inB that do not
find a match inA.

Y (A,B) produces values between 1.0 (maximum similar-
ity) and -1.0 (minimum similarity). Like the Tanimoto coef-
ficient, the Yule coefficient it is sensitive to slight misalign-
ments between patterns for the reasons explained above. A
thresholded matching criterion is thus employed, which is
similar to the one we use with the Tanimoto method.

Tubbs (1989) originally employed this measure for
generic, noise-free binary template matching problems. By
using a threshold, we have made the technique useful when
there is considerable noise, as is the case with hand-drawn
shapes.

Combining Classifiers
Our recognizer compares the unknown symbol to each of
the definitions using the four classifiers explained above.
The next step in recognition is to identify the true class of
the unknown by synthesizing the results of the component
classifiers. However, the outputs of the classifiers are not
compatible in their original forms because: (1) The first two
classifiers are measures ofdissimilarity while the last two
are measures ofsimilarity, and (2) the classifiers have dis-
similar ranges. To establish a congruent ranking scheme, we
first transform the Tanimoto and Yule similarity coefficients
into distance measures and then normalize the values of all
four classifiers to the range 0 to 1. We refer to these two
processes as parallelization and normalization.

Parallelization: To facilitate discussion, letM denote the
number of definitions,R denote the number of classifiers
anddm

r denote the score classifierr assigns to definition
m. In our caser ∈ {Hausdorff, Modified Hausdorff, Tani-
moto, Yule} andm is any definition symbol in the database.
We transform the Tanimoto and Yule coefficients into dis-
similarity measures by reversing their values as follows:

Form = 1, ..M ,

dm
Tanimoto ← 1.0− dm

Tanimoto

dm
Y ule ← 1.0− dm

Y ule

This process brings the Tanimoto and Yule coefficients in
parallel with the Hausdorff measures in the sense that the nu-
merical scores of all classifiers now increase with increasing
dissimilarity.

Normalization: After parallelization, all classifiers be-
come measures of distance but still remain incompatible
due to differences in their ranges. To establish a unified
scale among classifiers, we use a linear transformation func-
tion that converts the original distances into normalized dis-
tances. For this, we first find the smallest and largest values
observed for each of the four classifiers:

minscorer =
M

min
k=1

dk
r , maxscorer =

M
max
k=1

dk
r

The normalized distancēdm
r

for definitionm under classi-
fier r is then defined as:

d̄m
r =

dm
r −minscorer

maxscorer −minscorer



This transformation maps the distance scores of each clas-
sifier to the range [0,1] while preserving the relative order
established by that classifier.

Combination Rule: Having standardized the outputs of
the four classifiers by parallelization and normalization, we
are now ready to combine the results. We use an approach
similar to the sum rule introduced by Kittleret al. (1998).
For each definitionm, we define a combined normalized dis-
tanceDm by summing the normalized distances computed
by the constituent classifiers:

Dm =
R∑

r=1

d̄m
r

Finally, the unknown pattern is assigned to the class having
the minimum combined normalized distance. The decision
rule is thus:

Assign unknown symbol to definitionm∗ if

m∗ = argmin
m

Dm

Handling Rotations
Template matching techniques are sensitive to orientation.
Therefore, for rotation invariant recognition, it is necessary
to first rotate the patterns into the same orientation. Often
this is accomplished by incrementally rotating one pattern
relative to the other until the best alignment is achieved.
However, this is overwhelmingly expensive for real-time ap-
plications due to the costly rotation operation. We have de-
veloped a technique, based on the polar coordinate transfor-
mation, to greatly facilitate this process. The main idea is
that rotations in Cartesian coordinates become translations
in polar coordinates. Figure 3 illustrates the idea. By identi-
fying the linear offset between two patterns in polar coordi-
nates, we can determine the angle by which the patterns dif-
fer in thex−y plane. Because a polar image is still a bitmap
image, we again make use of template matching techniques
to determine the offset between two polar images. After the
polar analysis, the patterns are aligned properly in thex− y
plane by a single rotation, and compared using the four tem-
plate classifiers mentioned above.

Polar Transform
The polar coordinates of a point in thex-y plane are given
by the point’s radial distance,r, from the origin and the an-
gle, θ, between that radius and thex axis. The well known
relations are:

r =
√

(x− xo)2 + (y − yo)2
and

θ = tan−1(
y − yo

x− xo
), where(xo, yo) is the origin.

A symbol originally drawn in the screen coordinates (x-
y plane) is transformed into polar coordinates by applying
these formulae to each of the points. Figure 3a illustrates
a typical transformation. As shown in Figure 3b, when a
pattern is rotated in thex-y plane, the corresponding polar

120

170

220

270

320

300 350 400 450 500

x

y

130

180

230

280

280 330 380 430 480

x

y

0

0.4

0.8

1.2

1.6

2

-3.15 -1.15 0.85 2.85 4.85

theta

r

0

0.4

0.8

1.2

1.6

2

-3.15 -1.15 0.85 2.85 4.85

theta

r

(a)

(b)

p/2 p/2

q

q

Figure 3: (a) Left: Letter ‘P’ in screen coordinates. Right:
in polar coordinates. (b) When the letter is rotated in thex-
y plane, the corresponding polar transform shifts parallel to
theθ axis.

image slides parallel to theθ axis by the same angular dis-
placement.

To find the angular offset between two polar images, we
use a slide-and-compare algorithm in which one image is
incrementally displaced along theθ axis. At each displace-
ment, the two images are compared to determine how well
they match. The displacement that results in the best match
indicates how much rotation is needed to best align the orig-
inal images. Because the polar images are in fact 2D binary
patterns (48x48 quantized templates), we can use the tem-
plate matching techniques described earlier to match the po-
lar images. In particular, we use the modified Hausdorff dis-
tance (MHD) as it is slightly more efficient than the regular
Hausdorff distance (directed distances need not be sorted),
and it performs slightly better than the Tanimoto and Yule
coefficients in polar coordinates.

One difficulty with the polar transform is that data near
the centroid of the original image is sensitive to the precise
location of the centroid. Consider Figure 4 which shows two
similar shapes and their polar transforms. In the top image
the tail of the “T” curves slightly to the left while in the
bottom image it curves slightly to the right. This difference
causes the image centroids to fall on the opposite sides of
the tail, which, in turn leads to significant dissimilarity in the
polar transforms for smallr values. Naturally, the modified
Hausdorff distance is adversely affected by these variations.

To alleviate this problem, we introduce a weighting func-
tion w(·) that attenuates the influence of pixels near the cen-
troid of the screen image. Using this function, the directed
MHD becomes:



(a)

(b)

0

0.4

0.8

1.2

1.6

-3.15 -2.15 -1.15 -0.15 0.85 1.85 2.85

r

q

0

0.4

0.8

1.2

1.6

-3.15 -2.15 -1.15 -0.15 0.85 1.85 2.85

r

q

140

190

240

290

340

340 390 440 490 540

x

y

(x ,y )0 0

140

190

240

290

340

350 400 450 500 550

x

y
(x ,y )0 0

Figure 4: For small values ofr, the θ coordinate is sensi-
tive to the precise location of the centroid of the screen im-
age. (a) Letter ‘T’ and its polar transform. (b) Nearly the
same letter except for the curl of the tail. The difference in
curl causes noticeable differences in the polar transforms for
small values ofr.

hmod weighted(A, B) =
1

Na

∑

a∈A

w(ar) ·min
b∈B

‖a− b‖

wherear represents the radial coordinate of pointa in the
quantized polar imageA. The directed distance fromB to
A, hmod weighted(B,A), is calculated similarly. The max-
imum of the two directed distances is the MHD betweenA
andB. Our weighting function has the form:

w(r) = r0.10

The exponent in the function has been determined experi-
mentally for best performance. The function asymptotes at
1 for large values ofr, and falls off rapidly for small val-
ues ofr. By assigning smaller weights to the pixels near
the centroid, this function allows the Hausdorff distance to
be governed by the pixels that reside farther from the cen-
troid, hence reducing the sensitivity to the precise centroid
location.

Polar Transform as a Pre-Recognizer
The degree of match between two polar images provides
a reasonable estimate of the match of the original screen
images. In fact, if it were not for the imprecision of the
polar transform for smallr values, the entire recognition
process could be performed exclusively in the polar plane.
The match in polar coordinates discounts data near the cen-
troid of the screen image, which can result in false positive
matches (i.e., declaring a close match between two patterns
when they are in fact dissimilar), but it rarely results in false
negative matches. Thus, the polar analysis can be used as
a pre-recognition step to eliminate unlikely definitions. In

Beam Pivot Root Pump

Cantilever

Beam
Piston Sum Random

Number

Square Spring Current Sine Wave

Matrix Damper Circular

Sum
Pulley

Diode IntegratorDifferentiator Signum

Figure 5: Symbols used in the graphic symbol recognition
experiment.

practice, we have found that the correct definition for an un-
known is among the definitions ranked in the top 10% by the
polar coordinate matching. Thus, we discard 90% of the def-
initions before considering the match in screen coordinates.

This approach is conceptually similar to cascading pre-
sented in (Alimoglu & Alpaydin 2001), where a simple clas-
sifier is used to reduce the number of classes before a more
complex classifier with a more expensive classification rule
is applied. In our case, however, the polar transform not
only serves as a pre-elimination step but also as a means to
efficiently achieving rotation invariance. We have found this
dual functionality of the polar transform to be invaluable for
achieving real-time performance on an otherwise computa-
tionally demanding task.

User Studies

Top 1 (%) Top 2 (%) Recog. Time (ms)
Test1 90.7 96.3 332
Test2 95.7 98.3 354
Test3 94.7 97.3 623
Test4 98.0 99.0 674

Table 1: Results from the graphic symbol recognition study.
All tests were conducted on a 2.0 GHz Pentium 4 machine
with 256 MB of RAM.

We developed a computer program that implements the
approach described above and conducted a user study to
assess its performance. Users were asked to draw the 20
symbols shown in Figure 5. The study included five users,
who each provided three sets of these symbols. Because the
participants had little or no experience using the digitizing



tablet and stylus, they were allowed to acquaint themselves
with the hardware until they felt comfortable, which typi-
cally took about 2 to 3 minutes. Each experimental session
involved only data collection; the data was processed at a
later time. This approach was chosen to prevent participants
from adjusting their writing style based on our program’s
output.

Four different types of tests were conducted using the col-
lected data. The tests differ based on (1) the number of defi-
nition symbols used for training, and (2) whether the test was
conducted in a user-dependent or user independent manner.
Below we detail each of these tests and the results.

Test 1: Single definition set, user-dependent:In this test,
the recognizer was evaluated separately for each user. Each
test consisted of three iterations, akin to the K-fold cross
validation technique with K=3. In each iteration, one of the
user’s three sets of symbols was used for training, and the
other two were used for testing. Different iterations em-
ployed different test sets. The performance for each user
was computed as the average of the three iterations. The
first row of Table 1 shows the results obtained from this
study, averaged over the five users. In this table, the first col-
umn shows the recognition accuracy, or the rate at which the
class ranked highest by the recognizer, is indeed the correct
class. We call this the “top-one” accuracy. The second col-
umn shows the “top-two” accuracy, or the rate at which the
correct class is either the highest or second highest ranked
class. The last column shows the average recognition time
in milliseconds.

Test 2: Two definition sets, user-dependent:This test is
similar to the first test except, in each of the three runs,two
sets of symbols were used for training while the remaining
set was used for testing. Hence, during recognition, each
unknown was compared to 40 definition symbols – 2 defini-
tions per symbol. As shown in the second row of Table 1,
the additional training set increased the recognition accuracy
at the expense of only a minor increase in the recognition
times.

Test 3: Twelve definition sets, user-independent:The aim
of this test was to evaluate the recognizer when the train-
ing and test sets belonged to different users. When testing
a particular user’s data, the training database consisted of
all users’ symbol sets excluding the data from the user un-
der consideration. In each run, the database thus consisted
of a total of twelve sets: three sets from each of the four
users not involved in that particular test. This test mimics a
walk-up-and-draw scenario in which the user works directly
from a pretrained recognizer without providing his or her
own training symbols. The third row of Table 1, shows the
performance obtained in this setting.

Test 4: Fourteen definition sets, partially user-
dependent: The difference between this test and the pre-
vious one is that the training database contained two symbol
sets from the user under consideration, in addition to the
twelve sets from other users. In terms of training sets em-
ployed, this experiment is thus a hybrid of Test 2 and Test 3.
As shown in the last row of Table 1, the top-one accuracy in

this case reaches 98%.
We believe that the results of our user study are quite

promising when compared to results reported in the litera-
ture. For example, Landay & Myers (2001) report a recogni-
tion rate of 89% on a set of 5 single-stroke editing gestures.
In our case, however, there are 20 symbol definitions which
can be drawn with any number of strokes. In a different
study involving 7 multi-stroke and 5 single-stroke shapes,
Fonseca & Jorge (2000) report recognition rates around 92%
in an experiment where half of the subjects were experts in
using the hardware. On a database of 13 symbols, Hse &
Newton (2003) report a recognition rate of 97.3% in a user-
dependent setting and 96.2% in a user-independent setting,
where each symbol was trained using 30 examples. In a
user-dependent setting, we achieve an accuracy of 95.7% on
a database of 20 symbols where each symbol was trained
with 2 examples (Test-2), and 94.7% in a user-independent
setting where each symbol was trained with 12 examples
(Test-3).

To evaluate the efficiency of our polar coordinate analy-
sis, we conducted a separate experiment in which the angu-
lar alignment of the images was computed in screen coordi-
nates via incremental rotations. This not only bypassed the
polar coordinate approach for computing optimal alignment,
but also bypassed the accompanying pre-recognition step in
which unlikely definitions are pruned. With these modifica-
tions, the average recognition time for Test 1 increased to
3590ms, while the recognition accuracy remained the same.
This suggests that the polar analysis provides significant sav-
ings in overall processing time without any decrease in ac-
curacy.

Related Work
The problem of hand-drawn symbol recognition has recently
attracted many other researchers. Closely related to our
work is that of (Veselova & Davis 2004), (Hammond &
Davis 2003), (Hse & Newton 2003), (Fonseca, Pimentel,
& Jorge 2002), (Calhounet al. 2002), (Matsakis 1999),
(Gross 1994), (Apte, Vo, & Kimura 1993) and (Rubine
1991). Some of these systems require the shape descrip-
tors to be manually encoded while others require a large set
of training examples to reliably learn new definitions. Other
limitations include restrictions to single-stroke symbols, ro-
tation dependence, or reliance on a segmentation process.
Our techniques were designed to alleviate many of these is-
sues.

Concluding Remarks
We have described a trainable, multi-stroke, hand-drawn
symbol recognizer designed to be used in sketch-based in-
terfaces. With our techniques, symbol definitions can be
learned from single prototype examples, allowing users to
train new symbols or adjust existing ones on the fly. Our
approach avoids a number of problematic issues in symbol
recognition, such as segmentation and feature extraction.
Also, our approach is tolerant of overtracing, missing and
extra pen strokes, variations in line style, and variations in
drawing order.



Our recognizer employs a two-step recognition scheme.
First, polar coordinates are used to efficiently determine an-
gular alignment and eliminate unlikely definitions. Then, the
remaining definitions are examined in screen coordinates us-
ing an ensemble of four template classifiers. Each classifier
produces a list of definitions ranked according to their simi-
larity or dissimilarity to the unknown symbol. The results of
the individual classifiers are combined to produce the recog-
nizer’s final decision. Our experiments have demonstrated
that this two-step approach is an order of magnitude more ef-
ficient than performing the alignment and recognition solely
in screen coordinates.

We conducted a user study of our recognizer and found
that it can accurately classify symbols with only a small
amount of training data. Furthermore, our recognizer
worked well in both user-dependent and user independent
settings.

References
Alimoglu, F., and Alpaydin, E. 2001. Combining multi-
ple representations for pen-based handwritten digit recog-
nition. ELEKTRIK: Turkish Journal of Electrical Engi-
neering and Computer Sciences9(1):1–12.
Apte, A.; Vo, V.; and Kimura, T. D. 1993. Recognizing
multistroke geometric shapes: An experimental evaluation.
In UIST 93, 121–128.
Calhoun, C.; Stahovich, T. F.; Kurtoglu, T.; and Kara, L. B.
2002. Recognizing multi-stroke symbols. InAAAI Spring
Symposium on Sketch Understanding, 15–23.
Cheung, K.-W.; Yeung, D.-Y.; and Chin, R. T. 2002. Bidi-
rectional deformable matching with application to hand-
written character extraction.IEEE Transactions on Pattern
Analysis and Machine Intelligence24(8):1133–1139.
Dubuisson, M.-P., and Jain, A. K. 1994. A modified haus-
dorff distance for object matching. In12th International
Conference on Pattern Recognition, 566–568.
Fligner, M.; Verducci, J.; Bjoraker, J.; and Blower, P. 2001.
A new association coefficient for molecular dissimilarity.
In The Second Joint Sheffield Conference on Chemoinfor-
matics.
Flower, D. R. 1998. On the properties of bit string-based
measures of chemical similarity.Journal of Chemical In-
formation and Computer Science38:379–386.
Fonseca, M. J., and Jorge, J. A. 2000. Using fuzzy logic to
recognize geometric shapes interactively. InProceedings
of the 9th Int. Conference on Fuzzy Systems (FUZZ-IEEE
2000).
Fonseca, M. J.; Pimentel, C.; and Jorge, J. A. 2002. Cali-
an online scribble recognizer for calligraphic interfaces. In
AAAI Spring Symposium on Sketch Understanding, 51–58.
Gross, M. D. 1994. Recognizing and interpreting diagrams
in design. InACM Conference on Advanced Visual Inter-
faces., 88–94.
Hammond, T., and Davis, R. 2003. Ladder: A language
to describe drawing, display, and editing in sketch recogni-
tion. In 2003 International Joint Conference on Artificial
Intelligence (IJCAI).

Hse, H., and Newton, A. R. 2003. Sketched symbol recog-
nition using zernike moments. Technical report, EECS,
University of California.
Kimura, T. D.; Apte, A.; and Sengupta, S. 1994. A graphic
diagram editor for pen computers.Software Concepts and
Tools82–95.
Kittler, J.; Hatef, M.; Duin, R. P. W.; and Matas, J. 1998.
On combining classifiers.IEEE Transactions on Pattern
Analysis and Machine Intelligence20(3):226–239.
Landay, J. A., and Myers, B. A. 2001. Sketching inter-
faces: Toward more human interface design.IEEE Com-
puter34(3):56–64.
Matsakis, N. E. 1999.Recognition of Handwritten Mathe-
matical Expressions. Master thesis, MIT.
Miller, E. G.; Matsakis, N. E.; and Viola, P. A. 2000.
Learning from one example through shared densities of
transforms. InProceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 464–471.
Ozer, O. F.; Ozun, O.; Tuzel, C. O.; Atalay, V.; and Cetin,
A. E. 2001. Vision-based single-stroke character recogni-
tion for wearable computing.IEEE Intelligent Systems and
Applications16(3):33–37.
Rubine, D. 1991. Specifying gestures by example.Com-
puter Graphics25:329–337.
Rucklidge, W. J. 1996.Efficient Visual Recognition Using
the Hausdorff Distance. Number 1173 Lecture Notes in
computer Science,. Berlin: Springer-Verlag.
Sim, D.-G.; Kwon, O.-K.; and Park, R.-H. 1999. Object
matching algorithms using robust hausdorff distance mea-
sures. IEEE Transactions on Image Processing8(3):425–
429.
Tubbs, J. D. 1989. A note on binary template matching.
Pattern Recognition22(4):359–365.
Veselova, O., and Davis, R. 2004. Perceptually based
learning of shape descriptions for sketch recognition. In
The Nineteenth National Conference on Artifical Intelli-
gence (AAAI-04).
Yasuda, H.; Takahashi, K.; and Matsumoto, T. 2000. A
discrete hmm for online handwriting recognition.Interna-
tional Journal of Pattern Recognition and Articial Intelli-
gence14(5):675–688.


