
Combining Geometry and Domain Knowledge to
Interpret Hand-Drawn Diagrams

Leslie M. Gennari

Mechanical Engineering Dept.
Carnegie Mellon University

Pittsburgh, PA 15213

Levent Burak Kara

Mechanical Engineering Dept.
Carnegie Mellon University

Pittsburgh, PA 15213
lkara@andrew.cmu.edu

Thomas F. Stahovich

Mechanical Engineering Dept.
University of California

Riverside, CA 92521
stahov@engr.ucr.edu

Abstract
We present a sketch understanding system for network-like
diagrams consisting of symbols linked together. This system
employs a novel parser to automatically extract symbols
from a continuous stream of pen strokes. The parser uses
geometric information to enumerate candidate symbols, and
then uses domain knowledge to prune away unlikely candi-
dates. The candidates are classified with a novel, domain-
independent, probabilistic, feature-based symbol recognizer.
Domain knowledge and context are used to correct parsing
and recognition errors. To demonstrate our system, we used
it to create a sketch-based interface for an electric circuit
analysis program.

Introduction
Sketching with pencil and paper has long been an impor-

tant means of communication and problem-solving for de-
signers and engineers. There are a variety of reasons for
this. For example, sketches are a convenient tool for exam-
ining geometric, temporal, and other similar relationships
which cannot easily be described in words. Likewise, the
simplicity and ease of creating a sketch allows one to focus
on problem solving rather than the communication me-
dium. Yet, despite the importance of sketches in engineer-
ing practice, traditional engineering software can do little
with them. Engineers often find themselves recreating their
sketches on the computer in order to take advantage of
such software. We are working to change this by creating
sketch understanding techniques that enable software to
work directly from the kinds of sketches engineers ordinar-
ily draw.

This work addresses three key problems associated with
achieving natural, sketch-based user interfaces. The first
has to do with ink parsing, the task of automatically group-
ing a user’s pen strokes into clusters representing the in-
tended symbols. Many current sketch interpretation sys-
tems avoid this problem by requiring the user to explicitly
indicate the intended partitioning of the ink. This is often
done by pressing a button on the stylus or by pausing be-
tween symbols (Apte et al., 1993; Narayanaswamy, 1996;
Fonseca et al., 2002). Other systems require each object to

Copyright © 2004, UCR Smart Tools Lab. All rights reserved.

be drawn in a single pen stroke (Rubine, 1991; Landay and
Myers, 2001). Unfortunately, such constraints on the way
the user draws often result in a less than natural drawing
environment.

Prior to parsing, the pen strokes are segmented into lines
and arcs. A combination of geometric and domain-specific
knowledge is then used to locate symbols. Our parsing
approach allows for multiple symbols to be drawn in the
same stroke, and allows individual symbols to be drawn in
multiple strokes.

The second problem we address concerns the task of
symbol recognition. Many current recognizers are limited
by their sensitivity to size, orientation, or the number of
strokes used to draw a symbol (Rubine, 1991; Lee, 1992).
Additionally, many recognizers require a significant
amount of training data or must be hard-coded (Apte et al.,
1993; Alvarado, 2000). Our recognizer uses a probabilistic,
feature-based approach designed to handle the kinds of
variations common in hand-drawn sketches. Additionally,
it is insensitive to rotations and scaling, the parts of a sym-
bol can be drawn in any order, symbols can be drawn with
multiple pen strokes, and a single pen stroke can contain
multiple symbols. Finally, our recognizer requires only a
few training examples to reliably classify symbols.

The third problem we address is the use of context to
automatically correct errors. Due to the ambiguity inherent
in sketches, it is difficult to achieve perfect parsing and
recognition accuracy. Our sketch interpreter employs
automatic error correction techniques to help fix typical
errors. Once a sketch has been interpreted, domain knowl-
edge is used to determine if the interpretation of the sketch
is self-consistent. If not, parsing and recognition are revis-
ited so as to eliminate the inconsistencies.

Our system is designed to work for network-like dia-
grams containing isolated, non-overlapping symbols that
are linked together. Examples include analog electric cir-
cuits, data flow diagrams, and algorithmic flowcharts. As
an illustration of our system’s capabilities, we developed a
sketch-based interface for the SPICE electric circuit analy-
sis program. The electrical circuit domain was chosen be-
cause it provides an adequate level of complexity to dem-
onstrate our work. Our interface is called AC-SPARC for
Analog Circuit Sketch PArsing, Recognition, and error
Correction.

System Overview
Our system is designed for use with a digitizing tablet

and stylus, or other similar hardware. Here, we use the
Wacom Cintiq LCD tablet because it enables the user to
draw directly on the computer display. As the user draws a
circuit, the ink is segmented into line and arc segments.
The user can choose to view the sketch in its raw form or
in the cleaned-up segmented form. Once the sketch is com-
plete, the user selects a menu with the stylus causing the
program to interpret the sketch. The identified electrical
components are then indicated with color coding and text
labels as shown in Figure 1. An input file for SPICE is also
generated.

Our interface provides an easy means for correcting
common interpretation errors. If the program fails to locate
a symbol, the user can explicitly mark it by holding down a
stylus button and circling the symbol. If any non-symbol
ink is mistakenly identified as a symbol, the user need sim-
ply draw a diagonal line through it while pressing a stylus
button. If a symbol is misclassified, the user can tap the
stylus on it while holding the stylus button. A dialog box
will appear containing a list of alternative classifications
which can be selected with the stylus.

Our interface allows symbols to be easily added to or
removed from the sketch as the design evolves. Users can
erase ink with the eraser end of the stylus, just as one
would with a pencil eraser. Wires and symbols can be
added to the sketch at any time by simply drawing them.

Figure 1: AC-SPARC interface. Recognized circuit compo-
nents are indicated with color coding and text labels.

Technical Details
Our approach to understanding a sketch is based on the

architecture shown in Figure 2. The first step involves de-
composing the users’ pen strokes into line and arc seg-
ments that closely match the original ink. This process,
called ink segmentation, provides compact descriptions of
the pen strokes that facilitate parsing and recognition. Next,

geometric tests are used to locate candidate symbols, which
are then classified using our symbol recognizer. Knowl-
edge about the particular domain of the sketch is then used
to prune the list of candidate symbols. Finally, domain
knowledge is used to automatically correct errors made in
the previous steps. This process results in a final interpreta-
tion of the sketch, which the user can edit if necessary.

The following sections describe each of these steps in
detail. Note, however, that for the sake of continuity in the
discussion, we present both parsing steps before presenting
the symbol recognizer.

Figure 2: Architecture of our sketch interpreter.

Segmentation
As the user draws, the digital ink is segmented into line

and arc segments so as to facilitate parsing and recognition.
The segmentation process involves searching along the pen
stroke for “segment points,” points that divide the stroke
into different geometric primitives (Stahovich, 2004).
These points are distinguished by both the motion of the
pen tip observed while the strokes were drawn, and the
shape of the resulting ink. Segment points are generally
points at which the pen speed is at a minimum, the ink ex-
hibits high curvature, or the sign of the curvature changes.
Once the segment points have been identified, a least
squares approach is used to fit lines and arcs to the ink.

Sketch Parsing
The goal of parsing is to identify the sets of line and arc

segments that comprise individual symbols. In the electri-
cal circuit domain, the symbols are circuit components.
Parsing is concerned only with locating the symbols; clas-
sifying each symbol is the task of our symbol recognizer.
Our parsing approach begins by using geometric informa-
tion to identify candidate symbols. Domain knowledge,
along with our symbol recognizer, is then used to identify
which of the candidates actually are symbols. This parser is
intended for diagrams consisting of symbols connected by
wires, arrows, or other similar connectors.

Interpretation

Sketch

Ink Segmentation

Sketch Parsing Step 1:
Enumerate Candidate Symbols

Symbol Recognition

Automatic Error Correction

Sketch Parsing Step 2:
Prune Candidates

 Parsing Step 1: Enumerating Candidate Symbols:
We assume that the user finishes drawing one symbol be-
fore drawing a wire or another component. Our observa-
tions of people drawing suggest that this assumption is
reasonable, especially for electrical circuits. Therefore,
when locating candidate symbols, we need to consider only
consecutively drawn segments. To further reduce the
search space, we also establish limits on the number of
segments that a symbol may contain. The lower limit is
two, since it is uncommon that a symbol is represented by a
single line or arc segment. The upper limit depends on the
particular user’s drawing style, and is determined by exam-
ining the user’s training data for the symbol recognizer. In
practice, this number is typically between 6 and 12. Candi-
date symbols are, therefore, groups of time-ordered seg-
ments containing between two and some user-dependent
maximum number of segments.

Candidate symbols are enumerated using two types of
geometric tests to identify possible starts and ends of sym-
bols. The first test looks for regions in which there is a high
concentration of ink. The second looks for changes in the
characteristics of the segments, such as when a long seg-
ment is followed by a much shorter segment. These tests
are described in detail below.

Ink Density Locator: Symbols usually consist of a high

concentration of ink, while the ink of connectors is often
more spread out. Our ink density approach identifies can-
didate symbols by searching for regions of high ink den-
sity. More specifically, we search for sequences of seg-
ments having the property that the addition of another
segment to either end of the sequence causes a decrease in
density, as this is an indication of adding a connector seg-
ment. We define ink density as the ratio of the square of the
ink length to the area of the oriented bounding box of the
ink:

areaboxbounding
lengthinkdensity

__
_ 2

=

Here, in addition to the actual ink shown on the screen,
the ink length also includes the hidden ink, which we de-
fine as the ink that would occur if the user did not pick up
the stylus while drawing. For example, the hidden ink of a
voltage source is shown by the dotted lines in Figure 3.
Including the hidden ink accentuates the density of sym-
bols drawn with multiple strokes, thus making them easier
to identify. We square the ink length so that it scales the
same way as bounding box area, thus making the density
parameter insensitive to uniform scaling. The bounding
box is the smallest rectangle, not necessarily aligned with
the coordinate axes, containing all of the segments in ques-
tion.

A symbol consists of a sequence of line and arc seg-
ments, beginning with a start segment and ending with an
end segment. The ink density analysis uses a forward-
backward algorithm to find the start and end segments. The
forward step is used to find the end segment of a symbol by
finding segments whose addition to the sequence signifi-

cantly decrease the sequence’s density. In the backward
step, the best start segments are located for each end seg-
ment, again by looking for decreases in density. (The ap-
proach is also repeated with time reversed. In the forward
pass, the starts of symbols are identified, and in the back-
ward pass, the corresponding ends are identified.)

Figure 3: Density decreases when segment is added to symbol.
Hidden ink is shown dotted. Bounding box is dashed.

Consider applying this approach to the resistor shown in
Figure 4. For sake of example, assume that in the forward
step we are starting from Segment 5. The initial sequence
consists of Segments 5 and 6. Adding Segments 7, 8, 9,
and 10 results in density changes of 87.4%, -5.1%, -35.5%,
and 10.1% respectively. Only the addition of Segment 9
produces a significant density decrease (-35.5%), indicat-
ing that only Segment 8 is a possible end segment. If mul-
tiple segments had resulted in significant decreases, then
multiple ends would have been identified. In the backward
step, the sequence initially consists of Segments 8 and 7.
Segments are then added to the start of this sequence until
Segment 2 is reached. This results in density changes of
42.9%, 20.7%, 13.0%, -2.1%, and -23.0%. The addition of
Segment 2 causes the biggest decrease in density, and thus
Segment 3 is considered the best start segment for the se-
quence that ends with Segment 8. The result is a candidate
symbol consisting of Segments 3-8, which in fact corre-
sponds to the intended resistor. It is interesting to note that
the sequence of segments from 4-8 actually had a higher
density than the sequence from 3-8. However, the density
of the former would not have decreased significantly with
the addition of another segment to its start, and so it was
not considered a candidate symbol.

Figure 4: Sketch of a resistor used to illustrate the density
method for locating symbols.

Segment Difference Locator: There are usually large dif-
ferences between a connector and the first segment of a
symbol, and between the last segment of a symbol and the
subsequent connector. Our second symbol locator finds
symbols by identifying those differences.

Ink Length = 14.1
Bounding Box Area = 8.37
Density = 23.8

Ink Length = 16.6
Bounding Box Area = 15.3
Density = 18.0

For each segment in the sketch, we calculate four char-
acteristics. These include segment type (line or arc), seg-
ment length, segment orientation (angle relative to the pre-
vious segment), and type of intersection between the cur-
rent segment and the previous segment (endpoint-to-
endpoint, endpoint-to-midpoint, midpoint-to-midpoint, or
no intersection). If any pair of consecutively drawn seg-
ments differs (beyond thresholds) in two or more character-
istics, the point between those segments is considered a
segment difference point, a point of possible transition be-
tween a symbol and a connector. Candidate symbols are
sequences of segments, bounded by two segment differ-
ence points, containing between two and the user-specific
maximum number of segments.

Consider applying the approach to the voltage source in
Figure 3. Although not shown, the segmentation is the ob-
vious set of lines and an arc. There is a segment difference
point between the lower, vertical line and the arc: the two
segments differ in size and type. There is another segment
difference point between the upper, vertical line and the
horizontal line in the plus sign: they differ in size and inter-
section type (none vs. midpoint-to-midpoint). The seg-
ments between these two points constitute the voltage
source.

 Parsing Step 2: Pruning Based on Domain Knowl-
edge: Not all of the symbols enumerated by our symbol
locators are valid symbols. The final parsing step is to use
domain specific information to prune out the candidates
that are unlikely to be symbols. This is done using several
heuristics. However, before the pruning begins, each can-
didate symbol must first be classified with our symbol rec-
ognizer, as the results of classification are used in the heu-
ristics. The basic approach is to collect information sup-
porting and refuting the fact that a group of segments is a
symbol. The following is a summary of the heuristics we
use for the electric circuit domain.

Indications that a group of segments may be an electrical
component include:
• The ink density of the candidate component is high.
• The probability of match between the candidate

component and the class identified by the recognizer
is high.

• The candidate component contains enough pen
strokes to be the component it was classified as. For
example, a resistor can be drawn in a single stroke,
but a current source requires at least two.

• The candidate component contains a full circle.
Wires are never full circles.

• Two segments touching the candidate component
are collinear. This is a good indication of a compo-
nent because many components are drawn with col-
linear wires connected on each side.

Indications that a group of segments may not be an elec-
trical component include:
• The bounding box of the candidate component is

thin.
• The bounding box of the candidate component is

large compared to that of other candidates.

• The average length of the segments in a candidate
component is long. Components often contain many
short segments, while wires are frequently long seg-
ments.

• The candidate component contains three or fewer
segments that are all connected by endpoint to end-
point intersections. This pattern is typical of a wire
that has been split into multiple segments. No stan-
dard components fit this description.

• The candidate component has the wrong number of
connections for the component it has been classified
as. For example, a ground symbol should have only
one connection, a resistor should have two, and a
transistor should have three.

Each candidate is assigned a heuristic score, which is
initially zero. Points are added for positive indications, and
are subtracted for negative indications. For a candidate to
be considered a component, its heuristic score must be
above a threshold. Additionally, because two symbols can-
not share segments, any candidate overlapping another
candidate with higher heuristic score is pruned. Any seg-
ments not identified as part of a symbol are considered to
be connectors.

Symbol Recognition
The task of the symbol recognizer is to classify each

candidate symbol. The recognizer takes as input the seg-
ments comprising a candidate symbol and returns the best
definition. Our recognizer uses training examples to con-
struct a probabilistic definition model of each symbol,
based on geometric features of the segments. This prob-
abilistic approach naturally accounts for the variations in-
herent in hand-drawn sketches and allows symbols to be
drawn using any number of strokes drawn in any order.
The recognizer is insensitive to size and orientation, and is
robust to moderate non-uniform scaling.

 Training: To train the recognizer, the user draws several
examples of a symbol. The examples are segmented, and a
set of nine geometric features are extracted from each ex-
ample. These include the number of: pen strokes, line seg-
ments, arc segments, endpoint (“L”) intersections, end-
point-to-midpoint (“T”) intersections, midpoint (“X”) in-
tersections, pairs of parallel lines, and pairs of perpendicu-
lar lines. The final feature is the average distance between
the endpoints of the segments, normalized by the maximum
distance between any two endpoints. This feature helps
differentiate between objects containing non-uniformly
scaled versions of the same segments. For example, the
average distance between the endpoints of a square is lar-
ger than that of a rectangle.

Once the values of the nine features have been deter-
mined for each of the training examples of a particular
symbol, a statistical definition model is constructed. We
assume a Gaussian distribution for the feature values, and
thus the distribution is characterized by a mean and stan-
dard deviation. However, because eight of the features as-
sume only discrete values, and since we aim to use only a

handful of training examples, which may happen to have
little difference in some features, continuous Gaussian
models are not theoretically appropriate. Nevertheless, our
empirical results show that these models produce highly
favorable recognition rates.

 Classification: We use a statistical classifier to deter-
mine which definition is the best match for an unknown
symbol. The first step in recognizing an unknown symbol,
S, is to extract the same nine features used to describe the
training examples. The values of these features are then
compared to the observed distributions of the features for
each of the learned definitions, Di. The unknown is classi-
fied by the definition that best matches it. Mathematically,
the goal is to find the definition D* that has the highest
probability of matching S:
 ()SDPD i

i
|maxarg* =

We assume that all definitions are equally likely to oc-
cur, and hence we set the prior probabilities of the defini-
tions to be equal. We also assume that the nine geometric
features xj are independent of one another. Otherwise, a
much larger number of training examples would be re-
quired for classification. Bayes’ Rule tells us that the defi-
nition which best classifies the symbol is therefore the one
that maximizes the likelihood of observing the symbol’s
individual features:
 ()ijji

DxPD |maxarg* Π=

 As stated above, we assume each statistical definition
model P(xj|Di) to be a Gaussian distribution with mean µi,j
and standard deviation σi,j.

 () ()

 −−
=

2
,

2
,

, 2
exp

2
1|

ji

jij

ji
ij

x
DxP

σ

µ

πσ

Since we are assuming that the features are independent,
this is referred to as a naïve Bayesian classifier. This type
of classifier is commonly thought to produce optimal re-
sults only when all features are truly independent. This is
not a proper assumption for our problem, since some of the
features we use are interrelated. For example, the number
of intersections in a symbol frequently increases with the
number of lines and arcs. However, Domingos and Pazzani
(1996) showed that the naïve Bayesian classifier does not
require independence of the features to be optimal. While
the actual probabilities of match may not be accurate, the
rankings of the definitions will most likely be so.

Because of our assumption of a Gaussian distribution,
definitions in which the training examples show no varia-
tion in one or more features cause difficulty during recog-
nition. This situation is a common occurrence because a
small number of training examples are often used, and be-
cause eight of the features used for classification can as-
sume only discrete values. To prevent definitions from
becoming overly rigid in this way, we require that all fea-

tures, with the exception of the continuously valued aver-
age distance between endpoints, have a standard deviation
of at least 0.3. This significantly increases recognition
rates, especially when only a few training examples have
been used.

Automated Error Correction
Once the parsing and recognition steps are complete, the

system knows the locations of the symbols, and the con-
nections between them. At this point, the system can use
domain specific knowledge to correct parsing and recogni-
tion errors. Here we summarize our approach for circuits.

One indication that there may be a parsing problem in an
electric circuit is that a large number of consecutively
drawn segments have been identified as wires (Figure 5a).
It is uncommon for a user to draw wires this way, thus
suggesting that a component has been missed. In such
situations, the system first tries to find the missed compo-
nent by lowering the threshold for heuristic pruning. If a
component is still not found, a miss-classification may
have caused the parser to err. In this case, the system con-
siders lower ranked classifications for any candidate com-
ponents that contain the wire segments in question. If the
score of one of those candidates is now above the heuristic
threshold, the system keeps that candidate and its new clas-
sification.

Figure 5: Errors the system can find and repair. (a) Missed
component diagnosed as a wire with too many consecutive
segments. (b) Parsing error diagnosed as a dangling wire.
Here, segment has been identified as a wire, but it has no con-
nections. (c) Recognition error diagnosed by considering con-
nection count. Capacitors require two connections, but this
component has only one.

Because wires are used to connect components, it is
unlikely that a wire will have fewer than two connections
(Figure 5b). If a wire is found to have only one connection,
the system first checks to see if it should belong to a nearby
component. If not, the ends of the wire are extended to see
if any more connections are found.

Another indication of a problem is that a component has
the wrong number of connections (Figure 5c). This is often
a result of an incorrect classification by the recognizer. The
problem is sometimes fixed by selecting the second choice
of the recognizer. Otherwise, we assume that the problem

is due to the sketchiness of the drawing – two segments
that were intended to intersect did not, or two segments
that were not supposed to intersect did. To fix this, the
component’s segments, and the nearby wire segments, are
extended or shortened until the correct number of connec-
tions is found.

Results and Discussion
We conducted a formal user evaluation of AC-SPARC.

Ten users were each asked to draw eight specific circuits
containing on average 9.25 electrical components. Users
pre-trained the recognizer by providing six examples of
each of the components used in the circuits. This included
resistors, inductors, capacitors, transistors, voltage sources,
current sources, and grounds. Users drew in the raw ink
mode, and could not see the segmentation.

The system performed well for all but one user, who
drew in a particularly sloppy fashion. Excluding this user,
the program correctly located and recognized 81% of the
symbols in the sketches. The average for all ten users was
77%. On average, it took users only 2.6 editing gestures
per sketch to correct errors (see “System Overview”). Note
that these results are for users with no prior experience
with our system. We have found that as users become more
familiar with our system, even better performance is
achieved.

Overall, 91% of the symbols were segmented correctly.
Of the correctly segmented symbols, 86.7% were parsed
correctly, and 95.4% of the correctly parsed symbols were
recognized correctly. Thus, while all phases of processing
performed reasonably well, symbol recognition was re-
sponsible for the fewest errors, and parsing was responsible
for the most.

AC-SPARC uses a default value of one for each of the
parameters of the circuit components. For example, resis-
tors are assigned a default resistance of 1 ohm. We plan to
add functionality enabling the user to specify the parameter
values with the stylus. One approach would be to provide a
property window (dialog box) that is accessed by tapping
the stylus on a symbol. When the window appears, the user
would write the desired parameter value, which would then
be recognized with a handwriting recognizer.

AC-SPARC was intended as a test bed for our parsing
and recognition techniques. To make a more useful engi-
neering tool, it is necessary to improve some of the basic
user interface features. For example, the system offers a cut
(erase) function, but needs copy and paste functions. Like-
wise, the editing gestures were designed for ease of pro-
gramming, and need to be made more flexible and robust.

Related Work
Graph-based methods have recently been applied to the

problem of symbol recognition. Symbols are segmented
into geometric primitives, and graphs encode both the in-
trinsic attributes of the primitives and the geometric rela-
tionships between them. Recognition is formulated as a
graph-subgraph isomorphism problem. In Lee’s (1992)
approach, the graph represents precise geometry, and thus

the approach is suitable for precisely drawn symbols. Cal-
houn et al. (2002) developed an approach in which the
graph encodes topology, rather than geometry, so as to be
more tolerant of drawing variations. Graph-based ap-
proaches are typically sensitive to segmentation errors, and
graph matching can be expensive. Our recognizer avoids
the cost of graph matching by encoding topology as fea-
tures, and our probabilistic approach is robust to drawing
variations and segmentation errors.

There are a variety of other feature-based recognition
approaches. Typically, the features describe aggregate
properties of the symbol, rather than the topology. How-
ever, different shapes can have the same aggregate fea-
tures, resulting in miss-classification. Rubine’s (1991)
trainable gesture recognizer is suitable for single stroke
gestures (symbols) drawn in preferred orientations. Sym-
bols are described by eleven geometric and two dynamic
features. Apte et al. (1993) developed a hand-coded recog-
nizer based on geometric properties of the convex hull of a
symbol. Likewise, Fonseca et al. (2002) developed a
method that uses a naïve Bayesian classifier to recognize
multi-stroke shapes described by their convex hulls.

Kara and Stahovich (2004a) present a multi-stroke rec-
ognizer based on a down-sampled bitmap representation.
The approach is well suited to “sketchy” drawings, such as
those with over-tracing. However, as the method is based
on geometry not topology, it is sensitive to non-uniform
scaling and large variations in shape.

The problem of sketch parsing is beginning to draw at-
tention from researchers. For example, Saund et al. (2002)
present a system that uses Gestalt principles to locate sali-
ent objects in a sketch. The system is intended to assist
users in interactively manipulating objects on a drawing
surface. Shilman et al. (2002) present a statistical visual
language model for ink parsing. The approach requires a
manually coded visual grammar and assumes that the low-
est level objects can be recognized in isolation. Alvarado
(2003) proposed a parsing approach based on dynamically
constructed Bayesian networks. The approach is similar to
Shilman’s, but the lowest level objects are geometric primi-
tives, rather than symbols that must be recognizable in iso-
lation. Kara and Stahovich (2004b) present a parsing ap-
proach based on a “mark-group-recognize” architecture.
First, a preliminary recognizer is used to identify “marker
symbols,” symbols that have unique geometric and kine-
matic properties that allow them to be easily extracted from
a continuous stream of input. These are then used to effi-
ciently cluster the remaining strokes into symbols.

There have been recent efforts to create general purpose
sketch understanding tools. For example, Hong and Landay
(2000) created a generalized sketching and gesturing tool-
kit called SATIN that eliminates the needless re-
implementation of the basic functionalities typical of pen-
based applications. Similarly, Mankoff et al. (2000) have
created a set of general purpose ambiguity resolution
strategies, called mediation techniques. They demonstrated
these techniques in a program called Burlap.

In recent years, experimental sketch-based interfaces
have been developed for a number of different disciplines.

Landay and Myers (2001) present an interactive sketching
tool called SILK that allows designers to quickly sketch a
user interface and transform it into a functional system. As
the designer sketches, SILK's recognizer identifies the user
interface component represented by each pen stroke. Alva-
rado (2000) presents a system called ASSIST that can in-
terpret and simulate a variety of hand-drawn mechanical
devices. A key strength of this system is its ability to aug-
ment implicit and explicit user feedback with contextual
information to disambiguate between multiple interpreta-
tions of a drawing.

A few sketch-based interfaces have been developed for
electrical circuits. Narayanaswamy’s (1996) SPICE inter-
face uses a hard-coded recognizer that assumes a fixed
drawing order. The system requires the user to pause be-
tween symbols. Hong and Landay (2000) demonstrated the
capabilities of their SATIN system by creating Sketchy-
SPICE, a circuit CAD tool for circuits containing AND,
OR, and NOT gates. The gates must be drawn in either one
or two strokes. Lee (1992) describes a trainable recognizer
for electrical circuit symbols. This recognizer requires that
each symbol be drawn using only one or two strokes.

Conclusions
We have presented a sketch parsing technique that can

automatically extract hand-drawn symbols from a continu-
ous stream of pen strokes. The user is not required to pro-
vide explicit indications of where symbols start and end,
but must complete drawing one symbol before starting the
next. Our technique is suitable for network-like diagrams
containing isolated, non-overlapping symbols that are
linked together. We have also developed a probabilistic,
feature-based symbol recognizer. Our recognition tech-
nique provides several advantages: it is insensitive to rota-
tions and scaling, the parts of a symbol can be drawn in
any order, symbols can be drawn in multiple pen strokes,
and a single pen stroke can contain multiple symbols.

Due to the variations, inconsistencies, and ambiguities
inherent in hand-drawn sketches, it is difficult to achieve
perfect parsing and recognition accuracy. Our sketch inter-
preter employs automatic error correction techniques to
help fix typical errors. Once a sketch has been interpreted,
domain knowledge is used to determine if the interpretation
of the sketch is self-consistent. If not, parsing and recogni-
tion are revisited so as to eliminate the inconsistencies.

We have used these techniques to build AC-SPARC, a
sketch-based user interface for the SPICE circuit analysis
program. We conducted a user study to evaluate the per-
formance of AC-SPARC, and the results were promising.
While AC-SPARC can be used to solve real problems, it
clearly requires refinement before it can serve as a produc-
tion engineering tool. Nevertheless, our system has demon-
strated that it is possible to create an interface that com-
bines the ease of pencil and paper sketching with the power
of traditional computer software.

References
Alvarado, C. (2000). A Natural Sketching Environment:
Bringing the Computer into Early Stages of Mechanical
Design. Masters Thesis, MIT.
Alvarado, C. (2003). Dynamically constructed Bayesian
networks for sketch understanding. Technical Report, MIT
Project Oxygen Student Workshop.
Apte, A., Vo, V., & Kimura, T.D. (1993). Proc. 16th ACM
Symposium on User Interface Software & Technology, pp.
121-128.
Calhoun, C., Stahovich, T.F., Kurtoglu, T., & Kara, L.B.
(2002). Recognizing multi-stroke symbols. Proc. AAAI
2002 Spring Symp. on Sketch Understanding, pp. 15-23.
Domingos, P., & Pazzani, M. (1996). Beyond Independ-
ence: Conditions for the Optimality of the Simple Bayesian
Classifier. Proc. Thirteenth International Conference on
Machine Learning, pp. 105-112.
Fonseca, M., Pimentel, C., & Jorge, J. (2002). CALI: An
Online Scribble Recognizer for Calligraphic Interfaces.
Proc. AAAI 2002 Spring Symposium on Sketch Under-
standing, pp. 51-58.
Hong, J.I., & Landay, J.A. (2000). Satin: A toolkit for in-
formal ink-based applications. Proc. ACM Conference on
User Interfaces and Software Technology, pp. 63-72.
Kara, L. B. and Stahovich, T. F. (2004a). An Image-Based
Trainable Symbol Recognizer for Sketch-Based Interfaces.
Proc. AAAI 2004 Fall Symposium on Making Pen-Based
Interaction Intelligent and Natural.
Kara, L. B. and Stahovich, T. F. (2004b). Hierarchical
Parsing and Recognition of Hand-Sketched Diagrams.
Proc. Seventeenth Annual ACM Symposium on User Inter-
face Software and Technology, (UIST 2004).
Landay, J.A, & Myers, B.A. (2001). Sketching interfaces:
Toward more human interface design. IEEE Computer,
34(3), 56-64.
Lee, S. (1992). Recognizing hand-drawn electrical circuit
symbols with attributed graph matching. In Structured
Document Image Analysis (Baird, H.S., Bunke, H., & Ya-
mamoto, K., Eds.), pp. 340-358. Springer-Verlag.
Mankoff, J., Abowd, G., & Hudson, S. (2000). OOPS: A
toolkit supporting mediation techniques for resolving am-
biguity in recognition-based interfaces. Computers and
Graphics, 24(6), 819-834.
Narayanaswamy, S. (1996). Pen and Speech Recognition in
the User Interface for Mobile Multimedia Terminals. Ph.D.
Thesis, University of California at Berkeley.
Rubine, D. (1991). Specifying gestures by example. Com-
puter Graphics, 25(4), 329-337.
Saund, E., Mahoney, J., Fleet, D., Larner, D., & Lank, E.
(2002). Perceptual organization as a foundation for intelli-
gent sketch editing. Proc. AAAI 2002 Spring Symposium on
Sketch Understanding, pp. 118-125.
Shilman, M., Pasula, H., Russell, S., & Newton, R. (2002).
Proc. AAAI 2002 Spring Symposium on Sketch Under-
standing, pp. 126-132.
Stahovich, T. F. (2004). Segmentation of pen strokes using
pen speed. Proc. AAAI 2004 Fall Symposium on Making
Pen-Based Interaction Intelligent and Natural.

