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Abstract 
We present a sketch understanding system for network-like 
diagrams consisting of symbols linked together. This system 
employs a novel parser to automatically extract symbols 
from a continuous stream of pen strokes. The parser uses 
geometric information to enumerate candidate symbols, and 
then uses domain knowledge to prune away unlikely candi-
dates. The candidates are classified with a novel, domain-
independent, probabilistic, feature-based symbol recognizer. 
Domain knowledge and context are used to correct parsing 
and recognition errors. To demonstrate our system, we used 
it to create a sketch-based interface for an electric circuit 
analysis program.  

Introduction   
Sketching with pencil and paper has long been an impor-

tant means of communication and problem-solving for de-
signers and engineers. There are a variety of reasons for 
this. For example, sketches are a convenient tool for exam-
ining geometric, temporal, and other similar relationships 
which cannot easily be described in words. Likewise, the 
simplicity and ease of creating a sketch allows one to focus 
on problem solving rather than the communication me-
dium. Yet, despite the importance of sketches in engineer-
ing practice, traditional engineering software can do little 
with them. Engineers often find themselves recreating their 
sketches on the computer in order to take advantage of 
such software. We are working to change this by creating 
sketch understanding techniques that enable software to 
work directly from the kinds of sketches engineers ordinar-
ily draw.  

This work addresses three key problems associated with 
achieving natural, sketch-based user interfaces. The first 
has to do with ink parsing, the task of automatically group-
ing a user’s pen strokes into clusters representing the in-
tended symbols. Many current sketch interpretation sys-
tems avoid this problem by requiring the user to explicitly 
indicate the intended partitioning of the ink. This is often 
done by pressing a button on the stylus or by pausing be-
tween symbols (Apte et al., 1993; Narayanaswamy, 1996; 
Fonseca et al., 2002). Other systems require each object to 
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be drawn in a single pen stroke (Rubine, 1991; Landay and 
Myers, 2001). Unfortunately, such constraints on the way 
the user draws often result in a less than natural drawing 
environment.  

Prior to parsing, the pen strokes are segmented into lines 
and arcs. A combination of geometric and domain-specific 
knowledge is then used to locate symbols. Our parsing 
approach allows for multiple symbols to be drawn in the 
same stroke, and allows individual symbols to be drawn in 
multiple strokes. 

The second problem we address concerns the task of 
symbol recognition. Many current recognizers are limited 
by their sensitivity to size, orientation, or the number of 
strokes used to draw a symbol (Rubine, 1991; Lee, 1992). 
Additionally, many recognizers require a significant 
amount of training data or must be hard-coded (Apte et al., 
1993; Alvarado, 2000). Our recognizer uses a probabilistic, 
feature-based approach designed to handle the kinds of 
variations common in hand-drawn sketches. Additionally, 
it is insensitive to rotations and scaling, the parts of a sym-
bol can be drawn in any order, symbols can be drawn with 
multiple pen strokes, and a single pen stroke can contain 
multiple symbols. Finally, our recognizer requires only a 
few training examples to reliably classify symbols.  

The third problem we address is the use of context to 
automatically correct errors. Due to the ambiguity inherent 
in sketches, it is difficult to achieve perfect parsing and 
recognition accuracy. Our sketch interpreter employs 
automatic error correction techniques to help fix typical 
errors. Once a sketch has been interpreted, domain knowl-
edge is used to determine if the interpretation of the sketch 
is self-consistent. If not, parsing and recognition are revis-
ited so as to eliminate the inconsistencies.  

Our system is designed to work for network-like dia-
grams containing isolated, non-overlapping symbols that 
are linked together. Examples include analog electric cir-
cuits, data flow diagrams, and algorithmic flowcharts. As 
an illustration of our system’s capabilities, we developed a 
sketch-based interface for the SPICE electric circuit analy-
sis program. The electrical circuit domain was chosen be-
cause it provides an adequate level of complexity to dem-
onstrate our work.  Our interface is called AC-SPARC for 
Analog Circuit Sketch PArsing, Recognition, and error 
Correction. 



System Overview 
Our system is designed for use with a digitizing tablet 

and stylus, or other similar hardware. Here, we use the 
Wacom Cintiq LCD tablet because it enables the user to 
draw directly on the computer display. As the user draws a 
circuit, the ink is segmented into line and arc segments. 
The user can choose to view the sketch in its raw form or 
in the cleaned-up segmented form. Once the sketch is com-
plete, the user selects a menu with the stylus causing the 
program to interpret the sketch. The identified electrical 
components are then indicated with color coding and text 
labels as shown in Figure 1. An input file for SPICE is also 
generated. 

Our interface provides an easy means for correcting 
common interpretation errors. If the program fails to locate 
a symbol, the user can explicitly mark it by holding down a 
stylus button and circling the symbol. If any non-symbol 
ink is mistakenly identified as a symbol, the user need sim-
ply draw a diagonal line through it while pressing a stylus 
button. If a symbol is misclassified, the user can tap the 
stylus on it while holding the stylus button. A dialog box 
will appear containing a list of alternative classifications 
which can be selected with the stylus.  

Our interface allows symbols to be easily added to or 
removed from the sketch as the design evolves. Users can 
erase ink with the eraser end of the stylus, just as one 
would with a pencil eraser. Wires and symbols can be 
added to the sketch at any time by simply drawing them. 

 

 
Figure 1: AC-SPARC interface. Recognized circuit compo-
nents are indicated with color coding and text labels. 

Technical Details 
Our approach to understanding a sketch is based on the 

architecture shown in Figure 2. The first step involves de-
composing the users’ pen strokes into line and arc seg-
ments that closely match the original ink. This process, 
called ink segmentation, provides compact descriptions of 
the pen strokes that facilitate parsing and recognition. Next, 

geometric tests are used to locate candidate symbols, which 
are then classified using our symbol recognizer. Knowl-
edge about the particular domain of the sketch is then used 
to prune the list of candidate symbols. Finally, domain 
knowledge is used to automatically correct errors made in 
the previous steps. This process results in a final interpreta-
tion of the sketch, which the user can edit if necessary.  

The following sections describe each of these steps in 
detail. Note, however, that for the sake of continuity in the 
discussion, we present both parsing steps before presenting 
the symbol recognizer. 

 
Figure 2: Architecture of our sketch interpreter. 

Segmentation 
As the user draws, the digital ink is segmented into line 

and arc segments so as to facilitate parsing and recognition. 
The segmentation process involves searching along the pen 
stroke for “segment points,” points that divide the stroke 
into different geometric primitives (Stahovich, 2004). 
These points are distinguished by both the motion of the 
pen tip observed while the strokes were drawn, and the 
shape of the resulting ink. Segment points are generally 
points at which the pen speed is at a minimum, the ink ex-
hibits high curvature, or the sign of the curvature changes. 
Once the segment points have been identified, a least 
squares approach is used to fit lines and arcs to the ink. 

Sketch Parsing 
The goal of parsing is to identify the sets of line and arc 

segments that comprise individual symbols. In the electri-
cal circuit domain, the symbols are circuit components. 
Parsing is concerned only with locating the symbols; clas-
sifying each symbol is the task of our symbol recognizer. 
Our parsing approach begins by using geometric informa-
tion to identify candidate symbols. Domain knowledge, 
along with our symbol recognizer, is then used to identify 
which of the candidates actually are symbols. This parser is 
intended for diagrams consisting of symbols connected by 
wires, arrows, or other similar connectors. 

Interpretation 

Sketch 

Ink Segmentation 

Sketch Parsing Step 1: 
Enumerate Candidate Symbols 

Symbol Recognition 

Automatic Error Correction 

Sketch Parsing Step 2: 
Prune Candidates 



 Parsing Step 1: Enumerating Candidate Symbols: 
We assume that the user finishes drawing one symbol be-
fore drawing a wire or another component. Our observa-
tions of people drawing suggest that this assumption is 
reasonable, especially for electrical circuits. Therefore, 
when locating candidate symbols, we need to consider only 
consecutively drawn segments. To further reduce the 
search space, we also establish limits on the number of 
segments that a symbol may contain. The lower limit is 
two, since it is uncommon that a symbol is represented by a 
single line or arc segment. The upper limit depends on the 
particular user’s drawing style, and is determined by exam-
ining the user’s training data for the symbol recognizer. In 
practice, this number is typically between 6 and 12. Candi-
date symbols are, therefore, groups of time-ordered seg-
ments containing between two and some user-dependent 
maximum number of segments. 

Candidate symbols are enumerated using two types of 
geometric tests to identify possible starts and ends of sym-
bols. The first test looks for regions in which there is a high 
concentration of ink. The second looks for changes in the 
characteristics of the segments, such as when a long seg-
ment is followed by a much shorter segment. These tests 
are described in detail below.  

 
Ink Density Locator: Symbols usually consist of a high 

concentration of ink, while the ink of connectors is often 
more spread out. Our ink density approach identifies can-
didate symbols by searching for regions of high ink den-
sity. More specifically, we search for sequences of seg-
ments having the property that the addition of another 
segment to either end of the sequence causes a decrease in 
density, as this is an indication of adding a connector seg-
ment. We define ink density as the ratio of the square of the 
ink length to the area of the oriented bounding box of the 
ink: 

areaboxbounding
lengthinkdensity
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Here, in addition to the actual ink shown on the screen, 
the ink length also includes the hidden ink, which we de-
fine as the ink that would occur if the user did not pick up 
the stylus while drawing. For example, the hidden ink of a 
voltage source is shown by the dotted lines in Figure 3. 
Including the hidden ink accentuates the density of sym-
bols drawn with multiple strokes, thus making them easier 
to identify. We square the ink length so that it scales the 
same way as bounding box area, thus making the density 
parameter insensitive to uniform scaling. The bounding 
box is the smallest rectangle, not necessarily aligned with 
the coordinate axes, containing all of the segments in ques-
tion.  

A symbol consists of a sequence of line and arc seg-
ments, beginning with a start segment and ending with an 
end segment. The ink density analysis uses a forward-
backward algorithm to find the start and end segments. The 
forward step is used to find the end segment of a symbol by 
finding segments whose addition to the sequence signifi-

cantly decrease the sequence’s density. In the backward 
step, the best start segments are located for each end seg-
ment, again by looking for decreases in density. (The ap-
proach is also repeated with time reversed. In the forward 
pass, the starts of symbols are identified, and in the back-
ward pass, the corresponding ends are identified.) 
 

 
Figure 3: Density decreases when segment is added to symbol. 
Hidden ink is shown dotted. Bounding box is dashed. 

Consider applying this approach to the resistor shown in 
Figure 4. For sake of example, assume that in the forward 
step we are starting from Segment 5. The initial sequence 
consists of Segments 5 and 6. Adding Segments 7, 8, 9, 
and 10 results in density changes of 87.4%, -5.1%, -35.5%, 
and 10.1% respectively.  Only the addition of Segment 9 
produces a significant density decrease (-35.5%), indicat-
ing that only Segment 8 is a possible end segment. If mul-
tiple segments had resulted in significant decreases, then 
multiple ends would have been identified. In the backward 
step, the sequence initially consists of Segments 8 and 7. 
Segments are then added to the start of this sequence until 
Segment 2 is reached. This results in density changes of 
42.9%, 20.7%, 13.0%, -2.1%, and -23.0%. The addition of 
Segment 2 causes the biggest decrease in density, and thus 
Segment 3 is considered the best start segment for the se-
quence that ends with Segment 8. The result is a candidate 
symbol consisting of Segments 3-8, which in fact corre-
sponds to the intended resistor. It is interesting to note that 
the sequence of segments from 4-8 actually had a higher 
density than the sequence from 3-8. However, the density 
of the former would not have decreased significantly with 
the addition of another segment to its start, and so it was 
not considered a candidate symbol. 

 
Figure 4: Sketch of a resistor used to illustrate the density 
method for locating symbols.  

Segment Difference Locator: There are usually large dif-
ferences between a connector and the first segment of a 
symbol, and between the last segment of a symbol and the 
subsequent connector. Our second symbol locator finds 
symbols by identifying those differences.  

Ink Length = 14.1 
Bounding Box Area = 8.37 
Density = 23.8 

Ink Length = 16.6 
Bounding Box Area = 15.3 
Density = 18.0 



For each segment in the sketch, we calculate four char-
acteristics. These include segment type (line or arc), seg-
ment length, segment orientation (angle relative to the pre-
vious segment), and type of intersection between the cur-
rent segment and the previous segment (endpoint-to-
endpoint, endpoint-to-midpoint, midpoint-to-midpoint, or 
no intersection). If any pair of consecutively drawn seg-
ments differs (beyond thresholds) in two or more character-
istics, the point between those segments is considered a 
segment difference point, a point of possible transition be-
tween a symbol and a connector. Candidate symbols are 
sequences of segments, bounded by two segment differ-
ence points, containing between two and the user-specific 
maximum number of segments.  

Consider applying the approach to the voltage source in 
Figure 3. Although not shown, the segmentation is the ob-
vious set of lines and an arc. There is a segment difference 
point between the lower, vertical line and the arc: the two 
segments differ in size and type. There is another segment 
difference point between the upper, vertical line and the 
horizontal line in the plus sign: they differ in size and inter-
section type (none vs. midpoint-to-midpoint). The seg-
ments between these two points constitute the voltage 
source. 

 
 Parsing Step 2: Pruning Based on Domain Knowl-
edge: Not all of the symbols enumerated by our symbol 
locators are valid symbols. The final parsing step is to use 
domain specific information to prune out the candidates 
that are unlikely to be symbols. This is done using several 
heuristics. However, before the pruning begins, each can-
didate symbol must first be classified with our symbol rec-
ognizer, as the results of classification are used in the heu-
ristics. The basic approach is to collect information sup-
porting and refuting the fact that a group of segments is a 
symbol. The following is a summary of the heuristics we 
use for the electric circuit domain. 

Indications that a group of segments may be an electrical 
component include: 
• The ink density of the candidate component is high. 
• The probability of match between the candidate 

component and the class identified by the recognizer 
is high. 

• The candidate component contains enough pen 
strokes to be the component it was classified as. For 
example, a resistor can be drawn in a single stroke, 
but a current source requires at least two. 

• The candidate component contains a full circle. 
Wires are never full circles. 

• Two segments touching the candidate component 
are collinear. This is a good indication of a compo-
nent because many components are drawn with col-
linear wires connected on each side. 

Indications that a group of segments may not be an elec-
trical component include: 
• The bounding box of the candidate component is 

thin. 
• The bounding box of the candidate component is 

large compared to that of other candidates. 

• The average length of the segments in a candidate 
component is long. Components often contain many 
short segments, while wires are frequently long seg-
ments. 

• The candidate component contains three or fewer 
segments that are all connected by endpoint to end-
point intersections. This pattern is typical of a wire 
that has been split into multiple segments. No stan-
dard components fit this description. 

• The candidate component has the wrong number of 
connections for the component it has been classified 
as. For example, a ground symbol should have only 
one connection, a resistor should have two, and a 
transistor should have three. 

Each candidate is assigned a heuristic score, which is 
initially zero. Points are added for positive indications, and 
are subtracted for negative indications. For a candidate to 
be considered a component, its heuristic score must be 
above a threshold. Additionally, because two symbols can-
not share segments, any candidate overlapping another 
candidate with higher heuristic score is pruned. Any seg-
ments not identified as part of a symbol are considered to 
be connectors. 

Symbol Recognition 
The task of the symbol recognizer is to classify each 

candidate symbol. The recognizer takes as input the seg-
ments comprising a candidate symbol and returns the best 
definition. Our recognizer uses training examples to con-
struct a probabilistic definition model of each symbol, 
based on geometric features of the segments. This prob-
abilistic approach naturally accounts for the variations in-
herent in hand-drawn sketches and allows symbols to be 
drawn using any number of strokes drawn in any order. 
The recognizer is insensitive to size and orientation, and is 
robust to moderate non-uniform scaling.  

 
 Training: To train the recognizer, the user draws several 
examples of a symbol. The examples are segmented, and a 
set of nine geometric features are extracted from each ex-
ample. These include the number of: pen strokes, line seg-
ments, arc segments, endpoint (“L”) intersections, end-
point-to-midpoint (“T”) intersections, midpoint (“X”) in-
tersections, pairs of parallel lines, and pairs of perpendicu-
lar lines. The final feature is the average distance between 
the endpoints of the segments, normalized by the maximum 
distance between any two endpoints. This feature helps 
differentiate between objects containing non-uniformly 
scaled versions of the same segments. For example, the 
average distance between the endpoints of a square is lar-
ger than that of a rectangle.  

Once the values of the nine features have been deter-
mined for each of the training examples of a particular 
symbol, a statistical definition model is constructed. We 
assume a Gaussian distribution for the feature values, and 
thus the distribution is characterized by a mean and stan-
dard deviation. However, because eight of the features as-
sume only discrete values, and since we aim to use only a 



handful of training examples, which may happen to have 
little difference in some features, continuous Gaussian 
models are not theoretically appropriate. Nevertheless, our 
empirical results show that these models produce highly 
favorable recognition rates.  

 
 Classification: We use a statistical classifier to deter-
mine which definition is the best match for an unknown 
symbol. The first step in recognizing an unknown symbol, 
S, is to extract the same nine features used to describe the 
training examples. The values of these features are then 
compared to the observed distributions of the features for 
each of the learned definitions, Di. The unknown is classi-
fied by the definition that best matches it. Mathematically, 
the goal is to find the definition D* that has the highest 
probability of matching S:  
 ( )SDPD i

i
|maxarg* =    

We assume that all definitions are equally likely to oc-
cur, and hence we set the prior probabilities of the defini-
tions to be equal. We also assume that the nine geometric 
features xj are independent of one another. Otherwise, a 
much larger number of training examples would be re-
quired for classification. Bayes’ Rule tells us that the defi-
nition which best classifies the symbol is therefore the one 
that maximizes the likelihood of observing the symbol’s 
individual features: 
 ( )ijji
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 As stated above, we assume each statistical definition 
model P(xj|Di) to be a Gaussian distribution with mean µi,j 
and standard deviation σi,j. 
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Since we are assuming that the features are independent, 
this is referred to as a naïve Bayesian classifier. This type 
of classifier is commonly thought to produce optimal re-
sults only when all features are truly independent. This is 
not a proper assumption for our problem, since some of the 
features we use are interrelated.   For example, the number 
of intersections in a symbol frequently increases with the 
number of lines and arcs. However, Domingos and Pazzani 
(1996) showed that the naïve Bayesian classifier does not 
require independence of the features to be optimal. While 
the actual probabilities of match may not be accurate, the 
rankings of the definitions will most likely be so. 

Because of our assumption of a Gaussian distribution, 
definitions in which the training examples show no varia-
tion in one or more features cause difficulty during recog-
nition. This situation is a common occurrence because a 
small number of training examples are often used, and be-
cause eight of the features used for classification can as-
sume only discrete values. To prevent definitions from 
becoming overly rigid in this way, we require that all fea-

tures, with the exception of the continuously valued aver-
age distance between endpoints, have a standard deviation 
of at least 0.3. This significantly increases recognition 
rates, especially when only a few training examples have 
been used.  

Automated Error Correction 
Once the parsing and recognition steps are complete, the 

system knows the locations of the symbols, and the con-
nections between them. At this point, the system can use 
domain specific knowledge to correct parsing and recogni-
tion errors. Here we summarize our approach for circuits. 

One indication that there may be a parsing problem in an 
electric circuit is that a large number of consecutively 
drawn segments have been identified as wires (Figure 5a). 
It is uncommon for a user to draw wires this way, thus 
suggesting that a component has been missed. In such 
situations, the system first tries to find the missed compo-
nent by lowering the threshold for heuristic pruning. If a 
component is still not found, a miss-classification may 
have caused the parser to err. In this case, the system con-
siders lower ranked classifications for any candidate com-
ponents that contain the wire segments in question. If the 
score of one of those candidates is now above the heuristic 
threshold, the system keeps that candidate and its new clas-
sification. 

 

Figure 5: Errors the system can find and repair. (a) Missed 
component diagnosed as a wire with too many consecutive 
segments. (b) Parsing error diagnosed as a dangling wire. 
Here, segment has been identified as a wire, but it has no con-
nections. (c) Recognition error diagnosed by considering con-
nection count. Capacitors require two connections, but this 
component has only one.  

Because wires are used to connect components, it is 
unlikely that a wire will have fewer than two connections 
(Figure 5b). If a wire is found to have only one connection, 
the system first checks to see if it should belong to a nearby 
component. If not, the ends of the wire are extended to see 
if any more connections are found. 

Another indication of a problem is that a component has 
the wrong number of connections (Figure 5c). This is often 
a result of an incorrect classification by the recognizer. The 
problem is sometimes fixed by selecting the second choice 
of the recognizer. Otherwise, we assume that the problem 



is due to the sketchiness of the drawing – two segments 
that were intended to intersect did not, or two segments 
that were not supposed to intersect did. To fix this, the 
component’s segments, and the nearby wire segments, are 
extended or shortened until the correct number of connec-
tions is found. 

Results and Discussion 
We conducted a formal user evaluation of AC-SPARC. 

Ten users were each asked to draw eight specific circuits 
containing on average 9.25 electrical components. Users 
pre-trained the recognizer by providing six examples of 
each of the components used in the circuits. This included 
resistors, inductors, capacitors, transistors, voltage sources, 
current sources, and grounds. Users drew in the raw ink 
mode, and could not see the segmentation. 

The system performed well for all but one user, who 
drew in a particularly sloppy fashion. Excluding this user, 
the program correctly located and recognized 81% of the 
symbols in the sketches. The average for all ten users was 
77%. On average, it took users only 2.6 editing gestures 
per sketch to correct errors (see “System Overview”). Note 
that these results are for users with no prior experience 
with our system. We have found that as users become more 
familiar with our system, even better performance is 
achieved. 

Overall, 91% of the symbols were segmented correctly. 
Of the correctly segmented symbols, 86.7% were parsed 
correctly, and 95.4% of the correctly parsed symbols were 
recognized correctly. Thus, while all phases of processing 
performed reasonably well, symbol recognition was re-
sponsible for the fewest errors, and parsing was responsible 
for the most. 

AC-SPARC uses a default value of one for each of the 
parameters of the circuit components. For example, resis-
tors are assigned a default resistance of 1 ohm. We plan to 
add functionality enabling the user to specify the parameter 
values with the stylus. One approach would be to provide a 
property window (dialog box) that is accessed by tapping 
the stylus on a symbol. When the window appears, the user 
would write the desired parameter value, which would then 
be recognized with a handwriting recognizer. 

AC-SPARC was intended as a test bed for our parsing 
and recognition techniques. To make a more useful engi-
neering tool, it is necessary to improve some of the basic 
user interface features. For example, the system offers a cut 
(erase) function, but needs copy and paste functions. Like-
wise, the editing gestures were designed for ease of pro-
gramming, and need to be made more flexible and robust.  

Related Work 
Graph-based methods have recently been applied to the 

problem of symbol recognition. Symbols are segmented 
into geometric primitives, and graphs encode both the in-
trinsic attributes of the primitives and the geometric rela-
tionships between them. Recognition is formulated as a 
graph-subgraph isomorphism problem.  In Lee’s (1992) 
approach, the graph represents precise geometry, and thus 

the approach is suitable for precisely drawn symbols. Cal-
houn et al. (2002) developed an approach in which the 
graph encodes topology, rather than geometry, so as to be 
more tolerant of drawing variations. Graph-based ap-
proaches are typically sensitive to segmentation errors, and 
graph matching can be expensive. Our recognizer avoids 
the cost of graph matching by encoding topology as fea-
tures, and our probabilistic approach is robust to drawing 
variations and segmentation errors. 

There are a variety of other feature-based recognition 
approaches. Typically, the features describe aggregate 
properties of the symbol, rather than the topology. How-
ever, different shapes can have the same aggregate fea-
tures, resulting in miss-classification. Rubine’s (1991) 
trainable gesture recognizer is suitable for single stroke 
gestures (symbols) drawn in preferred orientations. Sym-
bols are described by eleven geometric and two dynamic 
features. Apte et al. (1993) developed a hand-coded recog-
nizer based on geometric properties of the convex hull of a 
symbol. Likewise, Fonseca et al. (2002) developed a 
method that uses a naïve Bayesian classifier to recognize 
multi-stroke shapes described by their convex hulls.  

Kara and Stahovich (2004a) present a multi-stroke rec-
ognizer based on a down-sampled bitmap representation. 
The approach is well suited to “sketchy” drawings, such as 
those with over-tracing. However, as the method is based 
on geometry not topology, it is sensitive to non-uniform 
scaling and large variations in shape. 

The problem of sketch parsing is beginning to draw at-
tention from researchers. For example, Saund et al. (2002) 
present a system that uses Gestalt principles to locate sali-
ent objects in a sketch. The system is intended to assist 
users in interactively manipulating objects on a drawing 
surface. Shilman et al. (2002) present a statistical visual 
language model for ink parsing. The approach requires a 
manually coded visual grammar and assumes that the low-
est level objects can be recognized in isolation. Alvarado 
(2003) proposed a parsing approach based on dynamically 
constructed Bayesian networks. The approach is similar to 
Shilman’s, but the lowest level objects are geometric primi-
tives, rather than symbols that must be recognizable in iso-
lation. Kara and Stahovich (2004b) present a parsing ap-
proach based on a “mark-group-recognize” architecture. 
First, a preliminary recognizer is used to identify “marker 
symbols,” symbols that have unique geometric and kine-
matic properties that allow them to be easily extracted from 
a continuous stream of input. These are then used to effi-
ciently cluster the remaining strokes into symbols.  

There have been recent efforts to create general purpose 
sketch understanding tools. For example, Hong and Landay 
(2000) created a generalized sketching and gesturing tool-
kit called SATIN that eliminates the needless re-
implementation of the basic functionalities typical of pen-
based applications. Similarly, Mankoff et al. (2000) have 
created a set of general purpose ambiguity resolution 
strategies, called mediation techniques. They demonstrated 
these techniques in a program called Burlap.  

In recent years, experimental sketch-based interfaces 
have been developed for a number of different disciplines. 



Landay and Myers (2001) present an interactive sketching 
tool called SILK that allows designers to quickly sketch a 
user interface and transform it into a functional system. As 
the designer sketches, SILK's recognizer identifies the user 
interface component represented by each pen stroke. Alva-
rado (2000) presents a system called ASSIST that can in-
terpret and simulate a variety of hand-drawn mechanical 
devices. A key strength of this system is its ability to aug-
ment implicit and explicit user feedback with contextual 
information to disambiguate between multiple interpreta-
tions of a drawing. 

A few sketch-based interfaces have been developed for 
electrical circuits. Narayanaswamy’s (1996) SPICE inter-
face uses a hard-coded recognizer that assumes a fixed 
drawing order. The system requires the user to pause be-
tween symbols. Hong and Landay (2000) demonstrated the 
capabilities of their SATIN system by creating Sketchy-
SPICE, a circuit CAD tool for circuits containing AND, 
OR, and NOT gates. The gates must be drawn in either one 
or two strokes. Lee (1992) describes a trainable recognizer 
for electrical circuit symbols. This recognizer requires that 
each symbol be drawn using only one or two strokes. 

Conclusions 
We have presented a sketch parsing technique that can 

automatically extract hand-drawn symbols from a continu-
ous stream of pen strokes. The user is not required to pro-
vide explicit indications of where symbols start and end, 
but must complete drawing one symbol before starting the 
next. Our technique is suitable for network-like diagrams 
containing isolated, non-overlapping symbols that are 
linked together. We have also developed a probabilistic, 
feature-based symbol recognizer. Our recognition tech-
nique provides several advantages: it is insensitive to rota-
tions and scaling, the parts of a symbol can be drawn in 
any order, symbols can be drawn in multiple pen strokes, 
and a single pen stroke can contain multiple symbols.  

Due to the variations, inconsistencies, and ambiguities 
inherent in hand-drawn sketches, it is difficult to achieve 
perfect parsing and recognition accuracy. Our sketch inter-
preter employs automatic error correction techniques to 
help fix typical errors. Once a sketch has been interpreted, 
domain knowledge is used to determine if the interpretation 
of the sketch is self-consistent. If not, parsing and recogni-
tion are revisited so as to eliminate the inconsistencies.  

We have used these techniques to build AC-SPARC, a 
sketch-based user interface for the SPICE circuit analysis 
program. We conducted a user study to evaluate the per-
formance of AC-SPARC, and the results were promising. 
While AC-SPARC can be used to solve real problems, it 
clearly requires refinement before it can serve as a produc-
tion engineering tool. Nevertheless, our system has demon-
strated that it is possible to create an interface that com-
bines the ease of pencil and paper sketching with the power 
of traditional computer software.   
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