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Abstract

We describe a trainable, hand-drawn symbol recognizer based on a multi-layer recognition scheme. Symbols are

internally represented as binary templates. An ensemble of four different classifiers compares and ranks definition

symbols according to their similarity to the unknown symbol. The scores of the individual classifiers are aggregated to

produce a combined score for each definition. The definition with the best combined score is assigned to the unknown

symbol. All four classifiers use template-matching techniques to compute similarity (and dissimilarity) between

symbols. Ordinarily, template-matching is sensitive to rotation, and existing solutions for rotation invariance are too

expensive for interactive performance. We have developed a fast technique that uses a polar coordinate representation

to achieve rotational invariance. This technique is applied prior to the multi-classifier recognition step to determine the

best alignment of the unknown with each definition. One advantage of this technique is that it filters out the bulk of

unlikely definitions, thereby reducing the number of definitions the multi-classifier recognition step must consider.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is common for engineers, architects, and other

designers to spend a considerable amount of time laying

down their initial concepts using pencil and paper.

Typically, it is only after the main ideas have sufficiently

matured, that all of that work is transformed into

electronic media in the form of technical drawings, flow

charts and mathematical models. This obvious redun-

dancy and inefficiency has propelled the idea of sketch-
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based user interfaces as a means of achieving more

natural human–computer interaction.

Early attempts to create such systems were often

limited by insufficient technology. New insights into

human perception, as well as advances in pattern

recognition, machine intelligence, computer graphics,

and hardware technology, have now made it feasible to

create usable systems. In fact, in many of today’s

mainstream computing devices, such as tablet PC’s,

electronic whiteboards, and personal digital assistants

(PDA’s), the pen is emerging as a standard tool for

interaction.

Many of these new computing devices now come

equipped with robust handwriting recognition utilities.

However, an important aspect of sketch-based computer

interaction that remains largely unsolved is the robust
d.
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Fig. 1. Examples of symbols correctly recognized by our system

(at the time of the test, the database contained 104 definition

symbols). The top row shows symbols used in training, and the

bottom row shows correctly recognized test symbols. Our

approach can handle moderate over stroking, missing and extra

pen strokes, different line styles, and variations in angular

orientation.
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recognition of graphical input, such as geometric shapes,

engineering symbols and glyphs. Researchers are begin-

ning to make progress in handling such forms of input.

Nevertheless, even the latest experimental systems are

typically limited to basic shapes such as rectangles,

triangles and circles. Furthermore, the few experimental

systems that do provide shape recognition are often too

restrictive because their recognizers are either special-

purpose, hard-coded systems, or they require substantial

amounts of training data, which makes them difficult to

extend to domains with novel scripts and glyphs.

The work presented here is focused on the develop-

ment of a trainable symbol recognizer that provides (1)

interactive performance, (2) easy extensibility to new

shapes, and (3) fast training capabilities. We have

developed a novel symbol recognizer that is capable of

learning new definitions from single prototype examples.

Additionally, because our approach is based on a down-

sampled bitmap representation (binary templates), it is

particularly useful for ‘‘sketchy’’ input, such as drawings

with heavy over stroking and erasing. Likewise, our

approach employs a polar coordinate representation,

which allows us to achieve rotational invariance in a

computationally efficient fashion.
2. Overview

This section gives a brief overview of the main

characteristics of our recognizer followed, by a descrip-

tion of its underlying architecture.

2.1. Template representation and its benefits in sketch

understanding

Our recognizer uses an image-based recognition

approach. Input symbols are internally described as

down-sampled bitmap images which we call ‘‘tem-

plates.’’ This representation has a number of desirable

characteristics. First, pen stroke segmentation—the

process of decomposing the pen strokes into constituent

primitives such as lines and curves—is eliminated

entirely.1 Many of the traditional recognition ap-

proaches, such as graph-based2 and feature-based3
1Parsing, the task of locating the individual symbols in the

sketch, is required. That is the focus of our other ongoing

research [1–3].
2In graph-based methods the basic geometric primitives

obtained after segmentation are assembled into a graph

structure that encodes the intrinsic attributes of the primitives

and their spatial relationships.
3In feature-based methods, various aspects of the patterns are

quantified and encoded in a feature space that helps distinguish

between different patterns. In sketch recognition, the features

are often geometric, and commonly involve the line and arc

primitives obtained from segmentation.
methods, rely heavily on the segmentation process,

making them vulnerable to segmentation errors. Second,

our approach is suitable for recognizing ‘‘sketchy’’

symbols such as those shown in Fig. 1. Lastly, symbols

drawn with multiple strokes or varying drawing orders

do not pose difficulty. Many of the existing recognition

approaches have either relied on single-stroke methods

in which an entire symbol must be drawn in a single

stroke [4,5] or constant drawing order methods in which

two similarly shaped patterns are considered different

unless the pen strokes leading to those shapes follow the

same sequence [6].

2.2. Learning from a single example

There has been a large body of work concerning

character and digit recognition. Most systems have

traditionally been built on statistical learning methods

that require large amounts of training data. For

instance, LeCun et al.’s [7] neural network recognizer

for handwritten digits, one of the best in its class, uses a

total of 60,000 patterns for training purposes. However,

due to the need for large training sets, these systems are

not easily extensible to new applications with novel

symbols and shapes.

By contrast, our focus is to develop a portable ink

recognition utility that can be used in a multitude of

different applications, with a wide variety of graphical

elements. Therefore, one of the principle goals of this

project was to enable users to create, extend and update

their own library of symbols without the need for

extensive training. To this end, we designed our system

to work from single prototype examples. For training,

the user creates a new symbol definition by drawing a

single example. With this approach, users can seamlessly

train new symbols, and remove or overwrite existing

ones on the fly, without having to depart the main

application. An additional advantage is that, unlike

many statistical and neural network approaches, the
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Fig. 2. Recognition architecture.
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existing symbols do not need to be retrained or adjusted

upon the introduction of a new symbol.

While the primary advantage of our recognizer is its

ability to work from single training examples, it is easily

extended to work from multiple training examples. For

this, the user simply provides multiple, different defini-

tion templates to the database for each type of symbol.

During our user studies, we have observed this approach

to noticeably improve the recognition accuracy at an

expense of a minor increase in recognition times.

2.3. Multiple classifiers

During our studies we experimented with a variety of

classification methods and found that no single method

was adequate for hand-drawn shapes. However, recog-

nition accuracy increased dramatically when classifiers

were used in combination. Inspired by this observation,

we designed a recognition scheme comprised of four

classifiers. Our tests indicated that the combined scheme

usually outperforms individual classifiers, and is always

better than the worst performing classifier. In fact, we

have frequently encountered cases in which the com-

bined scheme produced the right result even though

none of the classifiers ranked the true class at the top.

These findings are consistent with a large body of

evidence that supports the idea of multiple classifiers for

recognition [8].

2.4. Achieving rotation invariance efficiently

Template matching is ordinarily sensitive to rotations.

Therefore, patterns must be brought to the same

orientation before template matching is applied. In

many cases, this is achieved by incrementally rotating

one pattern relative to the other until the best

correspondence is obtained. However, this approach is

too expensive for real-time applications due to the costly

rotation operation. We developed a technique, based on

polar coordinates, to greatly expedite this process. The

technique is based on the fact that rotations in screen

coordinates become translations in polar coordinates.

Hence, finding the optimal rotational alignment in

screen coordinates reduces to determining the shift

between patterns in polar coordinates. As we shall

describe later, this technique is conceptually similar to

the cross-correlation operation in signal processing.

2.5. Two-step recognition

We use the results of the polar analysis not only to

determine the best alignment angles but also as a tool to

filter out unlikely matches before recognition. We have

found that the similarity metric employed in polar

coordinates gives a reasonable estimate of the match in

screen coordinates. Specifically, we found that although
the analysis in polar coordinates may sometimes mistake

two dissimilar patterns as being similar, it almost never

misses a true match when there is one. Taking advantage

of this feature, we designed a two-phase recognition

scheme that first involves an elimination of the bulk of

the unlikely matches in polar coordinates, followed by a

detailed evaluation of the reduced set of candidates in

screen coordinates.

2.6. System architecture

The recognition architecture consists of four sequen-

tial layers as shown in Fig. 2. The first step is

preprocessing, where the input symbols are cropped,

size normalized and quantized into templates. If the

system is in training mode, the template becomes a
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definition and is added to the database of existing

definitions. If the system is in recognition mode, the

template is passed to the next stage where it is matched

against the definitions.

In the first step of recognition, the unknown symbol is

transformed into a polar coordinate representation,

which allows the program to efficiently determine which

orientation of the unknown best matches a given

definition. During this process, definitions that are

found to be markedly dissimilar to the unknown are

pruned out and the remaining ones are kept for further

analysis. In the second step, recognition switches to

screen coordinates where the surviving definitions are

analyzed in more detail using an ensemble of four

different classifiers. Each classifier outputs a list of

definitions ranked according to their similarity to the

unknown. In the final step of recognition, results of

the individual classifiers are pooled together to produce

the recognizer’s final decision.

As shown in Fig. 2, the analysis in the polar

coordinates precedes the analysis in the screen coordi-

nates. However, for the sake of presentation, we have

found it useful to begin the discussion with our

template-representation and the four template matching

techniques, since some of those concepts are necessary to

set the context for the analysis in the polar coordinates.

Hence, in the next few sections we shall assume that

symbols are already brought into the correct orientation

using the polar analysis, and we will defer the details of

that until later. The remainder of the paper is organized

as follows: In the next section, we explain the

preprocessing of the raw data and the template

representation. In Section 4, we describe the multi-

classifier recognition scheme and the similarity measures

used in this step. Section 5 details our method for

combining classifiers. Section 6 explains our method for

achieving rotation invariance using the polar transfor-
Fig. 3. Examples of symbol templates. Left: a mechanical pivot: midd

better illustrate the quantization.
mation. Section 7 explains how the polar transformation

is used as a pre-recognizer. Section 8 presents the results

from an experimental study, followed by the related

work and conclusions.
3. Preprocessing and representation

Symbols are drawn using a 900 � 1200 WACOM

Intuos2 digitizing tablet and a cordless stylus. Data

points are collected as time sequenced (x; y) coordinates

sampled along the stylus’ trajectory. There is no

restriction on the number of strokes, and symbols can

be drawn anywhere on the tablet, in any size and

orientation.

Input patterns are internally represented as binary

bitmap images that consist of the (x; y) coordinates

collected from the digitizing tablet. However, in this

form, the input image usually contains too many

data points, which can hinder recognition performance.

To facilitate recognition, we frame and down sample

the initial image into a 48 � 48 square grid producing a

rasterized image we call a ‘‘template.’’ This quantization

significantly reduces the amount of data to consider

while preserving the patterns’ distinguishing character-

istics. (We have experimented with other template

sizes, and have found 48 � 48 to be a good compromise

between accuracy and efficiency.) To frame the image,

we first construct a bounding box aligned with the

screen axes. We then expand the shortest dimension of

the bounding box, without changing the location of

the box’s center, to produce a square. The result is that

the symbol appears centered in a square frame, but

does not necessarily fill the entire frame. This represen-

tation preserves the original aspect ratio so that one can

distinguish between, say, a circle and an ellipse. Fig. 3

shows examples of templates.
le: ‘‘a’’, right: ‘‘8’’. The templates are shown on 24 � 24 grids to
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4. Template matching with multiple classifiers

Template matching, in its simplest form, can be

described as the process of superimposing two digital

images and applying a measure of similarity. Although

individual techniques differ in the way they define

similarity, one property common to all template-

matching methods is that they are inherently ‘‘feature-

less’’—the template itself constitutes the input to the

recognizer. Hence, there is no need, for example, to

determine the set of line and arc primitives that best

approximates the pattern, or the geometric relationships

between them such as parallelism, intersection or

containment. In their work on face recognition, Brunelli

and Poggio [9] demonstrate the advantage of this

simplicity over feature-based methods. Besides eliminat-

ing the need for feature extraction, template methods

also provide great simplicity and flexibility in training

new patterns. In our case, for instance, a new symbol

can be easily added to the database by simply drawing

one example of it.

While most template-based recognition systems are

traditionally designed around a single similarity measure,

we use four different methods to enhance recognition

accuracy. The first two are based on the Hausdorff

distance, which measures the dissimilarity between two

point sets. Hausdorff-based methods have been success-

fully applied to object detection in complex scenes [10].

However, most of the applications have involved detection

or recognition of ‘‘rigid’’ objects, such as those in

photographic images or machine generated text, and only

a few researchers have recently considered the use of the

Hausdorff distance for hand-drawn pattern recognition:

Cheung et al. [11] have used it for character recognition

and Miller et al. [12] for digit recognition. In this work, we

extend these studies to rotation invariant graphical symbol

recognition. In particular, as described in the following

sections, we apply the Hausdorff distance both in screen

coordinates and in polar coordinates. Also, in Section 6,

we introduce a weighted Hausdorff distance method that

enables different parts of an image to be emphasized

differently during matching, according to a measure of

confidence based on prior information about the image.

Our other two recognition methods are based on the

Tanimoto and Yule coefficients. Unlike the Hausdorff

methods, these methods measure the similarity between

patterns and output their results in the form of

correlation coefficients. The Tanimoto coefficient is

extensively used in chemical informatics such as drug

testing, where the goal is to identify an unknown

molecular structure by matching it against known

structures in a database [13]. The Yule coefficient has

been proposed as a robust measure for binary template

matching [14]. To the best of our knowledge, the

Tanimoto and Yule measures have not previously been

applied to handwritten pattern recognition.
In the following paragraphs we detail these four

classification methods and explain the modifications we

used to better suit them to hand-drawn symbol

recognition.

4.1. Hausdorff distance

The Hausdorff distance between two point sets A and

B is defined as

HðA;BÞ ¼ maxðhðA;BÞ; hðB;AÞÞ,

where

hðA;BÞ ¼ max
a2A

min
b2B

ka � bk

� �

ka � bk represents a measure of distance (e.g., the

Euclidean distance) between two points a and b: hðA;BÞ
is referred to as the directed Hausdorff distance from A to

B and corresponds to the maximum of all the distances

one can measure from each point in A to the closest point

in B. The intuitive idea is that if hðA;BÞ ¼ d, then every

point in set A is at most distance d away from some point

in B: hðB;AÞ is the directed distance from B to A and is

computed in a similar way. Note that in general

hðA;BÞahðB;AÞ. The Hausdorff distance is defined as

the maximum of the two directed distances.

In its original form, the Hausdorff distance is too

sensitive to outliers. The partial Hausdorff distance

proposed by Rucklidge [10] eliminates this problem

by ranking the points in A according to their distances to

points in B in descending order, and assigning the

distance of the kth ranked point as hðA;BÞ. The partial

Hausdorff distance from A to B is thus given by

hk
ðA;BÞ ¼ kth

a2A
min
b2B

ka � bk.

The partial Hausdorff distance, in effect, softens the

distance measure by discarding points that are maxi-

mally far away from the counterpart point set. The

results reported in the following sections are based on a

rank of 6%, i.e., in the calculation of the directed

distances, the most distant 6% of the points are ignored.

We determined this cutoff value empirically based on the

user experience with our system.

Whether it is based on the maximum or the kth

ranked directed distance, calculation of hðA;BÞ involves

computing, for each point in A, the distance to the

nearest point in B. This process can be greatly expedited

by using what is called the distance transform. The main

idea is to pre-compute all necessary distances only once

during the training phase, allowing any distance of

interest to be obtained via simple indexing during

recognition. In our system, we have found the distance

transform to accelerate the computation of the Haus-

dorff distance by a few orders of magnitude. A brief

explanation of the distance transform and its utility in
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template matching can be found in Section 4.5,

following the discussions of the similarity measures.

4.2. Modified Hausdorff distance

Modified Hausdorff distance (MHD) [15] replaces the

max operator in the directed distance calculation by the

average of the distances:

hmod ðA;BÞ ¼
1

Na

X
a2A

min
b2B

ka � bk.

where Na is the number of points in A. The MHD is

then defined as the maximum of the two directed

average distances:

MHDðA;BÞ ¼ maxðhmod ðA;BÞ; hmod ðB;AÞÞ.

Although hmodðA;BÞ may appear similar to hk
ðA;BÞ with

k ¼ 50%, the difference is that the former corresponds to

the mean directed distance while the latter corresponds

to the median. Dubuisson and Jain argue that for object

matching purposes, the average directed distance is more

reliable than the partial directed distance mainly because

as the noise level increases, the former degrades grace-

fully whereas the latter exhibits a pass/no-pass behavior.

4.3. Tanimoto coefficient

The Tanimoto coefficient between two binary images

A and B is defined as:

TðA;BÞ ¼
nab

na þ nb � nab

,

where na is the total number of black pixels in A, nb is

the total number of black pixels in B, and nab is the

number of overlapping black pixels.

Intuitively, TðA;BÞ specifies the number of matching

points in A and B, normalized by the union of the two point

sets. By definition, TðA;BÞ yields values between 1.0

(maximum similarity) and 0.0 (minimum similarity). In

the form given above, the similarity between two images is

based solely on the matching black points. However, for

images that contain mostly black pixels, the discrimination

power of TðA;BÞ may vanish. In such situations,

coincidence of white pixels can be used as a measure of

similarity:

TCðA;BÞ ¼
n00

na þ nb � 2nab þ n00
,

where n00 is the number of matching white pixels. The

denominator is the number of pixels that are white in at

least one of the images. TCðA;BÞ is called the Tanimoto

coefficient complement. It represents the number of

matching white pixels normalized by the union of the white

pixels from the two images. The two expressions can be

combined to form the Tanimoto similarity coefficient [13]:

TscðA;BÞ ¼ aTðA;BÞ þ ð1 � aÞTCðA;BÞ,
where a is a weighting factor between 0.0 and 1.0.

Ideally, if the number of black pixels in an image is small

compared to the number of white pixels, the similarity

decision should be based on matching black pixels. In

this case, TðA;BÞ should be emphasized by means of a

large a. In the converse case, similarity should be based

on matching white pixels, which means TCðA;BÞ should

be emphasized by means of a small a.

This effect can be achieved by linking a to the relative

number of black pixels as follows:

a ¼ 0:75 � 0:25
na þ nb

2n

� �
,

where n is the image size in pixels. The term in

parentheses is the total number of black pixels divided

by the total number of pixels in the two images. The form

of this relationship is adapted from [13] such that a is

small when the number of black pixels is high and vice

versa. We selected the two constants in the equation so

that a is generally high, in the range [0.5, 0.75] to be

precise. This bias favors TðA;BÞ over TCðA;BÞ. The

choice is justified by the fact that hand-drawn symbols

usually consist of thin lines (unless excessive over-tracing

is done) producing rasterized images that contain fewer

black pixels than white. Hence, for our applications, the

Tanimoto coefficient should be controlled more by

TðA;BÞ than by TCðA;BÞ.
Similarity measures that are based exclusively on the

number of overlapping pixels, such as the Tanimoto

coefficient, often suffer from slight misalignments of the

rasterized images. We have found this problem to be

particularly severe for hand-drawn patterns where raster-

ized images of ostensibly similar shapes are almost always

disparate, either due to differences in shape, or more

subtly, due to differences in drawing dynamics. The latter

commonly occurs as a result of irregular drawing speed,

often manifesting itself as unevenly sampled digital ink.

Hence, for two shapes drawn at different speeds, the

resulting rasterized images will likely exhibit differences.

In order to absorb such variations during matching, we

use a thresholded matching criterion that considers two

pixels to be overlapping if they are separated by a distance

less than 1/15th of the image’s diagonal length. For a

48 � 48 image grid, this translates into 4.5 pixels, i.e., two

points are considered to be overlapping if the distance

between them is less than 4.5 pixels.

4.4. Yule coefficient

The Yule coefficient, also known as the coefficient of

colligation, is defined as:

Y ðA;BÞ ¼
nabn00 � ðna � nabÞðnb � nabÞ

nabn00 þ ðna � nabÞðnb � nabÞ
,

where the term ðna � nabÞ corresponds to the number of

black pixels in A that do not have a match in B.
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Similarly, ðnb � nabÞ is the number of black pixels in B

that do not have a match in A.

Y ðA;BÞ produces values between 1.0 (maximum

similarity) and �1:0 (minimum similarity). Unlike the

original form of the Tanimoto coefficient, the Yule

coefficient simultaneously accounts for the matching

black and white pixels via the terms nab and n00.

However, like the Tanimoto coefficient, it is sensitive

to slight misalignments between patterns. We therefore

employ a thresholded matching criterion similar to the

one we use with the Tanimoto method.

Tubbs [14] originally employed this measure for

generic, noise-free binary-template-matching problems.

By using a threshold, we have made the technique useful

when there is considerable noise, as is the case with

hand-drawn shapes.

4.5. Distance transform

A distance transform can be simply described as a

nearest neighbor function. It is a morphological opera-

tion that converts a binary bitmap image into an image

in which each pixel encodes its distance (we use the

Euclidean distance) to the nearest black pixel in the

same image. The resulting image is called a distance

map. During matching, distance maps serve as look-up

tables for the closest distances. In the Hausdorff

distance, for instance, the directed distance hðA;BÞ is

found by superimposing template A on the distance

transform map of B. Minimum distances are simply read

from B’s distance map using points in A as query

indices. hðA;BÞ then becomes the maximum (or the kth

max.) of the queried distances. hðB;AÞ is computed in a

similar way except points in B are used as indices to

query A’s distance map.

In our system, distance maps are constructed along

with the symbol templates during preprocessing. Algo-

rithms for the computation of distance transforms can

be broadly classified as exact methods and approximate

methods. We experimented with both types and

found the exact methods to be more suitable for

our purposes despite some loss in efficiency. Never-

theless, because the distance transform of each definition

symbol is computed only once, immediately after the

user presents the symbol, the difference in performance

is not noticeable. Furthermore, the only distance trans-

form that needs to be calculated during recognition is

the unknown’s, since the transforms of the definitions

are already available.
4This process is conceptually analogous to the cross-

correlation operation used in signal processing. Cross-correla-

tion determines if a signal resembles a time-shifted version of

another one. It does so by incrementally sliding one signal along
5. Combining classifiers

Our recognizer compares the unknown symbol to

each of the definitions using the four classifiers explained

above. The next step in recognition is to identify the true
class of the unknown by synthesizing the results of the

component classifiers. However, the outputs of the

classifiers are not compatible in their original forms

because: (1) The first two classifiers are measures of

dissimilarity while the last two are measures of similarity,

and (2) the classifiers have dissimilar ranges.

To establish a congruent ranking scheme, we first

transform the Tanimoto and Yule similarity coefficients

into distance measures by reversing (negating) their

values. This process brings the Tanimoto and Yule

coefficients in parallel with the Hausdorff measures in

the sense that the numerical scores of all classifiers now

increase with increasing dissimilarity. Next, to eliminate

the range differences among classifiers, we normalize the

values of all four classifiers to the range 0–1 using a

linear transformation function. For each classifier, the

transformation maps the distance scores to the range

[0,1] while preserving the relative order established by

that classifier. Finally, having standardized the outputs

of the four classifiers, we combine the results using a

method similar to the sum rule introduced by Kittler

et al. [16]. For each definition symbol, we compute a

combined normalized distance by summing the normal-

ized distances obtained from the constituent classifiers.

The unknown pattern is then assigned to the class

having the minimum combined normalized distance.

Kittler’s experimental and theoretical analysis prove the

sum rule to be superior to other rules such as the

product, max, min and median rules. Their findings are

particularly important as their rules are generalizations

of many existing methods.
6. Handling rotations

Template-matching techniques are sensitive to orien-

tation. Therefore, for rotation invariant recognition, it is

necessary to first rotate the patterns into the same

orientation. Often this is accomplished by incrementally

rotating one pattern relative to the other until the best

alignment is achieved. However, this is overwhelmingly

expensive for real-time applications due to the costly

rotation operation. We have developed an efficient

technique, based on the polar coordinate transforma-

tion, to greatly facilitate this process. The main principle

is that rotations in Cartesian coordinates become

translations in polar coordinates. Hence, by identifying

the linear offset between two patterns in polar coordi-

nates, we can determine the angle by which the patterns

differ in the x–y plane.4 This approach forms the basis of

our solution.
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Others have used a polar transform for rotation

invariant shape matching. Most of that work, however,

has been focused on rigid objects and gray-level images

[17,18]. In our work, we have extended the polar

transform to the domain of imprecise, hand-drawn

patterns.

6.1. Polar transform

The polar coordinates of a point in the x–y plane are

given by the point’s radial distance, r, from the origin

and the angle, y, between that radius and the x-axis. The

well-known relations are

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xoÞ

2
þ ðy � yoÞ

2

q

and

y ¼ tan�1 y � yo

x � xo

� �

where ðxo; yoÞ is the origin.

A symbol originally drawn in the screen coordinates

(x–y plane) is transformed into polar coordinates by

applying this formulae to each of the points. Fig. 4a

illustrates a typical transformation. As shown in Fig. 4b,

when a pattern is rotated in the x–y plane, the

corresponding polar image slides parallel to the y-axis

by the same angular displacement.

In the form given above, the polar transformation is

sensitive to size. When a pattern is scaled in the x–y

plane, the corresponding polar image stretches along the

r-axis. To eliminate such variance, we first normalize the

r-axis using the ‘‘ink length’’ of the symbol. We define

ink length as the total distance the pen tip travels on the

writing surface. The main reason for using the ink length

as opposed to, say, the diagonal or perimeter of the

bounding box, is that ink length is invariant to the

orientation of the pattern while the bounding box

properties are not. With this normalization, the values

along the r-axis correspond to non-dimensional scale

factors. No adjustment to the y-axis is necessary as

uniform scaling does not affect angular positions.

For polar transforms, the choice of the origin has a

significant impact on the resulting image. Although a

consistent selection of the origin (e.g., always the top-left

corner of the drawing tablet) would theoretically seem

appropriate, there are two important practical factors to

consider. First, it is desirable to set the origin inside the

image, preferably close to the image center, so that the y
range can be utilized to its full extent. If the origin is far
(footnote continued)

the other while taking their dot product at every step. The end

result is a correlation value indicating the similarity of the two

signals and the temporal delay between them. In our case,

finding the optimal angle is equivalent to determining the delay.
away from the image, for instance at one of the

screen corners, the polar image will subtend only a

narrow angular window, compressing many important

details. Second, identical shapes should have identical

origins so that their polar transforms are identical.

A seemingly suitable, and in fact common choice for the

origin is thus the centroid of the original pixels.

With such a formulation, because the centroid is

simply the average of the sampled points, the centroid

has a tendency to drift towards regions containing dense

pixel clusters. In our domain, however, variation in the

pen speed often causes large variations in the pixel

density. For example, the significant reduction of the

pen speed at the beginnings and endings of strokes

causes pixels to be denser in these regions compared to

the rest of the stroke. We have found this phenomena to

abnormally and unpredictably alter the centroid loca-

tion, causing polar transforms of similar shapes to be

different.

One way to prevent this is to resample the input data

to obtain a sequence of points uniformly spaced in arc

length as opposed to time [8]. These methods are mostly

based on interpolation algorithms. We achieve a similar

effect in a more direct fashion by computing the

weighted centroid of the line segments that join pairs

of consecutive points. Each segment is assigned a weight

proportional to its length, and the new centroid becomes

the mean of the weighted segments:

xc ¼

PS
i¼1xiliPS

i¼1li

and yc ¼

PS
i¼1yiliPS

i¼1li

,

where S is the total number of segments and li is the

length of the ith segment. Each segment is treated as a

point-mass concentrated at the segment’s center, de-

noted (xi; yi). This approach attenuates the effect of

short segments and therefore prevents dense pixel

clusters from shifting the centroid. As a result, the

centroid location becomes more stable over different

examples of a pattern.

Without loss of generality, we shall take advantage of

the 2p-periodicity of the y-axis and position all polar

images in a window extending from �p to +p. This

limits the amount of search necessary to find the best

alignment of two polar images. Fig. 5 illustrates the idea.

The top figure shows the initial polar coordinate

representation of the rotated ‘‘P’’ from Fig. 4. Mapping

the angles to the range �p to +p produces the result

shown in the bottom of Fig. 5. Effectively, the points to

the right of the +p boundary were moved to the right of

the �p boundary.

6.2. Finding the optimal alignment using polar transform

To find the angular offset between two polar images,

we use a slide-and-compare algorithm in which one
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image is incrementally displaced along the y-axis. At

each displacement, the two images are compared to

determine how well they match. The displacement that

results in the best match indicates how much rotation is

needed to best align the original images. Because the

polar images are in fact 2D binary patterns, we can use

the template-matching techniques from Section 4 to

match the polar images. In particular, we use the MHD

as it is slightly more efficient than the regular Hausdorff

distance (directed distances need not be sorted) and it

performs slightly better than the Tanimoto and Yule

coefficients in polar coordinates.

To use the MHD with polar images, we quantize the

images into 48 � 48 templates just as we do for screen

images (Section 3). Here again, we also use distance

transforms to accelerate the computation of the MHD.
Although the idea remains the same, the periodicity of

the y-axis introduces a new subtly in the distance

calculations. Unlike in the x–y plane, pixels at the far

right and left sides of a polar image (i.e., those close to

the �p and +p boundaries) are in fact proximate as

noted in Fig. 5. For example, a pixel just to the left of

+p will have a distance of 1 to a pixel that lies on the �p
boundary at the same r value. This periodicity is taken

into account when the distance transform is computed.

Because this subtlety is considered when computing

distance, the distance transforms in polar coordinates

need be computed only once, as distances do not change

with shifts in the polar plane.

One difficulty with the polar transform is that data

near the centroid of the original image is sensitive to the

precise location of the centroid. Consider Fig. 6 that
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shows two handwritten ‘‘T’’s and their polar transforms.

In the top image the tail curves slightly to the left while

in the bottom image it curves slightly to the right. This

difference causes the image centers to fall on the

opposite sides of the tail, which, in turn leads to

significant dissimilarity in the polar transforms for small

r values. Naturally, the MHD is adversely affected by

these variations.

To alleviate this problem, we introduce a weighting

function wðrÞ that attenuates the influence of pixels near

the centroid of the screen image. Using this function, the

directed MHD, previously introduced in Section 4.2,

becomes:

hmod_weighted ðA;BÞ ¼
1

Na

X
a2A

wðarÞmin
b2B

ka � bk,

where ar represents the radial coordinate of point a in

the quantized polar image A. The directed distance from
B to A, hmod_weighted ðB;AÞ, is calculated similarly, and the

maximum of the two directed distances is the MHD

between A and B. Our weighting function has the form:

wðrÞ ¼ r0:10

which is shown graphically in Fig. 7. The exponent in

the function has been determined experimentally for best

performance. As shown, the function asymptotes near 1

for large values of r, and falls off rapidly for small values

of r. By assigning smaller weights to the pixels near the

image center, this function allows the Hausdorff

distance between the polar images to be governed by

the pixels that reside farther from the origin, hence

reducing the sensitivity to the precise location of the

centroid of the screen image.
7. Polar Transform as a pre-recognizer

The polar analysis allows us to find the angular

difference between two patterns in an efficient way.

Once the angle is determined, the patterns can be aligned

properly in the x–y plane by a single rotation, and

compared using the template-matching techniques in

Section 4. (The rotation is performed before quantizing

the screen image to produce a template.) However,

before applying these techniques, we can use the

matching information from the polar coordinate repre-

sentation to filter out many of the unlikely definitions.

We have found that the degree of match between two

polar images provides a reasonable estimate of the

match of the original screen images. In fact, if it were not

for the imprecision of the polar transform for small r

values, the entire recognition process could be per-

formed exclusively in the polar plane. The match in

polar coordinates discounts data near the centroid of the

screen image, which can result in false positive matches

(i.e., declaring a close match between two patterns when

they are in fact dissimilar), but rarely results in false

negative matches. Thus, the polar analysis can be used

as a pre-recognition step to eliminate unlikely defini-

tions. In practice, we have found that the correct

definition for an unknown is among the definitions

ranked in the top 10% by the polar coordinate

matching. Thus, we discard 90% of the definitions

before considering the match in screen coordinates.

This approach is conceptually similar to cascading

presented in [8], where a simple classifier is used to

reduce the number of classes before a more complex

classifier with a more expensive classification rule is

applied. In our case, however, the polar transform not

only serves as a pre-elimination step but also as a means

to efficiently achieve rotation invariance. We have found

this dual functionality of the polar transform to be

invaluable for achieving real-time performance on an

otherwise computationally demanding task.
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8. User studies

To obtain an objective assessment of our approach,

and to have a point of comparison with other systems,

we conducted a formal user study consisting of two

separate experiments. In the first experiment we used a

set of 20 graphic symbols. In the second, we used digit

recognition as our test bed.

Because the participants in our studies had little or no

experience using the digitizing tablet and stylus, they

were allowed to acquaint themselves with the hardware

until they felt comfortable, which typically took about

2–3 min. Each experimental session involved only data

collection, the data were processed at a later time. This

approach was chosen to prevent participants from

adjusting their drawing style based on our program’s

output. During data collection, if users were not pleased
with what they drew, which occasionally occurred due to

the unintentional slip of the stylus, they were allowed to

redraw the symbol. However, participants rarely used

this option. Additionally, although users were not

instructed to draw symbols in any particular way, we

found that there was no over stroking. Hence, future

user studies will be necessary to formally quantify how

well our approach handles the sorts of ‘‘sketchy’’

symbols shown in Fig. 1.

8.1. Graphic symbol recognition

Five users participated in the graphic symbol recogni-

tion study. Each user was asked to provide three sets of

the 20 symbols shown in Fig. 8, yielding a total of 60

symbols per user. (Sample data collected from the users

can be found in Fig. 10 at the end of the article.) Four
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Fig. 8. Symbols used in the graphic symbol recognition

experiment.
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Fig. 7. Weighting function used to suppress the effect of pixels

close to the image center.

Table 1

Results from the graphic symbol recognition study

Top 1 (%) Top 2 (%) Recog. time (ms)

Test 1 90.7 96.3 332

Test 2 95.7 98.3 354

Test 3 94.7 97.3 623

Test 4 98.0 99.0 674

The first two columns show the top-one and top-two accuracy,

respectively. All tests were conducted on a Pentium 4 machine

at 2.0 GHz. with 256 MB of RAM.
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different types of tests were conducted using the

collected data. The tests differ based on (1) the number

of definition symbols used for training, and (2) whether

the test was conducted in a user-dependent (i.e., all

training data from the given user) or user-independent

manner. Below we detail each of these tests and the

results.

Test 1. Single definition set, user-dependent: In this

test, the recognizer was evaluated separately for each

user. Each test consisted of three iterations, akin to the

K-fold cross-validation technique with K ¼ 3. In each

iteration, one of the user’s three sets of symbols was used

for training, and the other two were used for testing.

Different iterations employed different test sets. The

performance for each user was computed as the average

of the three iterations. The first row of Table 1 shows the

results obtained from this study, averaged over the five

users. In this table, the first column shows the

recognition accuracy, or the rate at which the class

ranked highest by the recognizer, is indeed the correct

class. We call this the ‘‘top-one’’ accuracy. The second

column shows the ‘‘top-two’’ accuracy, or the rate at

which the correct class is either the highest or second

highest ranked class. The last column shows the average

recognition time in milliseconds.

Test 2. Two definition sets, user-dependent: This test is

similar to the first test except, in each of the three runs,

two sets of symbols were used for training while the

remaining set was used for testing. Hence, during

recognition, each unknown was compared to 40 defini-

tion symbols—2 definitions per symbol. As shown in the

second row of Table 1, the additional training set

increased the recognition accuracy at the expense of only

a minor increase in the recognition times.
Test 3. Twelve definition sets, user-independent: The

aim in this test was to evaluate the recognizer when the

training and test sets belonged to different users. When

testing a particular user’s data, the training database

consisted of all users’ symbol sets excluding the data

from the user under consideration. In each run, the

database thus consisted of a total of twelve sets: three

sets from each of the four users not involved in that

particular test. In effect, this test mimics a walk-up-and-

draw scenario in which the user works directly from a

pre-trained recognizer without providing his or her own

training symbols. The third row of Table 1, shows the

performance obtained in this setting.

Test 4. Fourteen definition sets, partial user-depen-

dence: The difference between this test and the previous
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Table 2

Results from the digit recognition study. All tests were

conducted on a Pentium 4 machine at 2.0 GHz. with 256 MB

of RAM

Top 1 (%) Top 2 (%) Recog. time (ms)

Test 1 95.4 98.3 211

Test 2 97.7 98.5 225

Test 3 91.8 95.5 516

Test 4 97.7 99.2 586
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one is that, the training database additionally contained

two symbol sets from the user being tested, in addition

to the twelve sets from other users. In terms of training

sets employed, this experiment is thus a hybrid of Test 2

and Test 3. As shown in the last row of Table 1, the top-

one accuracy in this case reaches 98%.

8.2. Digit recognition

Nine users participated in the digit study. Users were

asked to provide three sets of digits from ‘‘0’’ to ‘‘9’’,

yielding a total of 30 digits per user.

Our examination of the collected data revealed that

frequent misclassifications occurred due to a confusion

between ‘‘6’’ and ‘‘9’’, and occasionally between ‘‘2’’ and

‘‘7’’, both of which are reasonable errors given the

rotation invariant nature of our recognizer. As a

remedy, we adjusted the recognizer in thus study so

that search for the correct orientation of a digit was

restricted to 
90� of the digits’ original orientation. We

believe this restriction on rotation is reasonable for the

digit recognition study as traditional digit recognizers

assume a fixed orientation.

We conducted the same four tests described in the

symbol recognition study. However, with nine rather

than five participants, Test 3 now has 24 training sets

rather than 12, and Test 4 has 26 rather than 14. Table 2

shows the results obtained from this study.

State-of-the-art hand-drawn digit recognition systems

achieve recognition rates above 96–97% in user-indepen-

dent settings [7]. We achieve about 91.8% accuracy in a

user-independent setting (with rotation limited to 
90�).

Nevertheless, we consider our approach to be quite

attractive given that it works from only a handful of

training examples. As one would expect, if the problem is

to recognize digits only, it is better to use a dedicated digit

recognizer. However, if the problem involves user defined

symbols, our approach has distinct advantages.
9. Discussion

In the graphic symbol recognition study, we consider

the top-two classification performance to be of con-
siderable importance, as a common method for correct-

ing recognition errors in many interactive applications is

to display a short list of potential candidates from which

the user can pick the intended one. In such cases, if the

correct class was not selected by the recognizer, it should

at least be near the top of the list. Similarly, in systems

that consider context, such as [1], the shape recognizer

may produce a set of likely candidates which can be

further analyzed using contextual information. In such

cases, the system may decide that the second or third

choice from the recognizer is the correct interpretation,

for example. For such approaches to work, the correct

interpretation must be near the top of the list of choices.

We believe that the results of our user study are quite

promising when compared to results reported in the

literature. For example, Landay and Myers [19] report a

recognition rate of 89% on a set of 5 single-stroke

editing gestures. In our case, however, there are 20

symbol definitions that can be drawn with any number

of strokes. In a study involving 7 multi-stroke and 5

single-stroke shapes, Fonseca and Jorge [20] report

recognition rates around 92%. In that study, half of the

subjects were experts in using the hardware. Also, the

recognizer required the shape features to be manually

encoded for each individual shape, which makes training

new shapes difficult. On a database of 13 symbols, Hse

and Newton [21] report a recognition rate of 97.3% in a

user-dependent setting, and 96.2% in a user-independent

setting. Each symbol was trained using 30 samples. On a

database of 20 symbols, we achieve an accuracy of

95.7% in a user-dependent setting, where each symbol

was trained with 2 samples (Test 2). Likewise, with the

same 20 symbols, we achieve an accuracy of 94.7% in a

user-independent setting, where each symbol was trained

with 12 samples (Test 3).

To evaluate the efficiency of our polar coordinate

analysis, we conducted a separate experiment in which

the angular alignment of the images was computed in

screen coordinates via incremental rotations. This not

only bypassed the polar coordinate approach for

computing optimal alignment, but also bypassed the

accompanying pre-recognition step in which unlikely

definitions are pruned. With these modifications, the

average recognition time for Test 1 of the graphical

symbol and digit recognition experiments increased to

3590 and 1350 ms, respectively, while the recognition

accuracy remained the same in both cases. As these

results suggest, the polar analysis provides significant

savings in overall processing time without any decrease

in accuracy.
10. Limitations

Our approach is insensitive to translation, rotation,

and uniform scaling, but is sensitive to non-uniform
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Fig. 9. Examples illustrating the limitations of the approach.

(a) Two cantilever beams that are geometrically different but

semantically equivalent. Our recognizer would treat them as

different. (b) Transistors differ only by the directions of their

arrows. Quantization may obscure this difference. (c) A spring

and an inductor. Quantization may obscure the differences

between them.
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scaling. The latter property is advantageous when

distinguishing between, say, a square and a rectangle.

In other cases, however, it may be a hindrance.

Consider, for example, the cantilever beams shown in

Fig. 9a. Although the two beams are quite different

when taken literally as two bitmap images, they would

nonetheless have equivalent meanings in most practical

situations. Our program, however, would treat these two

symbols as being different, just the same way it would

treat a square and a rectangle as different. For this sort

of problem, the topology plays a much more important

role than does the shape. In this case, structural

matching methods [3,22], which put more emphasis on

the pattern’s topology, might be more appropriate.

Another limitation of our approach is that the

quantization of input symbols into templates may wash

out small image details. Hence, the performance of our

recognizer will decrease for symbols that differ exclu-

sively by such details. For instance, the recognizer will

have difficulty distinguishing the two transistors shown

in Fig. 9b, as the two shapes are similar except for the

direction of their arrows. For similar reasons, the

recognizer may have difficulty distinguishing between

the spring and the inductor symbols shown in Fig. 9c. In

such cases, it may be necessary to increase the resolution

of templates at the expense of increased computation.
11. Related work

Research in automatic understanding of freehand

drawings has produced a wide variety of representation

and recognition techniques. In graph-based symbol
recognition methods [22,23], symbols are segmented

into geometric primitives, and graphs encode both the

intrinsic attributes of the primitives and the geometric

relationships between them. Recognition is formulated

as a graph–subgraph isomorphism problem. The prac-

tical limitations of graphical approaches are their

computational complexity and their sensitivity to the

segmentation process.

As an alternative to graphical methods, feature-based

methods have also been used for symbol recognition.

Fonseca et al. [24] use features such as the smallest

convex hull that can be circumscribed around the shape,

the largest triangle that can be inscribed in the hull, and

the largest quadrilateral that can be inscribed. Because

their classification relies on aggregate features of the pen

strokes, it might be difficult to differentiate between

similar shapes. Rubine [4] describes a trainable

gesture recognizer designed for gesture-based interfaces.

The recognizer is applicable only to single-stroke

symbols, and is sensitive to the drawing direction and

orientation. Matsakis [25] describes a system for

converting handwritten mathematical expressions into

a machine-interpretable typesetting command language.

Each symbol requires a multitude of training examples,

where each example must to be preprocessed to

eliminate variations in drawing directions and stroke

orderings. However, the preprocessing makes their

approach sensitive to rotations. Kara et al. [2] describe

a trainable recognizer that uses nine geometric features

to construct concise probabilistic models of input

symbols. The approach is suitable for multi-stroke

symbols with arbitrary drawing orders and orientations.

However, it is sensitive to the results of stroke

segmentation, and additionally does not handle over

stroking and different line styles. The feature-based

methods outlined above typically require a multitude of

training examples to reliably learn new symbol defini-

tions. Our recognizer, on the other hand, requires very

little training data, and in fact can work from just a

single example of a symbol.

Inspired by the advances in speech recognition, some

systems facilitate recognition by requiring objects to be

drawn with a predefined sequence of pen strokes [6,26].

While useful at reducing computational complexity, the

strong temporal dependency in these methods forces the

user to remember the correct order in which the strokes

must be drawn.

Another class of systems is based on a descriptive

approach to encoding shape information [27,28]. In these

systems, geometric primitives and their relationships are

either hand-coded for each new shape, or are constructed

from heuristic rules designed to capture dominant shape

features. The resulting shape descriptions then form the

basis for a constraint-based matching procedure. While

these approaches result in precise structural descriptions

enhancing their discrimination power, they do not easily
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Fig. 10. Data collected for the graphic symbol recognition user study. Long thin symbols are shown rotated 45� to make the figure

more compact.
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lend themselves to recognizing sketchy symbols that are

drawn with little precision.

Shilman and Viola describe a system for simulta-

neously grouping and recognizing sketched text and

graphics [29]. Their approach first uses a constrained

search-based optimization to generate candidate stroke

groups, and then evaluates each candidate using a fast

bitmap-based recognizer. To prevent exhaustive search,

an upper limit is imposed on the number of strokes for

each symbol, which makes the approach sensitive to

over stroking and different line styles. Additionally, the

features used in the bitmap-based recognizer makes the

approach sensitive to rotations. Belongie et al. [30], in

their work on point sets, use ‘‘shape contexts’’ for shape

matching and recognition. In their approach, each point

in the object maintains a histogram of log-polar bins

that cluster the neighboring points. These histograms

are then used to find the correspondence between points

from different objects, which then helps produce a

similarity score between two objects. Their approach is

rotation invariant, and has the ability to handle

relatively large deformations. However, large training

sets are required to achieve high recognition rates.

Recognizing shapes irrespective of their orientation has

been one of the key issues in pattern recognition. Existing

solutions to image-based rotation invariance include

moment invariants such as Hu transforms, Zernike

Moments, affine moment invariants, Fourier descriptor

methods, wavelet transforms and circular harmonic

filters. Some of these methods are more suitable to

gray-level images than bitmaps, while some are applicable

only to closed contours or silhouettes. For the types of

problems considered in this work, Hu transforms [31] and

Zernike moments [32] stand out as the most suitable

solutions. While these methods are most effective when

applied to machine printed patterns, Hse and Newton

[21] recently applied Zernike moments to classify hand-

drawn symbols and they report promising results.
12. Conclusion

We have described a trainable, multi-stroke, hand-

drawn symbol recognizer designed to be used in sketch-

based interfaces. With our techniques, symbol defini-

tions can be learned from single prototype examples,

allowing users to train new symbols or adjust existing

ones on the fly. Our approach avoids a number of

problematic issues in symbol recognition, such as

segmentation and feature extraction. Also, our ap-

proach is tolerant of over stroking, missing and extra

pen strokes, variations in line style, and variations in

drawing order.

Our recognizer employs a two-step recognition

scheme. First, polar coordinates are used to efficiently

determine angular alignment and eliminate unlikely
definitions. Then, the remaining definitions are exam-

ined in screen coordinates using an ensemble of four

template classifiers. Each classifier produces a list of

definitions ranked according to their similarity or

dissimilarity to the unknown symbol. The results of

the individual classifiers are combined to produce the

recognizer’s final decision. Our experiments have de-

monstrated that this two-step approach is an order of

magnitude more efficient than performing the alignment

and recognition solely in screen coordinates.

We conducted two user studies to evaluate the

performance of our recognizer. One study focused on

handwritten, numeric digits. In this study, our general-

purpose recognizer achieved recognition rates that were

a little lower than those of dedicated digit recognizers.

The latter, however, typically employ extensive training

data. We believe that our system is a worthwhile

compromise, as our approach allows novel symbols to

be trained from single prototype examples. The other

user study considered a set of graphic symbols typical of

those found in the engineering domain (for graphic

symbols see Fig. 10). We believe the results of this study

are even more promising as our approach allows

symbols to be drawn with any number of strokes drawn

in any order, and new symbols can be learned from

single examples.
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