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Abstract

With the availability of pen-enabled digital hardware, sketch-based 3D modeling is becoming an increasingly attractive alternative to

traditional methods in many design environments. To date, a variety of methodologies and implemented systems have been proposed

that all seek to make sketching the primary interaction method for 3D geometric modeling. While many of these methods are promising,

a general lack of end user evaluations makes it difficult to assess and improve upon these methods. Based on our ongoing work, we

present the usage and a user evaluation of a sketch-based 3D modeling tool we have been developing for industrial styling design. The

study investigates the usability of our techniques in the hands of non-experts by gauging (1) the speed with which users can comprehend

and adopt to constituent modeling steps, and (2) how effectively users can utilize the newly learned skills to design 3D models. Our

observations and users’ feedback indicate that overall users could learn the investigated techniques relatively easily and put them in use

immediately. However, users pointed out several usability and technical issues such as difficulty in mode selection and lack of

sophisticated surface modeling tools as some of the key limitations of the current system. We believe the lessons learned from this study

can be used in the development of more powerful and satisfying sketch-based modeling tools in the future.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The long tradition of mouse–keyboard-menu-based
computer-aided design (CAD) practice is bound to take
on new forms in the near future as evidenced by the rapid
surge of interest toward pen-enabled computer systems in
recent years. Starting from Sutherland’s seminal work of
Sketchpad [1], a multitude of pen-based systems with
varying target domains and sophistication levels have been
proposed to date with promising success. In the domain of
3D solid modeling, the collective effort on sketch-based
design has begun to challenge the long established and
widely used modeling techniques such as primitive-based
constructive solid geometry and associated operations such
as extrusion, cut, loft, revolve and sweep. Indeed, new
advances in sketch-based modeling are set to simplify many
e front matter r 2007 Elsevier Ltd. All rights reserved.
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of the normally difficult tasks such as direct free-form
modeling [2–4], detail editing [5,6] and product styling [7,8],
while paving the way for novel applications such as
automatic 2D-to-3D converters [9–11], rapid shape classi-
fication and retrieval systems [12], volumetric image
segmenters [13] and texture creation methods [14].
While these inventions are key to the advance of the

technology, we believe an early assessment of a newly
proposed technique is also essential to the future success of
these efforts. To date, many systems have been proposed
with limited concern toward the usability of the invention,
thus making it difficult to assess and improve upon these
systems. This, in turn, hinders the development of
practically usable systems. Based primarily on this concern,
in this paper we present an early user evaluation of a
sketch-based 3D modeling tool we have been developing
[7,8]. The primary goal of the study was to evaluate the
usability of our system by determining how quickly users
could adopt to our system and how effectively they could
use it to design 3D models. The study was thus designed to
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consist of two main parts. In the first phase, a detailed set
of modeling steps are demonstrated to the users while
requiring them to complete small sets of assignments
between different steps. In the second phase, using the
newly learned techniques, users are asked to create a 3D
model with little or no external guidance.

1.1. System overview

This work builds primarily upon our previous work on
sketch-based 3D modeling [7,8]. Our work on sketch-based
modeling is concerned with the development of free-form
3D geometry and is targeted specifically toward the styling
design of industrial products. A distinguishing feature of
our system is that it is well suited to the direct construction
of relatively complex edge geometries and surfaces, which
is a difficult task with many conventional modeling tools.
In a typical design scenario, the user begins by constructing
a wireframe model of the design object. For this, the user
first sketches the initial feature curves on a very rough and
simplified 3D template model. This template model acts as
a platform that helps anchor users’ initial strokes in 3D
space. Once the initial curves comprising the wireframe are
constructed, the base 3D template is removed, leaving the
user with a set of 3D curves. Next, through direct
sketching, the user modifies the initially created curves to
give them the precise desired shape and smoothness. After
the desired wireframe is obtained, the user constructs
interpolating surfaces that cover the wireframe. Finally,
using physically based deformation tools, the user modifies
the newly created surfaces to the desired shapes. Once the
basic wireframe and surfaces are created, further details are
added using the same strategy of curve creation, curve
modification, surface creation and finally surface modifica-
tion.

1.2. User study outcomes

A key goal in our study was to identify the effectiveness
of the above strategy for styling design and the correspond-
ing usability of the implemented system. Inspired by a
formal user evaluation presented in [15], and formally
elaborated in [16,17], we sought to identify the perfor-
mance of our system under three main categories. In the
first category, we were interested in users’ personal
satisfaction with the system. In the second category, we
were interested in users’ opinions about the usefulness of
the system in real design settings. In the last category, we
were interested in users’ opinions about the system’s ease of

use. Our observations and users’ responses to a post-study
questionnaire suggest that, once demonstrated and prac-
ticed, many of the design steps were easy to master and
immediately effective, resulting in a favorable satisfaction
rating. Likewise, from a perceived usefulness point of view,
most users indicated that the system would potentially
improve designers’ productivity and performance. From a
perceived ease of use perspective, however, some users did
not find the system particularly flexible or easy to use.
Indeed, contrary to our expectations, a major difficulty
with our system was the need for user involvement in mode

selection, a lack of which frequently resulted in undesired
behavior especially during the training sessions. Addition-
ally, as elaborated later, the inability to undo certain
operations also resulted in displeasure with certain features
of the system. Nevertheless, the study suggests that most
users found the core modeling operations sufficiently
effective, even though refinements are necessary to some
of the key operations.
While this work is concerned primarily with the user

evaluation of our system, it also provides an extensive
description of the user interface and the interaction
techniques, followed by a comprehensive summary of the
technical details (see Sections 3 and 4). This serves three
purposes. First, these sections reflect the same design
scenario employed during the user studies, and thus
constitute an ordered set of steps followed by the
participants. Second, the technical details section presents
several new features of our system that were tested during
the user studies. Lastly, it provides an in-depth discussion
of some of the design decisions that were made during the
construction of our system.
The rest of the paper is organized as follows. In the next

section, we discuss some of the previous work on sketch-
based 3D modeling. In Section 3, we introduce the user
interface of our system and describe the main interaction
methods. Section 4 presents the main modeling steps
utilized in the user studies and the associated technical
details. Section 5 presents the user studies, followed by a
discussion of the outcomes in Section 6. Finally, Section 7
presents our conclusions and future directions.

2. Related work

While most 3D modeling software traditionally evolved
around a windows–mouse-menu-based interaction para-
digm, recent advances in stylus-enabled tablet technology
has made sketch-based interaction an appealing alterna-
tive. In the following, we survey some of the existing work
categorized based on each work’s key characteristic.

Gesture-based: In gesture-based approaches such as
Zeleznik et al. [2], Eggli et al. [18], Hua and Qin [19], and
Draper and Egbert [20], designers’ strokes are used
primarily for geometric operations such as extrusion,
bending and primitive deformation, rather than for directly
depicting the shape. While these methods allow a quick
construction of rectilinear geometry, or a deformation of
existing geometry, they are not well suited to designing 3D
space curves.
Cohen et al. [21] describes a system specifically for

constructing 3D space curves from a 2D sketch interface.
To overcome the well-known issue of one-to-many map-
ping (thus the lack of a unique solution), their system
requires the sketched curve to be complemented with a
sketch of the same curve’s shadow on a plane. However,
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this approach relies on the user’s ability to accurately
depict a curve’s shadow. In our system, while we avoid the
use of shadows, we resort to another simplifying solution
of requiring the user to construct initial curves on a 3D
template. Using our subsequent modification tools, how-
ever, users can later modify the initial curves to precise
shapes directly in 3D, without the need for other
supplementary entities.

Silhouette-based: Silhouette-based approaches
[3,22,23,4,24] enable free-form surface generation. In these
methods, users’ strokes are used to form a 2D silhouette
representing an outline or a cross-section, which is then
extruded, inflated or swept to give 3D form. In these
systems, the main goal is to obtain a reasonable 3D
geometry very quickly, rather than a precise modeling of
the shape. More recently, several new approaches based on
silhouette drawing have been proposed for designing
primarily organic shapes such as plants, leaves and animal
parts [25–27]. A key advantage is that these systems enable
a rapid creation of realistic biological scenes thanks to the
possibility of producing a multitude of similar patterns
originating from a single, carefully designed pattern.

Line-labeling and optimization: In 3D interpretation from
2D input, the well-known issue of one-to-many mapping
(thus the lack of a unique solution) has resulted in the
development of various constraint and optimization-based
methods. To date, much work has focused on interpreting
line drawings of polyhedral objects [28–30,9,10,31]. These
methods typically use some form of a line-labeling
algorithm, followed by an optimization step, to produce
the most plausible interpretation. Results are shown to be
improved by the use of various image regularities such as
symmetry, edge junctions, parallelism and intersection
angles. The difficulty of the problem setting (usually a
single drawing constructed from an unknown arbitrary
viewpoint) makes these methods most suitable to objects
with flat faces and simple edge geometries. Nevertheless,
recent systems such as Varley et al. [32] and Karpenk
and Hughes [33] have begun to extend these techniques
to curved edges producing relatively complex shapes.
A common theme behind these approaches is that they
are designed to work under stringent constraints such as a
single fixed view. Hence, while these techniques are
definitely powerful in their domains, we believe a more
interactive, multi-view design environment is more suitable
for 3D styling design.

Template-based: Some recent systems exploit topological
templates to extend existing interpretation principles to
curved objects. Mitani et al. [34] use a six-faced topological
template for interpretation. The nature of the template,
however, limits the scope of the method to objects
topologically equivalent to a cube. Using line-labeling
and optimization techniques, Varley et al. [32] first creates
a template by interpreting a drawing of a polyhedral object.
Next, curves are added by bending the edges of the
template through sketching. Since there are infinitely many
3D configurations of a curve corresponding to the 2D
input, the best configuration is determined based on the
assumption that the modification produces a symmetrical
distortion across the object’s major plane of symmetry. The
idea of templates has also been explored by Yang et al. [35]
who use 2D templates to recognize and convert users’
sketches into 3D shapes. The recognition and 3D geometry
construction algorithms make this approach suitable to a
limited number of objects with relatively simple geometry.
In our previous work [7], we use a 3D wireframe

template for modeling. In this approach, the wireframe
serves as a topological template and users’ strokes modify
the edges of the wireframe to the desired shape. After
obtaining the desired wireframe, interpolating surfaces are
created across the loops of the wireframe to produce a
surface model. Finally, new edges are sketched on the
surface model to introduce new topology, allowing new
surfaces and details to be added to the model. A
shortcoming of this approach is that the complexity of
the initially designed model is limited by the topological
complexity of the underlying wireframe template. To
alleviate this difficulty, in [8] we present a new template-
based approach in which the initial template is a
significantly simplified, generic surface model of the design
object, rather than a wireframe model. Here, instead of
modifying existing edges of a wireframe, the design begins
by the user constructing the desired wireframe model
directly on the underlying surface template. This allows the
user to create arbitrarily many edges and topologies
without being restricted by the topology of a working
wireframe. The subsequent steps of surfacing and detailing
are similar to those in [7]. In the user studies presented
here, we exclusively use the surface template model of [8].
Following sections further detail the use of this template
and the design processes.

Mesh editing: Systems such as Kho and Garland [36],
Cheutet et al. [5] and Nealen et al. [6] allow users to directly
operate on existing surfaces to deform or add feature lines
using a digital pen. The key difference of these methods
compared to similar gesture-based approaches is that users’
strokes are directly replicated on the resulting shape. The
main advantage of these systems is that they allow
smoothly blended complex artifacts to be introduced to
an otherwise plain geometry. Typically, editing with these
methods requires a specification of the target region, along
with a specification of the desired deformation. A key
challenge faced by these systems is that the intended
deformation can be substantial, requiring a careful update
and modification of the underlying mesh topology. These
systems are most useful during later design stages where the
main geometry is already available. Our focus, on the other
hand, is the creation of the geometry, and thus these
methods are complementary to our modeling techniques.

3. User interface and interaction

Our system is deployed on a pressure sensitive 1700 �
12:7500 Wacom Cintiq tablet with a cordless stylus.
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Users’ strokes are collected as time sequenced ðx; yÞ
coordinates sampled along the stylus’ trajectory. Similar
to the left and right buttons on a mouse, the stylus
contains two buttons along its barrel, which we have
Fig. 1. User interface and examples modeling operations. The template in this

(1) Global 3D curve modification and results from different views. (2) Local 3D

is the base curve, the wavy curve is the snap curve. The wavy curve has been s

creation and modification with pressure force. (6) Surface fairing. Surface noi
customized for the camera rotation and translation
operations.
Fig. 1 shows the user interface of our system during the

design of a sofa. The interface consists of a main drawing
example is the rectangular prism rendered in semi-transparent ghost view.

curve modification. (3) Curve fairing. (4) Curve snapping. The pink curve

napped to the side and the front of the sofa both as ‘T’ joints. (5) Surface

se on the left has been added artificially to emphasize the effect.
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region and a toolbar on the right-hand side for accessing
commonly used commands. All pen-related interaction
including drawing and gesturing takes place in the main
drawing region. Optionally, at the bottom of the drawing
region, a set of customizable views can be displayed. The
user can save the current view by drawing a stroke from the
main region into one of the multiple panes. The same view
can later be recalled by extending a stroke from the bottom
pane into the main region. The upper half of the toolbar is
reserved primarily for visualization controls of 3D data.
Users can select the geometric entities to be rendered such
as the underlying template, the designed wireframe model
and the surface data. The lower half of the toolbar is
dedicated to mode selection. This is a critical component of
our system as a variety of different operations and
modeling steps exist, and the system must know the
context in which a users’ stroke occurs. There are four
main modes that are relevant in this study:

Create: When the system is set in this mode (by selecting
the corresponding tab from the toolbar) all subsequent
strokes are used for constructing 3D curves on existing
surfaces. Both the original surfaces of the underlying
template and the surfaces created by the user serve as
suitable surfaces for curve creation. To create a curve, the
user sketches one or more strokes comprising the curve and
presses the Create on Surface button. The system then
transforms the group of raw strokes into a beautified 3D
curve that lies on an existing surface. Given a 3D surface
and the group of overlapping 2D strokes collected from the
digitizing surface, the 3D configuration of the resulting
beautified curve is trivially computed using the depth
buffer of the graphics engine. Once a curve is created, the
stroke buffer is cleared and all subsequent strokes are used
in the construction of the next curve. If one or more strokes
are drawn in the free space outside of a surface, Create
on Surface likely produces undesirable curves with some
sections lying on salient surfaces and some at infinity. In
such cases, the user is asked to recreate the curve such that
input strokes lie exclusively over existing visible surfaces of
the 3D model.1

Modify: When the system is in this mode, input strokes
are used to modify existing curves in 3D. To modify a
curve, the user selects a convenient viewpoint by trans-
forming the camera with the stylus, and then sketches
the new shape of the curve near an existing curve. After the
user presses the Modify button, the system processes the
input stokes and modifies the target curve such that it closely
aligns with the user’s strokes from the given viewpoint,
while maintaining a desirable 3D form (Fig. 1-1). Before
drawing the modifier strokes, the user can explicitly indi-
cate the target curve to be modified through a
selection gesture. A selection gesture is simply a checkmark
drawn in the vicinity of a curve while the CNTRL button is
1While our system provides the capability of creating curves that

partially lie in free space, this feature is not tested in our user studies and

hence it is not considered further. See [8] for the details of this capability.
held down.2 This action sets the curve in question as the
target curve. If no curve is selected a priori, however, the
target curve to be modified is chosen based on the spatial
proximity of the projected curves to the user’s strokes. In
this case, using the current viewpoint and corresponding
transformation matrices, the program first projects all
existing curves onto the 2D drawing plane. Next, the spatial
proximity between each of the projected curves and the
modifier strokes is computed by sampling a set of points
from the curve and the modifiers, and calculating the
aggregate minimum distance between the two point sets.
The curve with the minimum aggregate distance is then set
as the target curve. This implicit procedure, however, may
fail to identify the intended curve when there are a large
number of curves to work with, or the user wishes to apply a
large modification such that the modifier strokes occur
spatially distant from the intended curve in the current
viewpoint. In our user studies, we introduce both options to
the participants and leave it up to them to decide which
modality to use for target curve selection.
In addition to the above global curve modification

procedure, users may also modify curves locally. In this
case, the user sketches only the section of a curve that needs
to be edited and presses the Modify Locally button.
Accumulated strokes are then used to modify only the
section of the curve subtended by the input strokes
(Fig. 1-2). As described later, the section of the curve to
be modified is determined automatically based on the
aggregate extent of the modifier strokes relative to the
target curve. Unlike in the global modification, however,
the user must explicitly specify the target curve through a
selection gesture during local modification.
Finally, the user can refine a designed curve while

preserving its aggregate geometry. In many cases, while the
curve will be smooth at a macro-scale following a
modification, it may nevertheless have a low intrinsic
quality as observed from the erratic curvature profile
(Fig. 1-3). The curve refinement tool applies a local filter
along the curve which makes small local modifications
along the curve to produce smoothly varying curvature
profiles. By controlling the number of times this filter is
applied, the user can adjust the severity of this refinement.
During both curve creation and modification, the user

may elect to specify one of the three principal Cartesian
planes as the plane of symmetry. When symmetry is
enabled, any operation performed on one side of the
symmetry plane is automatically duplicated on the other
side. For curves that must cross the symmetry plane (e.g.,
the car bumper), a purely symmetrical interpretation is
computed by averaging the raw curve with its mirror
image. This helps automatically rectify users’ otherwise
imprecise curves across the symmetry plane. The symmetry
maintenance feature greatly facilitates the construction of
2In our system, the CNTRL button helps distinguish between a drawing

stroke and a gesture.
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Fig. 2. The final wireframe and the painted surface model of a sofa. The

closeup view reveals the surface triangulation.
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symmetrical objects and is a commonly entertained feature
of our system.

Curve Snapping: The curves comprising a wireframe
model are constructed individually using the above
methodology. To prepare the wireframe for surfacing,
however, the curves must be joined in order to ensure
proper connectedness. This is accomplished by snapping
curves pairwise to one another until all curves are fully
connected (Fig. 1-4). In the trimming mode, all drawing
functions are disabled and input strokes are used for
selecting curves to be trimmed. Trimming begins by the
user first marking the base curve that will remain stationary
and unmodified. Next, the user selects the snap curve which
undergoes a set of affine transformations (i.e., rotation,
translation and scaling) until its end closest to the base
curve meets the base curve itself. The affine transforma-
tions applied to the snap curve help preserve the curve’s
intrinsic characteristics such as its rectified curvature
profile. Our system provides two modes of snapping
through a radio button. In the first mode, an ‘L’ joint is
produced whereas in the second mode a ‘T’ joint is
produced. The advantage of distinguishing between a base
curve and a snap curve during this operation is that the
design can evolve progressively where newly created curves
can be adjusted freely, while already established curves are
precluded from unwarranted transformations. As before,
all snapping operations respect symmetry constraints. At
the end, a well-connected wireframe is obtained which can
be subsequently surfaced.

Surfacing: This mode contains all modeling operations
relevant to the creation and modification of surfaces across
the wireframe model. In this mode, users’ strokes are used
exclusively to mark edges that constitute a closed loop.
After selecting a set of such edges, the user presses the
Surface button which constructs a polygonal surface
across the closed loop formed by the edges (Fig. 1-5). If the
edges do not form a closed loop, the system responds by
generating a warning message. Initially created surfaces all
have the common property that they stretch tightly across
their boundary loops producing surfaces with minimal
surface area. Thus, although the resulting surface shapes
will strongly depend on the shapes of the boundary loops,
they will nevertheless share the common theme of a
stretchy look. Once created, a surface can be modified by
the application of a virtual pressure force, whose magni-
tude is controlled by the user through a slider bar. During
this modification, the surface continues to interpolate its
boundary edges while being smoothly inflated in its
interior. A surface may also be flipped and then subjected
to a pressure force to produce depressions. A second
surface deformation technique involves creating surfaces
with minimum curvature variation. However, for the class
of objects we consider in this study, we have found the use
of pressure force to be the most effective means for
modifying surfaces. Hence, surfaces of minimum curvature
variation (see [7] for details) were not utilized in our user
studies. When necessary, the user may further improve the
surface quality using a refinement tool that enhances
surface smoothness while preserving the macro-scale
geometry. As in the case of curve refinement, this process
occurs at such a small scale that only a simulation of the
reflection lines reveals the enhancement (Fig. 1-6). Finally,
the color of the surface can be changed interactively
through a dialog box as needed. Besides these modification
tools, the user can also select individual surfaces similar to
the way curves are selected. In this case, the user presses a
Select button which then renders each surface as a small
spherical blob located at its centroid. In this rendition
mode, a checkmark gesture next to the centroid point can
be used to select a surface. All subsequent surfacing
operations are then applied to the recently selected surface.
Fig. 2 shows the final surfaced and painted sofa created
using our system.
During design, the user is responsible for selecting the

appropriate mode of modeling. For instance, trying to snap
two curves together without switching to snapping mode
will cause input strokes to be interpreted as drawing
strokes. In such cases, the user will need to clear these
unintended drawing strokes, switch to snapping mode and
continue. While the visual feedback (e.g., a stroke
remaining as a drawing stroke on the screen rather than
marking a curve for snapping) often quickly reveals a
problem with the intended mode, the extra effort to take a
few back steps nevertheless causes an inconvenience during
actual use. Currently, only practice through a continual use
of the system has proven to be effective in mitigating this
issue.

4. Sketch-based 3D design

This section describes the technical details behind the
modeling operations of our system along with some of our
design choices. Some of the material presented in this
section has been previously discussed in [7,8]. Here we only
provide a summary of those subjects for completeness, or
articulate on their critical aspects, and refer the reader to
our previous publications for details. Based on our more
recent experience with our system, however, we have also
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developed a number of new features that are introduced for
the first time in the following paragraphs. We shall provide
a more comprehensive description of those features as
necessary.

Fig. 3 shows a schematic of a typical design process using
our system. The user starts by constructing a 3D wireframe
model by designing its constituent curves. Each curve is
first instantiated on an underlying template model that
serves as a very simplified and coarse starting volume.
Drawing an analogy to clay modeling, the underlying
template can be thought to be the initial, rough block of
clay that will be formed into a refined shape. Curves
initially laid on the template are then modified into precise
shapes through 3D curve modification, followed by a
refinement operation. Next, individually designed curves
are snapped to one another producing a well-connected
wireframe model. The user then creates surfaces across the
wireframe by manually marking its individual closed loops
and triggering a surfacing command. Each surface can be
modified to the desired shape using a pressure force, and
later be refined by applying a local smoothing operator on
the entirety of the surface. Finally, further details likely
consisting of progressively shorter edges and smaller
surfaces can be added to the model by a sequential
application of curve creation, curve modification, curve
fairing, curve snapping, surface creation, surface modifica-
tion and lastly surface fairing.
4.1. Volumetric template

The templates used in our system are expected to be
crude surface models that have roughly the form of the
design object. The purpose of the template is to provide a
simple platform for capturing users’ initial curves in 3D.
A precise design of the intended curve shapes is the subject
of the subsequent modification steps. In most industrial
design settings, it is usually easy to obtain such surface
models, as existing computer models often serve as a
natural repository of templates. For example, an existing
model of a generic sedan can be conveniently used as
a starting template in the design of a new car. Note that
it is particularly beneficial if the template is simple and
devoid of any intricate surface details, as the initially
laid curves will then exhibit globally smooth characteri-
stics without conforming to details. Many geometric
smoothing methods such as subdivision schemes [37]
Fig. 3. Flo
can be readily utilized to obtain sufficiently smooth
templates.
Moreover, in many industries, a set of dimensional

constraints are set a priori long before conceptual design
begins. Hence, these constraints can be used in conjunction
with parametric models to automatically generate suitable
starting templates. In our studies, the templates we begin
with are markedly simpler (e.g., a rectangular prism for
designing a sofa) thanks to the relative simplicity of the
class of objects we consider. While it remains unclear how
difficult it would be to design considerably complex shapes
using our system, we suspect that the choice of the starting
template would have a relatively minor influence. This is
because users can create arbitrarily many curves on the
template, modify the curves to desired shapes and finally
judicially snap and surface the wireframe to create a variety
of different topologies and geometries. The more similar
the initial template is to the desired final shape, however,
the shorter the design cycle will be, as the initially
instantiated curves will be closer to their final shapes.
4.2. Curve creation

In creation mode, users’ strokes are converted into
smooth curves lying on surfaces of the underlying template.
Each curve can be constructed from an arbitrary number of
strokes, drawn in arbitrary directions and order. Given the
set of input strokes in the drawing plane, the program first
uses a principal component analysis to arrange the cloud of
unorganized points into a set of spatially organized data
points. Next, using a B-spline fitting algorithm, a
parametric 2D curve is obtained in the drawing plane.
Finally, the curve is projected onto the 3D template using
the built-in ray intersection capabilities of the graphics
engine. At the end, a 3D curve is obtained whose projection
to the image plane matches the input strokes. Kara and
Shimada [8] presents further details of this process.
If symmetry is enabled, a curve constructed on one side

of the symmetry plane will be duplicated symmetrically on
the other side. Any subsequent modifications to one of the
symmetric curves, such as a geometric alteration or
deletion of the curve, will be automatically applied to the
associated curve. For curves crossing the symmetry plane,
however, a single symmetrical curve is constructed by
averaging the original curve with its mirror twin. Fig. 4
illustrates the idea. For a curve A and its mirror twin curve
wchart.
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Fig. 4. Illustration of symmetry preservation when a curve crosses the

symmetry plane. Top: A curve A (original curve) and its mirror twin curve

B are averaged to produce a symmetric curve C. Bottom: This principle is

used to beautify user’s imprecise strokes into a symmetric curve.

Fig. 5. Local curve modification.
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B, a resulting average curve C is computed as follows:

for i ¼ 1 : N vC
i ¼

vA
i þ vB

N�i

2
,

where N is the number of data points uniformly sampled
along curves A and B, and vi is the 3D coordinate vector of
the ith point along the curves. To ensure a congruent
matching between curves A and B, N must be chosen to be
an odd number. In our system, N is 51; that is, each curve
in our system consists of 51 data points.

4.3. Curve modification

Once the initial curves comprising the wireframe are
constructed, the base 3D template is removed, leaving the
user with a set of 3D curves. Next, through direct
sketching, the user modifies the initially created curves to
give them the precise desired shape. To modify a curve, the
user simply sketches the modifier strokes that specify the
new shape of the curve as it would occur from the current
viewpoint. With this, our system modifies the curve in two
steps provided that the target curve is either explicitly
marked by the user, or can be reliably identified based on
spatial proximity. In the first step, our system uses an
active-contour-based energy minimization algorithm de-
scribed in [8] to deform the projected curve in the image
plane until it conforms to the modifiers. Next, the newly
obtained 2D curve is projected back into 3D resulting in
the new 3D curve (Fig. 1-1). A key challenge here is that
there are infinitely many such back-projections into 3D.
The best 3D configuration is thus determined based on
certain constraints and preferences. In our approach, we
choose the optimal 3D configuration as the one that
minimizes the spatial deviation from the original 3D curve.
That is, among the 3D curves whose projections match the
newly designed 2D curve, we choose the one that lies
nearest to the original target curve. This is conceptually
similar to the epipolar constraints introduced in [38]. For
this, a surface that originates from the current eye position,
passes through the modifiers, and extends into the page, is
first computed. Theoretically, all candidate solutions lie on
this surface. The optimal 3D curve is then found by
computing the minimum distance projection of the original
curve onto this surface. Further discussions of our
algorithm can be found in [8].
In addition to the above method that modifies a curve in

its entirety, a curve can also be modified locally. Our
solution to local curve modification is based on the
constraint stroke-based oversketching described in [39].
Fig. 5 illustrates the idea on a 2D example. Here, the set of
modifier strokes is first converted into a smooth B-spline
using the same techniques employed during curve creation.
Next, the two extremal points of this modifier curve are
determined. These points are then used to identify a finite
section of the target curve that will be modified. For this,
the two points on the target curve that are spatially most
proximate to the two extremal points of the modifying
B-spline points are identified. The section along the target
curve that falls between these two points is then simply
replaced by the modifying curve. Often times, the junctions
between the original target curve and the newly introduced
section will exhibit sharp kinks. To alleviate such artifacts,
a smoothing filter is automatically applied to appropriately
blend the junctions. This smoothing filter is described in the
next section.
The same principles are applied in 3D by first perfor-

ming all modifications on the 2D projection of the target
curve, and then projecting the resulting 2D curve back into
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3D using the same techniques used in global curve
modification.
4.4. Curve fairing

After creation and modification, a final refinement can
be optionally applied to a curve to improve its geometric
quality. This refinement, based on Savitzky–Golay filters
[40], works to improve the local geometric characteristics of
the curve such that its curvature profile exhibits a more
regular distribution. As described in [41] this plays a critical
role in improving the aesthetic appeal of the curve.

The Savitzky–Golay filter can be thought to be a sliding
window containing a smoothing polynomial that adjusts a
vertex position through a weighted averaging scheme
applied around its neighborhood. It simulates a least-
squares fitting in the sliding window that moves the vertex
onto the smoothing polynomial. This filter is commonly
used in signal smoothing and denoising [40]. A key
advantage of this filter over other averaging schemes is
that it is known to gracefully eliminate noise from a signal
without causing unwarranted flattening at its salient peaks.

In this work, we adopt this idea to 3D curve fairing. At
the heart of this technique is an algorithm that determines a
set of weights for the vertex in question and its neighbors.
These weights are computed based on (1) the number of
leftward neighbors, (2) the number of rightward neighbors
and (3) the order of the smoothing polynomial used in the
filter. While the details of this computation are out of scope
of our current discussion, Table 1 shows various weights
obtained for different choices. In our implementation, we
use three leftward neighbors, three rightward neighbors
and a second-order polynomial for filtering (Table 1, row
1) for the interior nodes. As mentioned previously, our
curves are sampled at 51 data points. We have determined
the window size of 3þ 3þ 1 ¼ 7 data points and the order
of the filtering polynomial empirically to give the best
compromise between local smoothness versus global shape
preservation. For the first and last three vertices along a
curve, we progressively bias the number of leftward and
rightward neighbors based on the number of available
neighboring vertices in the vicinity. Once the weights for a
given vertex and its neighbors are determined, the new
Table 1

Savitzky–Golay filter weights for different combinations of leftward and

rightward neighbors, and smoothing polynomial order

v�3 v�2 v�1 v vþ1 vþ2 vþ3

Order ¼ 2 �0.095 0.143 0.286 0.333 0.286 0.143 �0.095

Order ¼ 2 0.000 0.257 0.371 0.342 0.171 �0.143

Order ¼ 2 0.257 0.371 0.342 0.171 �0.143

Order ¼ 2 0.950 0.050 �0.150 0.050

Order ¼ 4 0.022 �0.130 0.325 0.567 0.325 �0.130 0.022

The middle column corresponds to the target vertex. In all cases, the

number of rightward neighbors is 3 while the number of leftward

neighbors decreases from 3 to 0 across the first four rows.
position of the vertex is determined trivially by a weighted
sum across its neighborhood:

v 
Xþ3

i¼�3

wi � vi,

where v represents the 3D vertex coordinates and w is the
corresponding Savitzky–Golay weight. The above scheme
is applied to each of the vertices along the curve to smooth
its entirety. In practice, this filter can be applied a
multitude of times until the desired results are obtained.
Fig. 1-3 shows an example of this smoothing.

4.5. Curve snapping

This step allows individually designed curves to be joined
to one another, producing closed wireframes. To join two
curves, the user first marks the base curve which remains
stationary, and the snap curve which undergoes an affine
transformation to meet the base curve. Fig. 6 illustrates the
idea on the construction of an ‘L’ joint. In the first step,
the points comprising the joint are automatically identified
based on spatial proximity (points p and r). Next, the snap
curve is first rotated about its fixed end not involved in the
joint (point s) and then scaled along its new orientation
until the joint is formed. Note that this transformation
preserves the intrinsic characteristics of the snap curve,
except for a minute alteration introduced by scaling.
Nevertheless, this difference is often times not discernable
especially if the snapped curves are already spatially
proximate. A similar approach is taken to form ‘T’ joints,
except point p now typically lies in the interior of the base
curve rather than presiding at one of the two ends.

4.6. Surface creation

Given the connected wireframe model, in this step the
user constructs a surface geometry for each of the closed
face loops of the wireframe. For each surface to be created,
the user first identifies the associated face loop by marking
the constituent wireframe curves involved in that face loop.
With this, our system creates an interpolating surface in
three steps. First, a vertex is created at the centroid of the
boundary vertices. A set of initial triangles are then created
that use the new vertex as the common apex, and have their
bases at the boundary. Finally, a series of edge swapping,
face subdivision and Laplacian smoothing is applied
Fig. 6. Curve snapping. The snap curve is first rotated by a and then

scaled by jp� sj=jr0 � sj while keeping point s fixed.
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Fig. 7. Surface fairing. Left: A local biquadratic patch is fit around the

target vertex. The intersection of the patch with the z-axis of the local

coordinate system gives the new position of the target vertex. Right: The

result of smoothing on a synthetic example.
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producing uniformly distributed triangular elements. The
number of triangles obtained this way is dictated by a
threshold that specifies the maximum edge length allowed
in the final triangulation as a percentage (currently 20%) of
the average edge length in the initial triangulation. In other
words, triangle subdivision is iteratively carried out until
the length of the longest edge in the entire set of triangular
faces is shorter than 20% of the average edge length
appearing in the initial triangulation.

For a given face loop geometry, the resulting surface has
the unique property of having the minimum surface area
due to the nature of Laplacian smoothing. Further details
are presented in [7]. Note that the position of the centroid
vertex used for instantiating the initial set of triangular
elements is not critical in the success of this method.
Indeed, multiple applications of edge swapping, face
subdivision and Laplacian smoothing repositions this
vertex along with other vertices such that the surface is
tightly stretched and globally smooth.

4.7. Surface modification

Initially created surfaces can be modified to give them
the desired shape. At the heart of our modification
mechanism is a physically based method that simulates
the effect of a pressure force on a thin membrane [7]. This
tool allows surfaces to be inflated or flattened in a
predictable way. A key advantage of this technique is that
surfaces can be deformed wholistically in a smooth way
without generating unintended creases. The extent of the
deformation depends on the magnitude of the pressure,
whose value in this case is controlled by the user.

This surface modification scheme is useful for producing
simple, smoothly varying surfaces. Currently, this techni-
que does not allow creating complex surface variations and
details. Our surfacing techniques therefore must be
enhanced to accommodate a greater class of modifications.
Nevertheless, this surface modification technique has been
sufficient for the purposes of our user studies.

4.8. Surface fairing

In the last step of surfacing, a final refinement operator
can be applied to smooth any surface imperfections that
might be remaining from surface modification. Our
smoothing scheme, adopted from [42], is based on local
biquadratic patch fitting across the surface to adjust vertex
positions. While this refinement preserves the macro-scale
geometry of the surface established during modification, it
enhances the differential properties of the surface by
improving local smoothness.

The smoothing process can be summarized as follows.
First, a target vertex and a set of neighboring vertices
around it are selected for smoothing. Neighbor selection
begins in the immediate vicinity of the target vertex and
extends outward until a sufficient number of neighbors (in
our case 24) are accumulated. A local coordinate system is
then set up whose origin is the target vertex, and whose z-
axis is aligned with the target vertex’s normal vector. The
25 vertices are then used to fit a biquadratic surface in the
least-squares sense. Finally, the intersection of this surface
with the z-axis dictates the new position of the target
vertex. Fig. 7 illustrates the idea. Note that this smoothing
is usually more discernable under the reflection pattern
rendering as the macro-scale geometry is not altered.

5. System evaluation

We conducted a user study to obtain an objective
assessment of our system in the hands of non-experts and
gain insight into how it could be improved. Among the
various aspects that we investigated, we were particularly
interested in users’ opinions about the program’s value as a
new enabling tool, its effectiveness and ease of use, users’
adaptability to the system, users’ success at completing a
desired task or operation, their success at recovering from a
mistake, and their short- and long-term view of our system
as a practical software for designing 3D geometry. The
study has shown that overall, our pen-based modeling
techniques have been well received and utilized effectively,
despite a predominant unfamiliarity with this new interac-
tion paradigm. However, the inherent complexity of the
problem, namely 3D geometry generation through a 2D
interface, and the multitude of steps involved in the
process, has given rise to several usability issues that must
be resolved in the future.

5.1. Participants

A total of six graduate engineering students participated
in our studies. In the call for the user study, those who had
experience with 3D modeling programs were particularly
encouraged to participate, as we sought to obtain a reliable
point of comparison with other systems. All participants
thus had some degree of familiarity with one or more 3D
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Fig. 8. Small test models created by our users for practicing curve

modeling techniques in a 2D environment.
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modeling tools including ProE, SolidWorks, 3D Studio
Max, Maya and Lattice 3D. None of the users had any
significant experience with a pen-based tablet computer
before, but some were familiar with other pen-based
devices, mainly personal digital assistants (PDAs). The
study was administered one user at a time and each user
spent approximately 2 h actively interacting with our
system. All users were paid $40 for their participation.

After each session, participants were asked to complete a
post-study questionnaire that forms our main source of
feedback. However, all sessions were also voice recorded
and hence participants were encouraged to speak aloud
especially when they ran into trouble, or when engaged in a
thought process. As discussed later, this data provided us
with valuable information that would have not been
identified through the questionnaire.

5.2. Tasks

Based on the classification presented in [16], this study
constitutes a ‘strictly controlled experiment with a small
number of subjects exposed to the system for a very short
period of time.’ Hence, unlike the longer but less rigidly
controlled experiments, or field studies with no control
with volunteers, our study consists of a set of specific tasks
for the users and we assess our system based on users’
performance on those tasks. Specifically, we were interested
in (1) the speed with which users can master our system and
the constituent modeling steps, and (2) how effectively
users can utilize the newly learned skills to design 3D
models.

Each study was thus designed to consist of two main
parts. The first part consists of a closely controlled, teach-
and-test process that introduces the key modeling opera-
tions and interaction techniques to the users. In the second
part, users are asked to design a 3D model from scratch
with little or no assistance from us.

5.2.1. Part I

In the first part, a 10-step modeling tutorial is
administered to each user. In each step, the concept is first
orally explained, then demonstrated on our system. After
the introduction, the user is asked to practice the technique
with simple test cases until feeling comfortable. This part
takes approximately 90 minutes. The 10 cases are as
follows:

Introduction to the user interface: We first introduce the
tablet and the stylus, together with the main sketching and
pointing techniques. We then present an overview of the
interface—the drawing region, the toolbars, etc. The stylus-
based camera rotation and translation are then introduced.
Finally, we speak about the different modes of the system
and give a brief explanation of each mode to be used in the
study.

Curve creation: The basics of curve creation on surfaces
are introduced. Users practice curve creation with single
and multiple strokes, and learn how to enable or disable
symmetry across different planes. We demonstrate what
will go wrong if they tried to create a curve in the empty
space without an underlying template or surface. They are
also shown how to delete a stroke or curve using the
‘delete’ gesture (an alpha drawn while holding the CNTRL
button down).

Global curve modification: Users practice switching to
modification mode, selecting a curve, and modifying a
curve from different viewpoints. While we give no technical
detail about how curve modification takes place, users are
encouraged to experiment with the system until they are
familiar with the behavior and can produce relatively
complex 3D curves.

Local curve modification: The difference between global
and local curve modification is demonstrated and users are
asked to practice the two interchangeably. Interestingly, we
have observed that users were markedly more interested in
local curve modification (and some used it more frequently
in Part II) as they seemed much more curious about its
behavior and limits.

Curve fairing: Users practice how to render the curvature
plot and apply the fairing operator.

Curve snapping: We first show the idea behind snapping
and then explain the difference between a base curve and a
snap curve. We then show how to produce the ‘L’ joints
and ‘T’ joints. We observed that all users were able to
master this operation surprisingly fast, while some diffi-
culties occurred when users erroneously created ‘L’ joints
when they intended a ‘T’ joint.
At the end of this step, a case study is conducted in

which users are asked to draw a silhouette of a side view of
an automobile outer body on a 2D version of our interface.
The goal is to have users practice the curve modeling skills
they have acquired thus far on a simple example. Users are
asked to draw the silhouettes straight from their imagina-
tion without referring to a source model or drawing. To
give an idea of the complexity, Fig. 8 shows some of the
users’ models obtained in this way.

Surface creation: Users learn to create surfaces by
marking edge loops. They also practice different surface
rendering options such as solid, triangulated or zebra-
pattern coated.

Surface modification: Users are shown how to use the
pressure tool to deform surfaces in a controllable way.
They learn how to flip a surface and inflate it inward to
create depressions, or flatten the surface back to its original



ARTICLE IN PRESS
L.B. Kara et al. / Computers & Graphics 31 (2007) 580–597 591
shape. They also practice surface fairing by monitoring the
effect of the operation through the zebra-pattern reflection.

Surface picking and painting: Using a previously designed
model with multiple surfaces, users learn how to select
different surfaces and apply geometric modifications to
them. They also learn how to change the color of a selected
surface.

Detailing: Finally, users learn how to create new curves
and surfaces over existing surfaces. This last step also
provides an opportunity to practice the previous techni-
ques on small test cases.
5.2.2. Part II

Once finished with Part I, a brief break is taken during
which we ask users to orally describe their experiences thus
far. Next, we introduce Part II of our study where we ask
users to design an object with minimal assistance from us.
This part took between 25 and 35min for the users. In this
study, all users are assigned the same task of designing the
top surface of a remote controller. For this, several pictures
of different remote controllers are shown (and later kept in
sight) to help users conceptualize their design. Fig. 9 shows
two example pictures that were used for this purpose. In
the construction of this model, we provide a 10� 6� 1:2
rectangular prism as the underlying template. We explain
that we do not expect users to precisely replicate the models
in the pictures but rather expect them to use the pictures for
inspiration. Moreover, we explain that we are interested in
users’ ability to generate the overall style rather than their
ability to produce details. By limiting interest only to the
top surface of the design object, we aimed to give users a
chance to work on their assignment in greater depth and
care within the allotted time.

Assigning similar design objectives to users allows a
more congruent comparison of their final results, while
exposing them to similar levels of opportunities and
challenges during the design process. This helps eliminate
any undesired bias in their experience that might arise from
a unique, unshared task. In addition, this controlled task
greatly facilitates time management by freeing users from
having to come up with a design concept of their own.
Fig. 9. Example images of the remote controllers used in our studies.

Courtesy of LogitechTM (www.logitech.com).
5.3. Evaluation criteria

Inspired by a formal user evaluation presented in [15],
and formally elaborated in [16,17], we sought to identify
the performance of our system under three main categories.
In the first category, we were interested in users’ personal
satisfaction with the system. In the second category, we
were interested in users’ opinions about the usefulness of
the system in real design settings. In the last category, we
were interested in users’ opinions about the system’s ease of

use. Our post-study questionnaire was prepared to gauge
users’ opinions under these main categories.
In our study, we aimed to validate our modeling

techniques separately from the interaction techniques of
our interface. For the first part, our judgment is based
primarily on users’ ability to complete the given design task
in Part II in the allotted time frame and on the final models.
We particularity seek to assess the expressive power of our
techniques and understand the advantages and short-
comings of each. At the end of the study, we ask users to
rate each technique quantitatively in the questionnaire. For
the second part, we rely largely on users’ likes and dislikes
of the interaction techniques and their opinions for future
improvements. As described later, the latter part was more
observational and qualitative.

6. Observations, results and discussion

6.1. Observations

In the initial phases of the training session, all users
consistently expressed that the system was intuitive. Most
were amused by the touch-and-feel of the tablet, and the
basic sketching experience with the stylus. Most users
seemed to have little or no difficulty during Part I, mainly
because concepts were introduced in small pieces with
detailed demonstration and test sessions between the steps.
At the end of Part I, all users had favorable opinions about
the system and all seemed quite comfortable with the newly
acquired modeling techniques. Most commented the ability
to create and freely modify curves in 3D simply with their
strokes to be the most prominent feature. When asked to
draw comparisons to other modeling programs they are
familiar with, most pointed out the ability to design curves
(as opposed to straight, mechanical edges) to be the main
strength of the system.
However, issues began to surface at the beginning of Part

II when our assistance was severely reduced. Two
distinguishing patterns emerged common to all users.
First, we observed that most had considerable difficulty
in starting their design as they could not strategize a plan
for constructing the relatively complex model they were
faced with. Most notably, most saw the model as a whole,
without being able to identify a sequence of design steps
that would produce the final shape. We attribute this to the
fact that none of the users had much experience with
product design or styling, and for most, this was the first

http://www.logitech.com
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time they were asked to undertake such a challenge. To
assist them over this obstacle, we told them that they could
view the shape as one that starts from a basic outline and a
main surface (i.e., the top face as a single smooth item with
all the details removed), and develops hierarchically with
the addition of further surfaces. While this view seemed to
greatly facilitate their approach, we also acknowledge that
it introduces a bias to an ideally creative and personal
design process.

Second, we observed that users had difficulty navigating
the toolbar to set modes or to find a particular operation.
In most cases, voice recordings revealed that users were
clear about what they wanted to accomplish but simply
could not recall how to do it. It thus took a while for users
to get reacquainted with the interface. While we attribute
this to the unavoidable challenge associated with learning
any new software, we have also identified several issues that
persisted throughout the sessions. Most notably, the need
for mode switching between different operations proved to
be the most intrusive feature of our system. Our experience
is that the pen-based interface gives users a false (but
rightful) sense of freedom that makes them believe the
system is automatically aware of the operation they are
about to perform. That is, after completing a certain task
and moving onto another, users seemed unconcerned
about the fact that their next stroke will continue to be
interpreted in the current context even though they have
already switched modes in their minds. Hence, users
frequently had to take a few steps back or engage in a
similar inconvenience, which disrupted their flow. While
some users were able to rapidly adjust to this issue, we
would nevertheless observe an overwhelming tendency
toward a modeless interaction.

Besides mode switching, the inability to undo certain
operations also caused problems. The most notable of
these occurred during snapping when users accidentally
created ‘L’ joints when they intended to create ‘T’ joints. In
this case, the snap curve moved unexpectedly to one of the
ends of the base curve.3 Currently, the only way to recover
from this error is by modifying the curve back to its
previous configuration.

Aside from the above usability issues, most users found
our system to be easy to master and use. Many users
seemed to be receptive of the modeling operations offered
by our system and they all became sufficiently proficient
toward the end of Part II. Also we saw some users quickly
learn from the program’s behavior and develop their own
styles. For instance, after creating a curve, one user would
immediately use the fairing tool to beautify its curvature
profile. However, when he modified the curve in 3D, he
would observe that the curvature profile has been
completely changed and he would need to fair the curve
once again. After a couple of such incidents, he tacitly
3Note that inverse of this usually does not cause problems as the

creation of a ‘T’ joint instead of an ‘L’ joint near an apparent ‘L’ joint

produces only a minor discrepancy, which could be easily rectified.
changed his technique where he would defer curve fairing
until all curves have been completely configured and
snapped to one another.
6.2. Results

Fig. 14 shows the final models created and painted by the
users. All users spent approximately 30min on the task
(including a study of the design concept and our guidance
for initiating the design) except for one user who could only
spend 20min on the model.
Fig. 10 shows the users’ overall satisfaction ratings.

Fig. 11 shows responses pertaining to users’ opinions about
the user interface, ease of learning, system capabilities and
their assessments of the individual modeling techniques.
Fig. 12 presents results for perceived usefulness, that is,
users’ opinions about how useful they find our system.
Finally, Fig. 13 shows results for the perceived ease of use
(see also Fig. 14).
The following presents excerpts from users’ written

feedback at the end of the questionnaire:
What are the best attributes of SketchCAD?
�
 The ability to sketch your design in digital form.

�
 Simple controls.

�
 Visual feedback in real time, quick realization of

models.

�
 To be able to draw curve with stroke/strokes.

�
 To be able to fit surface just by selecting boundary.

�
 Easy to use.

�
 Easy to visualize 3D objects and design.

�
 Easy to modify curves in 3D.

�
 Sketching curves very intuitive.

�
 Selection mechanism very accurate.

�
 Intuitive interface.
Fig. 10. Questionnaire results for overall user satisfaction.
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Fig. 11. Questionnaire results for the system capabilities and modeling techniques.
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Fig. 12. Questionnaire results for perceived usefulness.

Fig. 13. Questionnaire results for perceived ease of use.
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�
 Gestures would be efficient if I got used to.
What are the worst/frustrating attributes of SketchCAD?
�
 Switching mode was not always smooth (I had to go
back and forth).

�
 Use of CNTRL key to distinguish between strokes and

gestures.
�
 To have to switch mode a lot with tabs.

�
 Lack of function to detail the model (e.g., trimming a

surface).

�
 Fitting surfaces are not available.

�
 Surface capabilities need to be improved.

�
 No undo!

�
 Awkward to switch back and forth between modes.

�
 No undo.

�
 Sometimes snapping L-joints changed curves unpredic-

tably.

�
 Menus can be cumbersome.

�
 Surface dependency for curve creation.

�
 Tabbing through menus.

�
 The simple controls [found in other systems] can

sometimes be lacking, at least in this generation.

6.3. Discussion

The results of our study indicate that users had generally
favorable opinions about the system but there is certainly
room for improvement. The need for fluid mode switching
or an automated way of doing this has surfaced as the main
issue with the usability of our system. While the inherent
complexity of our software, and the number of tasks it is
designed to perform, makes a trivial solution nearly
impossible, we must certainly address this issue in the
future. One idea would be to provide more user friendly
menus such as pie-menus. Additionally, incorporating
speech recognition to our system as a command interpreter
can greatly alleviate many current issues. However, these
solutions would still not address the fact that users prefer
completely modeless interaction. This issue is a well-known
problem in human–computer interaction [43], and solu-
tions are hard to generalize to complex systems such as
ours.
Similar to mode switching, ideally gesturing should be

more fluid without the need for modifier buttons. While it
is relatively easy to distinguish between different gestures
(once the system knows the incoming stroke is a gesture),
the key problem remains to be a reliable distinction
between a drawing stroke and a gesture when modifier
buttons are not utilized. Although mistaking a gesture for a
drawing stroke may merely cause an inconvenience,
mistaking a drawing stroke for a gesture can be detri-
mental. Our current solution has thus been to rely on a
modifier button (i.e., CNTRL key) during gesturing. We
nevertheless believe a careful design of a gesture set is a key
necessity for the success of pen-based applications.
From a modeling point of view, we observed that most

users were comfortable adopting the new techniques and
utilizing them effectively to complete their assignments.
Despite having no prior experience with the system, most
users quickly became adept at using the curve and surface
creation techniques with little or no difficulty. Given that
none of the participants had any prior experience with our
system, and that none of them are routinely engaged in
product design, we were pleased to see that many were able
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Fig. 14. Remote controller models created and painted by the users of our system. Each user spent approximately 30min to create the model. The user

who created the model at the mid-bottom, however, was able to spend only 20min in this task.
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to produce satisfactory models in the allotted time frame.
However, we also recognize that our system currently
provides only a limited number of techniques for curve and
surface design. In particular, a more comprehensive curve
design module should provide more means for geometry
creation such as straight lines, arcs, bends, etc., and
provide means to control continuity across different
curves. Likewise, our surface modeling tools are certainly
limited. However, considering the intended use of our
system, we must incorporate new techniques judicially as
our goal is to provide means for rapid concept develop-
ment rather than for designing highly constrained, precise
models.

While these studies have been useful in many respects,
we also believe users must have longer and uncontrolled
exposures to our system to make more accurate assess-
ments. In particular, we suspect that some of the issues that
came up during our studies, such as difficulty in navigation,
recovering from mistakes, etc. can be largely mitigated
through a continual use of our system. On the other hand,
we would also expect new problems to arise that went
unnoticed during the user studies.
Finally, we find the results of this study to be highly
promising, encouraging us to conduct field studies with
professional designers in the near future. We expect the
utility of our system can be more accurately evaluated in
the hands of experienced CAD designers who use our
system for purely creative tasks. Such studies would result
in a much more reliable and accurate comparison between
existing CAD software and our system.

6.4. Implications for future systems

We believe the results of this study may also leverage the
development of future sketch-based 3D modeling systems.
While developing appropriate modeling techniques suitable
for sketch-based systems is already challenging, we have
found that integrating these techniques into a usable
interface is even more challenging as the number of tasks
and the complexity of the software increase. Hence, we
believe a much more methodological and concerted effort
is needed for designing appropriate interaction paradigms.
Otherwise, we run the risk of developing systems that are
only useful in the hands of its creators.



ARTICLE IN PRESS
L.B. Kara et al. / Computers & Graphics 31 (2007) 580–597596
We suspect that in many systems similar to ours, mode
switching and integrated gesture recognition will quickly
surface as two key issues and need to be addressed early on.
Likewise, designing a suitable set of commands and
making them easily accessible to the user will likely be
another challenge. Indeed, while all sketch-based modeling
systems seek to attain the simplest interface with the least
number of menu options, we believe this may be hard to
achieve for complex systems such as ours and compromises
may need to be made. For this, solutions can be devised
that focus exclusively on designing interactions and
operations for which sketching is clearly superior, such as
shape creation and modification; while exploiting the vast
positives of existing software for peripheral tasks, such as
viewing and rendering.

7. Conclusions and future work

We presented the utility and a user evaluation of a
sketch-based 3D modeling tool we have been developing
for the styling design of industrial products. The results of
our user study indicate that our modeling techniques are
effective in providing natural and simple means to create
3D geometry. Most users found the ability to directly
manipulate 3D curves using pen stokes to be a particularly
powerful feature of our system. The user studies also
revealed several usability issues associated with our system.
Particularly, contrary to our expectations, the need for user
involvement in mode switching between different tasks has
proven to be the central source of inconvenience for most
users. Additionally, the lack of certain features, such as the
ability to undo certain operations or to recover from
certain mistakes, have surfaced as critical issues in our
current system.

Our future goals include enhancing and expanding our
current modeling techniques to enable a richer set of design
tools for the user. Additionally, we plan to invest more
effort into some of the usability issues that we have largely
overlooked. The user studies have been useful in identify-
ing such issues and providing insight into their solutions.
Finally, we would like to test our system with professional
designers to obtain a better assessment of its practical
utility.
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