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Abstract

We describe a trainable, multi-stroke symbol recognizer for pen-based user interfaces. The approach is insensitive to orientation, non-
uniform scaling, and drawing order. Symbols are represented internally as attributed relational graphs describing both the geometry
and topology of the symbols. Symbol definitions are statistical models, which makes the approach robust to variations common in
hand-drawn shapes. Symbol recognition requires finding the definition symbol whose attributed relational graph best matches that of the
unknown symbol. Much of the power of the approach derives from the particular set of attributes used, and our metrics for measuring
similarity between graphs. One challenge addressed in the current work is how to perform the graph matching efficiently. We present five
approximate matching techniques: stochastic matching, which is based on stochastic search; error-driven matching, which uses local
matching errors to drive the solution to an optimal match; greedy matching, which uses greedy search; hybrid matching, which uses
exhaustive search for small problems and stochastic matching for larger ones; and sort matching, which relies on geometric information
to accelerate the matching. Finally, we present the results of a user study, and discuss the tradeoffs between the various matching

techniques.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Researchers have developed a variety of approaches for
recognizing hand-drawn shapes and symbols. However,
many of the current approaches have important limita-
tions. For example, some methods are limited to single-
stroke shapes drawn in preferred orientations [1]. Others
consider only aggregate properties of a shape and can
confuse dissimilar shapes that have similar aggregate
properties [1,2]. Other approaches require shapes to be
drawn with a consistent pen stroke order [3].

Our work is aimed at overcoming some of these
limitations. Our goal is to create an efficient, trainable,
multi-stroke symbol recognizer that is insensitive to
orientation, scaling, and drawing order. This is achieved
via a graphical representation. Specifically, a symbol is
represented with an attributed relational graph (ARG)
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describing its geometry and topology. The nodes in the
graph represent the geometric primitives, and the edges
represent the geometric relationships between them.
Representing a symbol in terms of its topology allows us
to achieve invariance to rotation, and uniform and non-
uniform scaling, including cases in which different parts of
the same symbol are scaled differently. Because of the later
capability, our approach is particularly tolerant of large
variations in the shape of a hand-drawn symbol. This is an
important advantage over approaches such as those
presented in [1.,4,5].

Symbol definitions are statistical models learned from
training examples of a symbol. Using statistical descrip-
tions makes the approach robust to variations common in
hand-drawn shapes. Symbol recognition involves finding
the definition symbol whose ARG best matches that of the
unknown symbol. Much of the power of our approach
derives from the particular set of attributes encoded in the
ARGs, and our metrics for measuring similarity between
two ARGs.
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With our approach, symbol recognition is a graph
matching or “graph isomorphism detection” [6] problem.
The general problem of subgraph isomorphism detection
[7,8] is known to be NP-complete [9]. Here, the problem is
made more difficult because of noise that comes from
variations in how the symbols are drawn as well as from
processing errors. For example, it is not uncommon for a
symbol to have extra or missing geometric primitives, and
thus extra or missing nodes in its ARG.

There has been considerable research in developing
efficient graph-matching techniques for a variety of
applications [10]. Here we present and evaluate five
techniques specifically designed for recognizing hand-
drawn shapes. These techniques are designed to be efficient
enough for interactive performance, and to be tolerant of
the noise inherent in hand-drawn symbols. Furthermore,
some of these techniques are able to take advantage of
consistent drawing order to achieve higher efficiency.

Our recognizer assumes that the individual symbols in a
sketch have been located prior to recognition. In other
work, we have developed sketch parsers for locating
symbols [11,12].

This work entails several important technical contribu-
tions including: a graph-based representation suitable for
describing hand-drawn symbols, a method for measuring
similarity between symbols, a modified probability density
function (MPDF) for making statistical comparisons that
are insensitive to the minor variations inherent in hand-
drawn symbols, a training technique that is insensitive to
drawing order, and a set of efficient graph-matching
techniques for symbol classification.

The next section places this work in context by
describing related work. This is followed by the details of
our approach. Finally, results of a wuser study and
conclusions are presented.

2. Related work

Symbol recognition is an active area of research. An
extensive overview of the literature can be found in [13].
Here, we present a representative sample of the literature.

Lee [14] presents a graph-based recognizer in which the
graph represents the precise geometry of the object. The
approach is suitable for precisely drawn symbols with
uniform scaling. For example, the approach has been used
to recognize machine drawn symbols, symbols drawn using
templates, and precise hand-drawn symbols. Lee’s ap-
proach requires manual selection of key vertices during
training.

Mahoney and Fromherz [15] present a technique for
matching models of curvilinear configurations to hand-
drawn sketches. The technique is intended for matching
articulated figures rather than sketches with a more fixed
shape. The approach has been implemented only for
human stick figures and requires hand-coded shape
definitions.

Rocha [16] uses graph matching for optical character
recognition (OCR). The matching technique assumes that
the characters have a fixed orientation and no disconnected
parts. The approach relies on hand-coded definitions and
has not been applied to hand-drawn shapes.

Llados et al. [17] present an error-tolerant subgraph-
matching technique for matching region adjacency graphs.
The technique is intended for recognizing symbols com-
posed of adjacent polygonal regions, rather than general
arrangements of low-level primitives.

In previous work, we developed a graph-based approach
that considered both topology and geometry. A definition
was an average graph, with each attribute represented by a
single value. In our current work, attributes are described
statistically, making our approach significantly more
robust to pen stroke segmentation errors and drawing
variations. Likewise, our previous approach was incapable
of representing symbols with disconnected parts, while the
new approach can. Furthermore, to achieve interactive
performance, our previous approach required the user
to maintain a consistent drawing order. The system did
have a mode that allowed for variable drawing order,
but it was considerably less efficient than our current
approach. Similarly, our previous approach required the
training examples to have a consistent drawing order
and pen-stroke direction, and was intolerant of segmen-
tation errors. Our current approach overcomes these
limitations.

In addition to symbol recognition, graph-based techni-
ques have been used for a variety of other pattern
recognition problems. Conte et al. [10] provides an
extensive overview of graph-matching techniques and their
applications. According to the taxonomy presented there,
our stochastic, error-driven, and greedy matching techni-
ques can be considered approximate matching techniques
based on continuous optimization.

Many existing approaches to symbol recognition rely on
feature-based representations. Fonseca et al. [2] use
features such as the smallest convex hull that can be
circumscribed around the shape, the largest triangle that
can be inscribed in the hull, and the largest quadrilateral
that can be inscribed. Because their classification relies on
aggregate features of the pen strokes, it might be difficult to
differentiate between similar shapes. Rubine [1] describes a
trainable gesture recognizer designed for gesture-based
interfaces. The recognizer is applicable only to single-
stroke symbols and is sensitive to the drawing direction and
orientation. Pereira et al. [18] have extended Rubine’s
method to multi-stroke symbols. However, such symbols
must be drawn with a consistent set of strokes. Addition-
ally, they have developed a graph-based symbol recognizer,
but it is not trainable. Matsakis [19] describes a system for
converting handwritten mathematical expressions into a
machine-interpretable typesetting command language.
Each symbol requires a multitude of training examples,
where each example must be preprocessed to eliminate
variations in drawing directions and stroke orderings.
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However, the preprocessing makes their approach sensitive
to rotations. Gennari et al. [12] describe a trainable
recognizer that uses nine geometric features to construct
concise probabilistic models of input symbols. The
approach is suitable for multi-stroke symbols with
arbitrary drawing orders and orientations. However, the
features are an abstraction of the topology, and it is
possible for shapes with different topologies to have the
same features. Hse and Newton [4] developed a particularly
accurate recognizer based on Zernike moments, which
provide a rotation invariant representation. However, a
preprocessing step in which the image size is normalized
makes the approach sensitive to orientation. The prepro-
cessing results in insensitivity to some forms of non-
uniform scaling, but not cases in which different parts of a
symbol are scaled differently (e.g., the circle in a pivot is
drawn large, while the triangle is drawn small).

In addition to graph-based and feature-based methods,
researchers have also explored a variety of other repre-
sentations and approaches. For example, Sezgin and Davis
[3] present a technique based on hidden Markov models.
The approach requires shapes to be drawn with a
consistent pen stroke ordering. Hammond and Davis [20]
developed a recognizer that relies on hand-coded shape
descriptions. Their representation is similar to ours in that
both contain topological information. However, their
descriptions are hand-coded while ours are learned from
training examples. In later work [21], they extended their
approach to use hand-drawn and machine-generated
examples to assist the developer in interactively creating
shape descriptions. Shilman et al. [22] present a sketch
recognition approach that requires a manually encoded
visual grammar. A large corpus of training examples is
used to learn the statistical distributions of the geometric
parameters used in the grammar, resulting in a statistical
model. Composite objects are defined hierarchically in
terms of lower-level, single-stroke symbols, which are
recognized using Rubine’s method [1]. Gross’ [23] app-
roach relies on a 3 x 3 grid inscribed in the symbol’s
bounding box. The sequence of grid cells visited by the pen
distinguishes each symbol. Because of the coarse resolution
of a 3 x 3 grid, this approach may not be able to handle
symbols with small features. Kara and Stahovich [5]
developed a recognizer based on a bitmap representation.
One advantage of the approach is that it is tolerant of
over-stroking and variations in line styles. However, the
approach is sensitive to non-uniform scaling.

Parametric methods such as polygon, B-spline, and
Bezier curve fitting techniques have also been considered in
shape representation and classification [24,25]. A benefit of
these approaches is that there is no need to segment the pen
stroke into geometric primitives such as lines and arcs.
Additionally, since only a few parameters are needed for
shape description, these methods are computationally
efficient. Similar to Rubine’s method, however, these
methods are primarily applicable to single-stroke symbols
or gestural commands.

3. Representation

We represent a symbol with an attributed relational
graph (ARG) describing its geometry and topology. The
nodes in the graph represent the geometric primitives, and
the edges represent the geometric relationships between
them.

Each node is characterized by the type of the primitive—
line or arc—and its relative length. The primitives are
obtained from the raw pen strokes via a speed-based pen
stroke segmenter [26]. The relative length of a primitive is
defined as the ratio of its length (in pixels) to the total
length of the primitives comprising the symbol. For
example, each of the four line segments in a perfect square
would have a relative length of 0.25. Defining length on a
relative basis results in a scale-independent recognizer.

The edges in a graph represent the geometric relation-
ships between the primitives. Each pair of primitives is
characterized by the number of intersections between them,
the relative locations of the intersections, and for lines, the
angle of intersection. When extracting intersections from a
sketch, a tolerance of 10% of the length of the primitives is
used to allow for cases in which an intersection was
intended but one of the primitives was a little too short.
Intersection locations are measured relative to the lengths
of the two primitives. For example, if the beginning of one
line segment intersects the middle of another, the location
is described by the coordinates (0%, 50%). The intersec-
tion angle is defined as the acute angle between two line
segments. It is defined for both intersecting and non-
intersecting line segments. Defining an intersection angle
for non-intersecting segments allows the program to
represent the topology of disconnected symbols, such as
the dashpot in Fig. 12. Intersection angle is undefined for
an intersection between an arc and another primitive.

Fig. 1 shows an example of an ARG for an ideal square.
Each side of the square has a relative length of 0.25 and
intersects two other sides with an intersection angle of 90°.
Because of the drawing directions used in this example, all
intersections are located at the end of one line segment and
the beginning of another.

A definition for a symbol is created by constructing an
“average” ARG from a set of training examples. (Additional
details of the training process are described in Section 6.)
The number of nodes in a definition is taken to be the most
frequently occurring number of nodes in the training
examples. Each node in the definition is assigned the
primitive type that occurred most frequently for that node
in the training data. The number of intersections assigned
to a pair of primitives is determined in an analogous
fashion. A pair of primitives is assigned two intersections if
at least 70% of the examples had two. If less than 70% had
two intersections, but there was at least one intersection
70% of the time, the pair is assigned one. Otherwise, the
pair is assigned zero intersections. The remaining proper-
ties of the ARG—relative length, intersection angle, and
intersection location—are continuous-valued properties.
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Fig. 1. Top: an ideal square drawn with a single, counterclockwise pen
stroke. Arrows show the direction of drawing. Bottom: the corresponding
ARG. I; number of intersections; A, intersection angle; L, intersection
location; R, relative length.

These are characterized by the means and standard
deviations of the values from the training examples.

4. Measuring similarity

During recognition, it is necessary to compare the ARG
of the unknown symbol to that of each definition symbol to
find the best match, and hence the classification of the
unknown. The match between an unknown and a
definition is quantified in terms of a dissimilarity score,
which is computed using an ensemble of error metrics that
consider both the intrinsic properties of the geometric
primitives and the relationships between them. The former
are encoded in the nodes of the ARG, the latter in the
edges.

Table 1 lists our six error metrics and the weights applied
to them when computing the dissimilarity score. The
weights, which are based on empirical studies, reflect the
relative importance of the various error metrics for
discriminating between symbols. For the purposes of
recognition, the dissimilarity score is converted to a
similarity score in the obvious way:

6

similarity score = 1 — Z wiE;, (1)
i=1

where the E; are the error metrics and the w; are the

weights listed in Table 1.

The error metrics for relative length, intersection angle,
and intersection location involve comparing properties of
the unknown symbol to distributions of those properties
encoded in a definition. For example, it is necessary to

Table 1
Error metrics and corresponding weights

Error metrics (E;) Weight (w;) (%)

E,: primitive count error 20
E,: primitive type error 20
Ej: relative length error 20
E,4: number of intersections error 15
Es: intersection angle error 15
E¢: intersection location error 10
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Fig. 2. Gaussian probability density function and modified probability
density function for y =0 and ¢ = 1.

compare the relative length of each primitive in the
unknown to the mean and standard deviation of the relative
length of the corresponding primitive in the definition.
Ordinarily, this is done with a Gaussian probability density
function. As an alternative, we have developed a modified
probability density function (MPDF) that is better suited
to our recognition task:

4
P(x) = exp [— —_— (x—,u)] . (2)

50.0 ot

Here, 1 and ¢ are the mean and standard deviation of the
features from the training examples. This function was
designed empirically such that its top is flatter than the
Gaussian probability density function for the same p and o.
This makes it easier to detect matches that are in the
“vicinity”” of the definition. Additionally, we have found
that the Gaussian distribution dies off too quickly towards
its tails, which decreases its usefulness for recognition. For
comparison, Fig. 2 shows both the Gaussian probability
density function and our MPDF for =0 and ¢ = 1.
The six error metrics used for computing the similarity
score are described in the following sections. Here we use
the term ‘“‘unknown” to refer to the symbol to be
recognized, or equivalently, the ARG of that symbol.
Likewise, the term ‘“‘definition” refers to the ARG of a
definition symbol. Note also that each metric is normalized
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to the range [0,1] so that the weights in Table 1 have
predictable influences.

4.1. Primitive count error

The primitive count error is the difference between the
number of nodes in the unknown and definition ARGs,
normalized by the minimum number of nodes:

INu — Np|
Nmin ’

Here, Ny and Np are the numbers of nodes in the
unknown and definition ARGs, respectively, and N,,;, =
min(Ny, Np). We normalize by N, to quantify the
significance of the mismatch in the primitive count. The
fewer primitives there are, the more significant a given
mismatch is. The error saturates at one so that all errors
have the same range of [0, 1].

E| = min(l.O, 3)

4.2. Primitive type error

The primitive type error is the number of node pairs with
mismatched types, normalized by the minimum number
of nodes:

SN[l — 8(Type(U,), Type(Dy)]
Nmin '

Here, U; is a node from the unknown, D; is the
corresponding node from the definition, Type(X) is a
function that returns the primitive type (arc or line) of node
X, and d(p, g) is one when p = ¢, and zero otherwise.

E, =

4)

4.3. Relative length error

Each primitive from the unknown should have a relative
length similar to that of the corresponding primitive from
the definition. If not, an error is assigned. Here, similarity
is measured using the MPDF defined in Eq. (2). The error
is computed as

N min
y = DL PR, -
min
where R(U;) is the relative length encoded in node U, of the
unknown ARG, and P(x) is evaluated using the mean and
standard deviation from the corresponding node in the
definition. Note that whereas P(x) is the probability of
match, 1 — P(x) is the probability of mismatch.

4.4. Number of intersections error

A pair of primitives in the unknown should have the
same number of intersections as the corresponding pair in
the definition. If not, an error is assigned. The total error is
computed as

. St N | I(U,, Uy) — 1(Dy, Dy)|
L=

min(My, Mp) ’

(6)

where I(X, Y) is the number of intersections between the
primitives in nodes X and Y, and My and Mp are the
numbers of edges in the unknown and definition ARGs,
respectively. This error is normalized by the number of
potentially intersecting pairs of primitives. However,
because a pair of primitives can intersect as many as
two times, £} has a range of [0, 2]. So that all error metrics
have the same range of [0, 1], the value of E} is “squashed”
with

1
1T+ expl6(l — X))

This squash function, which is shown in Fig. 3, was chosen
such that small differences are attenuated while larger ones
are preserved. During our experiments, we found that this
choice provides better performance compared to a linear
squashing function. As a result, the “number of inter-
sections error” is defined as

E4 = S(E)). ()

S(x) (7

4.5. Intersection angle error

The intersection angle of a pair of lines in the unknown
should be similar to that of the corresponding pair of lines
in the definition. (Intersection angle is defined only for
pairs of lines.) If not, an error is assigned. Here, similarity
is again measured using the MPDF defined in Eq. (2). The
error is computed as the sum of the intersection angle
errors normalized by the number of line pairs the unknown
and definition have in common:

Nmin -1 Nmin
Es = Zi:l Zj:iJrl[l - P(Aij)] (9)

NI~ Noin 7 - .
ST > Lines(Uy, Uj, Dy, Dy)

Here, A4;; is the angle at which the primitive from node 7 of
the unknown intersects the primitive from node j of the
unknown. P(A4;) is evaluated using the mean and standard

0.9 e
0.8 /
0.7 /
0.6 /
0.3 /
0.2 /
/

0.1
//

0 0.5 1 1.5 2
X

S(x)

Fig. 3. The squash function from Eq. (7).
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deviation from the corresponding pair of primitives
from the definition. Note that if the two primitives are
not lines, 4; is undefined and P(4;) is taken to be one.
Lines(U;, U;, D;, D;) is one when all of the arguments are
nodes representing lines, and zero otherwise.

4.6. Intersection location error

The locations of the intersections between a pair of
primitives from the unknown should be similar to those of
the corresponding pair of primitives from the definition. If
not, an error is assigned. Here, similarity is again measured
using the MPDF defined in Eq. (2). Because intersection
location is defined by two coordinates, the MPDF is
applied twice for each intersection. The total error is
computed as
g, = it T = P+ [ = PUD

S 2 1D Dy)

(10)

where (Lé‘,L;‘) is the coordinates of the kth intersection
between the primitives from nodes i and j of the unknown.
I(D;,D;) is the number of intersections between the
primitives from nodes i and j of the definition. In cases
where a pair of primitives intersect in the unknown but not
in the definition, or vice versa, both P(Lf) and P(L;( ) are set
to zero. This error is normalized by twice the number of
intersections, as two coordinates can contribute error to
each intersection.

5. Graph matching

The previous section described how to compute the
similarity between two graphs. This assumed that each
node in the unknown ARG was assigned to a specific node
in the definition ARG. This section describes how these
assignments are obtained. This is a graph matching, or
graph isomorphism detection problem. If the user always
draws each symbol with a consistent number of primitives
and a consistent drawing order, the graph matching
problem is trivial. In this case, drawing order would
directly provide the correct node-pair assignments. In
practice, however, users do not always maintain a
consistent drawing order. Furthermore, the problem is
made more difficult because of noise. Noise comes from
variations in how the symbols are drawn as well as from
processing errors. For example, it is not uncommon
for there to be extra or missing nodes in the unknown
(i.e., extra or missing geometric primitives). Likewise, a
primitive that was intended to be a line can be misinter-
preted, either through ambiguity or processing errors, as an
arc, or vice versa.

We have developed five efficient, approximate matching
techniques to find the best match between two ARGs.
These are: stochastic matching, error-driven matching,

greedy matching, hybrid matching, and sort matching. The
first four methods are based on search. The fifth method
avoids search by assuming symbols are drawn with a
consistent orientation.

The search-based methods make initial node-pair assign-
ments based on drawing order. Assignments are then
swapped until the best match is obtained. The quality of
the match at each iteration is determined using the
similarity score defined in the previous section (Eq. (1)).
Our four search-based approaches differ in the way they
select the assignments to swap at each iteration.

If the two graphs being matched do not have the same
number of nodes, the smaller one is ““padded” with empty
nodes. This ensures that every node in one graph has a
match with a unique node in the other, and hence that
every node is considered by the swapping process. When
evaluating the error metrics, a pairing with an empty node
produces the maximum possible local error. For example,
the addition of empty nodes does not reduce the primitive
count error, Ej.

Fig. 4 illustrates the typical search process. For ease of
explanation, the figure shows hypothetical symbols rather
than ARGs. Finding the correct node-pair assignments is
equivalent to finding the correct assignment of the
primitives of the unknown to the primitives of the
definition. Here, the primitives of the definition symbol
are numbered according to a typical drawing order.
Likewise, the primitives of the unknown are labeled with
letters indicating the order in which they were actually
drawn. Based on drawing order, primitive a of the
unknown is initially assigned to primitive 1 of the
definition, b is assigned to 2, and so on. It is clear that
assignments b-2 and c¢-3 are correct, while a-1 and d-4 are
not. Swapping the latter to produce the assignments d-1
and a-4 is what is needed. The success of this swap can be
measured by the resulting increase in the similarity score.

The following sections describe our five matching
techniques in detail.

Unknown symbol Definition symbol

Unknown: [ a [ b [ ¢ |d|
fdtd

Definition:

Fig. 4. Graph matching: assignments b-2 and c¢-3 are correct, while a-1
and d-4 are not.



560 W. Lee et al. | Computers & Graphics 31 (2007) 554-567

5.1. Stochastic matching

This approach is based on stochastic search. To begin,
the initial node-pair assignments are saved as the current
best. Then, three node-pair assignments, which we will call
A, B, and C, are randomly selected. 4 and B are swapped
producing assignments A’ and B'. B is then swapped with
C. If the new similarity score is better than the current best
score, the new assignments are saved as the new current
best. This process is repeated a fixed number of times, and
the current best node-pair assignments are returned as the
best match. In practice, we use a limit of between 100 and
300 iterations. As the number of iterations is fixed (but
adjustable), the only cost that varies with problem size is
the cost of evaluating the similarity score. This cost is
O(n?), where n is the number of nodes. Pseudo code for this
matcher is shown in Fig. 5.

5.2. Error-driven matching

With this approach, a local matching error determines
the probability that a node-pair assignment will be selected
to be swapped. For example, if a node from the unknown
was a line, and the corresponding node from the definition
was an arc, there would be a relatively high local matching
error, and correspondingly high probability that the node-
pair would be selected for swapping. The local matching
error of a node-pair is defined as the portion of the
dissimilarity score related to that node-pair. This includes
all intersection angle, intersection number, and intersection
location errors involving the primitives from that node-
pair. Likewise, the local matching error also includes
primitive type and relative length errors.

At each iteration, the local matching error of each node-
pair is computed and selection probabilities are assigned.
Based on these probabilities, two node-pairs are selected
and swapped. If the similarity score improves, the new
assignments are kept. Otherwise, the swap is rejected. This
continues until there is a certain number (/) of consecutive
iterations with no improvement, or until the total number
of iterations reaches a limit (/.4x). In practice, we use a

Stochastic_Matcher(unknown, def)

current_assignment = assign_using_drawing_order(unknown, def)
best_assignment = current_assignment

best_score = similarity_score(best_assignment)

for i = 1 to max_iterations
(A, B, C) = randomly_pick_node_pairs(current_assignment)
swap(A, B)
swap(B, C)

new_score = similarity_score(current_assignment)
if (new_score > best_score)
best_score = new_score
best_assignment = current_assignment
endif
endfor
return (best_assignment, best_score)

Fig. 5. Pseudo code for stochastic matcher.

Error_Driven_Matcher(unknown, def)
current_assignment = assign_using_drawing_order(unknown, def)
best_assignment = current_assignment
best_score = similarity_score(current_assignment)
iterations = 0
no_improvement = 0
while (true)
iterations = iterations + 1
compute_local_matching_error(current_assignment)
(A, B) = pick_node_pairs_using_local_error(current_assignment)
swap(A, B)
new_score = similarity_score(current_assignment)
if (new_score > best_score)
best_score = new_score
best_assignment = current_assignment
no_improvement = 0
else
swap(A, B) // undo swap
no_improvement = no_improvement + 1

endif
if iterations == iteration_limit
or no_improvement == no_improvement_limit
return (best_assignment, best_score)
endif
endwhile

Fig. 6. Pseudo code for error-driven matcher.

value of 300 for I,;4x, and a value of between 50 and 200
for Iy. The computational complexity of this approach is
similar to that of the stochastic matching approach. Pseudo
code for this matcher is shown in Fig. 6.

5.3. Greedy matching

This approach uses greedy search to find good node-pair
assignments. The program first considers the best assign-
ment for the first node of the unknown. If there are n
nodes, the program considers all » — 1 cases in which the
first node-pair is swapped with another. Whichever assign-
ment produces the best similarity score is selected for the
first node, and this node-pair is removed from further
consideration. This is repeated for the second node-pair
and so on. In all, O(n?) sets of node-pair assignments are
considered. The entire search process can be repeated for
increased accuracy. We have found that one repetition
produces a significant improvement in accuracy, but
additional repetitions produce minimal improvement.
Pseudo code for this matcher is shown in Fig. 7.

5.4. Hybrid matching

For symbols with a small number of primitives, it is
practical to use exhaustive search to find the optimal node-
pair assignments. Our hybrid approach uses exhaustive
search when there are six node-pairs or less. Otherwise it
uses stochastic matching with a limit of 720 iterations.
Thus, regardless of the size of the problem, a maximum
of 720 search states are explored. Pseudo code for this
matcher is shown in Fig. 8.



W. Lee et al. | Computers & Graphics 31 (2007) 554-567 561

Greedy_Matcher(unknown, def, number_of_rounds)
current_assignment = assign_using_drawing_order(unknown, def)
best_score = similarity_score(current_assignment)
for repeat = 1 to number_of_rounds

for i = 0 to number_of_node_pairs - 2
best_swap =i
for j = i+1 to number_of_node_pairs - 1
swap(node_pair[i], node_pair[j])
new_score = similarity_score(current_assignment)
if (new_score > best_score)
best_score = new_score
best_swap = j

endif
swap(node_pair[i], node_pair[j]) // undo swap
endfor
swap(node_pair[i], node_pair[best_swap])
endfor

endfor
return (current_assignment, best_score)

Fig. 7. Pseudo code for greedy matcher.

Hybrid_Matcher(unknown, def)
if(number_of_node_pairs <= 6)
return(Exhaustive_Matcher(unknown, def))
else
return(Stochastic_Matcher(unknown, def))
endif

Fig. 8. Pseudo code for hybrid matcher.

Sort_Matcher(unknown, def)
sort_primitives_in_x_and_y(unknown)

current_assignment = assign_using_sorted_order(unknown, def)
best_score = similarity_score(current_assignment)

return (current_assignment, best_score)

Fig. 9. Pseudo code for sort matcher.

5.5. Sort matching

This approach does not rely on search. Instead, the
nodes are sorted based on the locations of their primitives.
Each line segment is characterized by its minimum x and
y-coordinates. Each arc is characterized by the coordinates
of its center. The primitives are then sorted in ascending
order of their x-values. Ties are broken using the y-values
sorted in ascending order. The sorted order of the nodes
determines the node-pair assignments. The definitions for
the sort matcher are learned with a special training
procedure (see Section 6) and have pre-sorted nodes.
Pseudo code for this matcher is shown in Fig. 9.

This approach is useful only when the drawing orienta-
tion is fixed. However, even with a fixed orientation,
variations in drawing can result in different sorted orders.
For example, if the top edge of a horizontal square were
drawn too long, it could be the leftmost primitive rather
than the left edge of the square. Nevertheless, as Section 7
describes, the approach often works reasonably well in

practice. Additionally, because this approach is particularly
efficient, it is suitable for devices with little computational
power, such as PDAs.

6. Training

The recognizer is trained by providing a set of training
examples for each symbol class. As described in Section 3,
the program constructs an “average” ARG for each class.
This entails another graph matching problem. To learn a
definition, the program must match the ARGs of the
various training examples to one another. This task is
different from the previous matching problem because a
similarity score cannot be computed until after a definition
has been learned. For example, during training, the
primitive type error cannot yet be determined because the
expected primitive type of each node is yet to be
determined.

We have explored two solutions to this problem. The
first is to require the training examples to be drawn with a
consistent drawing order. In this case, the matching
problem is avoided as the drawing order uniquely identifies
the nodes in the ARG. The second approach, which we call
“proximity matching,” requires the user to draw symbols
with a consistent orientation. In this case, geometric
information is used for the matching.

With the proximity matching approach, the training
examples are first scaled to have unit bounding boxes and
are then translated to the origin. One of the symbols with
the most frequently occurring number of primitives is
selected as a reference symbol. For example, if five of the
examples have six primitives, and one example has seven,
an example with six primitives will be selected as the
reference. Each of the remaining symbols is then matched
to the reference symbol.

To match a symbol, U, to the reference symbol, R, the
scaled symbols are first overlayed on top of each other as
shown in Fig. 10. Then the directed distance from each
primitive in U to each primitive in R is computed.

//\I / / f
Fig. 10. Proximity matching of two pivot symbols. The reference symbol

is shown with bold primitives. The arrows indicate the assignments of
primitives.

-
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To facilitate this, the primitives are resampled to have a
uniform point spacing of 50 pixels. (We have found that
resampling at 50 pixel intervals produces good accuracy
with reasonable cost.) The distance from primitive 4 in
symbol U to primitive B in symbol R is computed by
finding, for each point a in A4, the closest point b in B:

1 .
d(4, B) =N—a;rgelg la — b, (11)

where N, is the number of points in 4. Multiple points in A4
may be closest to the same point in B, and there may be
some points in B that are not the closest point of any point
in A. Fig. 11 show an example of the directed distance from
a line to an arc.

The best match between U and R is defined as an
assignment of each primitive in U to a unique primitive in
R such that the sum of the directed distances is minimized.
This can be expressed mathematically as

BestMatch = argmin Y~ d(A4,m(A)), (12)
meM e Seqs(U)

where M is the set of all one-to-one mappings of the
primitives of U to the primitives of R. If R has fewer
primitives than U, dummy primitives are added to R so
that the number of primitives is the same for both.

To find the best match defined by Eq. (12), we use depth
first search with branch and bound. During the search, a
partial match is pruned if the sum of the directed distances
thus far exceeds that of the current best solution. Efficiency
can be further improved through the use of a heuristic
under-estimate. The heuristic distance for a given un-
matched primitive from U is the minimum directed
distance from that primitive to a primitive in R. If the
sum of the directed distances for the matched primitives,
plus the sum of the heuristic distances for the unmatched
primitives exceeds the current best match, the partial match
can be pruned. Because training is done off-line, efficiency
has not been an issue and we have not implemented this
heuristic approach.

Once all of the training symbols have been matched to
the reference training symbol, the average ARG is
constructed, thus forming the definition of the symbol.

a

n-1

Fig. 11. Computing the directed distance from primitive 4 to primitive B.
Each point on 4 is mapped to the closest point on B.
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throttle triangle turbine voltage

Fig. 12. Symbols from the user study drawn by one of the participants.

To be consistent with the assumptions underlying the
sort matcher, definitions for it are learned using a special
procedure. Rather than using geometric proximity to
match the training examples to one another, they are
matched based on the sorted locations of their primitives.
As before, lines are characterized by their minimum x and
y-coordinates, and arcs are characterized by their centers.
The primitives are sorted in ascending order of their x-
values, and ties are broken using the y-values sorted in
ascending order.

7. Results

We conducted a user study to evaluate the performance
of our five matching techniques. The study involved nine
participants, consisting primarily of engineering and
computer science graduate students. Two had minimal
prior experience with pen-based systems and the rest had
essentially none. Because the participants were novices, this
is a worst-case evaluation of our system. We expect that
even better results would have been obtained if the
participants had prior experience using our system.

Each participant was asked to provide 15 sets of the 22
symbols' shown in Fig. 12. Participants were instructed to
draw naturally but reasonably carefully, and to not
intentionally try to trick or break the system. They were
also instructed to avoid over-stroking, and to instead
redraw a symbol if necessary. (This was rarely done.) Data
were collected using a tablet computer, which displayed
only the raw ink rather than the processed (segmented) ink.

'Data were collected for another symbol class, but it was not used. An
anomaly with some examples of this symbol from one particular
participant caused slow training. Ordinarily, this would not be a problem,
but the experiments reported below required repeating the training process
1800 times.
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Top-one Accuracy vs. Number of Training Examples
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Top-three Accuracy vs. Number of Training Examples
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Fig. 13. (Left) Top-one and (Right) top-three accuracy vs. the number of training examples. Stochastic: max-iterations = 300. Greedyl = one round of
greedy search. Greedy2 = two rounds. Error-driven: no-improvement-limit = 150 iterations, max-iterations = 300.

Recognition accuracy was computed after the data were
collected so that the participants would receive no feedback
that could bias their performance.

7.1. Experiment one: learning rate

As one measure of performance, we evaluated recogni-
tion accuracy as a function of the number of training
examples, n,. We computed both the “top-one” accuracy,
the rate at which the class ranked highest by the recognizer
is indeed the correct class, and the ‘“‘top-three” accuracy,
the rate at which the correct class is one of the three highest
ranked classes. The results are shown in Fig. 13. The
average recognition times for this experiment are listed in
Table 2. All tests were conducted on a Pentium 4 machine
with a 3.2 GHz processor and 1 GB of memory. Note that
recognition time is independent of the number of training
examples.

For this experiment, the maximum number of iterations
for the stochastic matcher was set to 300. Likewise, the
error-driven matcher was limited to 150 consecutive
iterations with no improvement (/o = 150) or a total of
300 iterations ({74x = 300).

The recognizer was evaluated separately for each user
using a cross-validation approach. Each test consisted of
randomly selecting n, of the user’s 15 symbol sets for
training, and using the remaining 15 — n, sets for testing.

Table 2

Average time to classify a symbol in ms

Hybrid Stochastic Greedy?2 Greedyl Error-driven Sort
41.8 359 4.0 2.1 349 0.24

Stochastic: max-iterations = 300. Greedyl = one round of greedy search.
Greedy2 = two rounds. Error-driven: no-improvement-limit = 150 itera-
tions, max-iterations = 300.

The test was then repeated nine times, and the results
averaged. For each value of n,, the results were then
averaged across all nine participants. Thus, each data point
in Fig. 13 represents an average of 90 iterations: 10 cross-
validation iterations for each of nine participants.

For this experiment, the hybrid matcher, stochastic
matcher, and greedy matcher with two rounds of greedy
search all achieved nearly the same performance. With only
five training examples, these methods achieved top-one and
top-three accuracies of better than 93.3% and 98.4%,
respectively. With 10 training examples, they achieved top-
one and top-three accuracies of better than 96.0% and
99.0%, respectively. The hybrid approach achieved the
highest top-one accuracy of 96.7% with 10 training
examples. The hybrid matcher took on average 41.8 ms
to classify a symbol, while the stochastic matcher took on
average 35.9ms. The greedy matcher with two rounds of



564 W. Lee et al. | Computers & Graphics 31 (2007) 554-567

greedy search was much faster, requiring on average only
4.0ms to classify a symbol.

The error-driven matcher and greedy matcher with one
round of greedy search also achieved nearly identical
performance. With only five training examples, they
achieved top-one and top-three accuracies of about
92.4% and 97.3%, respectively. With 10 training examples,
they achieved top-one and top-three accuracies of about
94.1% and 97.9%, respectively. The error-driven matcher
took on average 34.9ms to classify a symbol, while the
greedy matcher took on average only 2.1 ms.

The sort matcher was the least accurate method, but it is
exceptionally fast, requiring on average only 0.24ms to
classify a symbol. With only five training examples, the sort
matcher achieved top-one and top-three accuracies of
77.5% and 87.9%, respectively. With 10 training examples,
it achieved top-one and top-three accuracies of 77.4% and
88.9%, respectively. The sort matcher requires a consistent
drawing orientation. The participants in our study tended
to draw this way. If they had varied the orientation, the
performance would have been lower.

7.2. Experiment two: drawing order
As a second test of performance, we measured accuracy
as a function of the randomness of the drawing order of the

symbols. If the user maintains a consistent drawing order,

Top-one Accuracy vs. Drawing Order Randomness

100.0

90.0 —

—&— Hybrid
—— S300

matching is easier because all of our matching techniques,
except sort matching, use the drawing order to construct
the initial search state. Thus, randomizing the drawing
order provides a good means of evaluating the robustness
of our techniques.

In this experiment, the drawing order of the symbols was
randomized by selecting pairs of primitives and swapping
their drawing orders. The experiment was conducted with
one, two, and five random swaps per symbol. Five swaps is
a severe test, as it results in as many as 10 primitives having
random positions in the drawing order. To provide a
baseline for comparison, accuracy was also measured for
the original, “un-randomized” drawing order.

Fig. 14 shows the top-one and top-three recognition
accuracy as a function of the number of random swaps
applied to the drawing order of each symbol. For the
stochastic matcher, accuracy is reported for cases in which
the number of iterations is limited to 100, 200, and 300.
Likewise, for the error-driven matcher, accuracy is
reported for cases in which the maximum number of
iterations with no improvement (/) is limited to 50, 100,
and 200. In all cases, the maximum total number of
iterations for the error-driven approach is limited to 300
(I pr4x = 300). The average recognition times for this
experiment are listed in Table 3.

In this experiment, the recognizer was again evaluated
separately for each user, using a cross-validation approach.
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Fig. 14. (Left) Top-one and (Right) top-three accuracy vs. the number of random changes to the drawing order. One random change consists of swapping
the drawing order of a randomly selected pair of primitives. Sxxx = stochastic search with max-iterations = xxx. Greedyl = one round of greedy search.
Greedy2 = two rounds. Exxx = error-driven search with no-improvement-limit = xxx iterations and max-iterations = 300.
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Table 3
Average time to classify a symbol in ms

Hybrid S300 S200 S100 Greedy2 Greedyl E200 E100 ES50 Sort

41.6 356 239 122 4.0 2.1 449 243 135 0.29

Sxxx = stochastic search with max-iterations = xxx. Greedyl = one
round of greedy search. Greedy2 = two rounds. Exxx = error-driven
search  with no-improvement-limit = xxx iterations and max-
iterations = 300.

Each test consisted of randomly selecting 14 of the user’s
15 symbol sets for training, and using the remaining set for
testing. The test was then repeated nine times, and the
results averaged. The results were then averaged across all
nine participants. Thus, each data point in Fig. 14
represents an average of 90 iterations: 10 cross-validation
iterations for each of nine participants.

Examination of Fig. 14 reveals that as the drawing order
is increasingly randomized, more search is needed to
achieve a given level of accuracy. For example, with five
random swaps and an iteration limit of 100, stochastic
search achieved a top-one accuracy of 87.4% and a top-
three accuracy of 97.8%. When the iteration limit was
increased to 300, the top-one and top-three accuracies
increased to 92.1% and 98.5%, respectively.

The hybrid approach is the best performing method in
cases where the drawing order varies. This is because it
explores more of the search space than the other methods:
it uses exhaustive search for small problems, and 720
iterations of stochastic search for larger ones. With five
random swaps, the hybrid approach still achieved a top-
one accuracy of 93.6% and a top-three accuracy of 99.0%.
Despite exploring more of the search space, the hybrid
approach is still fast, requiring on average only about
41.6 ms to classify a symbol.

As expected, the performance of the error-driven
approach also increased with increased iteration limits.
However, for a given amount of processing time, this
approach was not as accurate as the stochastic approach.
This is due, in part, to the fact that the error-driven
approach must compute both a local error and the
dissimilarity score, while the stochastic approach computes
only the latter.

The performance of the greedy matcher with one round
of greedy search did degrade with increasing randomness in
the drawing order. This is to be expected as greedy search
methods tend to find only local maxima. However,
applying a second round of greedy search substantially
improved the performance. For example even with five
random swaps in the drawing order, the greedy matcher
with two rounds of search achieved top-one and top-three
accuracies of 90.9% and 97.5%, respectively. Furthermore,
it achieved this high level of performance while requiring
on average only 4.0ms to classify a symbol.

The sort matcher is insensitive to drawing order and thus
its performance did not vary significantly in this experiment.

The small variations that did occur are likely a result of
variations due to the random selection of training data in
the cross-validation process.

8. Discussion

We believe that the results of our user study are quite
promising when compared to results reported in the
literature. For example, Landay and Myers [27] report an
accuracy of 89% on a set of five single-stroke editing
gestures. In our case, however, there are 22 symbol
definitions which can be drawn with multiple strokes. In
a study involving seven multi-stroke and five single-stroke
shapes, Fonseca and Jorge [2] report an accuracy of 92%.
Hse and Newton [4] report an accuracy of 97.3% using 30
training examples on a database of 13 symbols. Our hybrid
matcher achieves an accuracy ranging from 93.6% to
97.0%, depending on the amount of randomness in the
drawing order. Furthermore, our approach is insensitive to
rotation and non-uniform scaling, where their approach
may not be (see Section 2). On a database of 20 symbols,
Kara and Stahovich [5] report an accuracy of 97.7%, where
each symbol was trained with 14 examples. That method is
based on image matching techniques, and thus is sensitive
to non-uniform scaling. Also, our methods, particularly
our greedy matcher, are faster than those in [5].

The experiments described in the previous section reveal
various tradeoffs between our five matching techniques.
The hybrid matcher is the most accurate, but the most
expensive matcher. It achieves the best accuracy because it
explores more of the search space than the other methods.

The stochastic matcher is the second most accurate
method. One benefit of this approach is that it can take
advantage of consistency in the drawing order. If the user
maintains a consistent drawing order, relatively little
computation is needed. If the drawing order varies greatly,
the amount of computation can be directly adjusted to
maintain high accuracy.

Like the stochastic-matcher, the error-driven matcher
can take advantage of consistency in the drawing order.
However, for a given processing time, this approach is not
as accurate as the stochastic approach. This is due, in part,
to the fact that each iteration of the error-driven approach
requires the error metrics to be evaluated two times rather
than one. They must be evaluated once to determine the
local matching error and once to determine the dissim-
ilarity score. The code could be optimized to eliminate the
redundant computation. Also, the error-driven approach
uses a form of hill-climbing: node-pair swaps are rejected if
the similarity score decreases. It is possible that this hill-
climbing strategy causes the match to become stuck in local
maxima. It may be desirable to use a simulated annealing
approach in which there is some probability that a decrease
in the similarity score will be allowed on any given
iteration.

The greedy matcher has the best tradeoff between accu-
racy and cost. Even with the drawing order randomized
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five times (i.c., five random swaps in the drawing order), it
achieved top-one and top-three accuracies of 90.9% and
97.5%, respectively. Furthermore, it took on average only
4.0ms to classify a symbol.

The sort matcher works by sorting the coordinates of the
primitives. Thus, it is useful only when the drawing
orientation is fixed. However, even for a fixed orientation,
variations in the shape can result in different sorted orders,
and consequently recognition errors. One advantage of this
method is that it is very fast, requiring on average only
0.24 ms to classify a symbol with a library of 22 definitions.
Because the approach is so inexpensive, it would be
suitable for devices with little computational power,
such as PDAs. Furthermore, the top-three accuracy of
89% is still relatively high. This suggests that it might be
possible to use the sort matcher as an inexpensive pre-
recognizer to eliminate low ranked definitions. This would
then reduce the amount of computation needed for a more
accurate but more expensive matcher, such as the hybrid
matcher.

The results in Fig. 14 suggest that the participants in our
user study tended to draw with a relatively consistent
drawing order. This allowed our program to achieve high
accuracy with little computation. Artificially randomized
the drawing order necessitated more computation to
achieve high accuracy. The consistency of the drawing
order in our experiment was likely due to the nature of the
data collection task. We expect that when pen-based
applications are used for real-world tasks, there will indeed
be variation in the drawing order. However, we do not
expect it to be entirely random. Rather, we expect that
users will likely have a few preferred ways of drawing each
symbol. For example, when drawing a pivot, one is likely
to draw the triangle and then the circle, or vice versa.
Furthermore, it is unlikely that one would draw part of the
triangle, then the circle, then the rest of the triangle. As a
consequence, we plan to explore the possibility of learning
the most common drawing orders for each symbol.
Combining these with a small amount of search using
one of our matching methods may prove to be an effective
approach.

Regardless of the amount of randomness in the drawing
order, our experiments indicate that the hybrid, stochastic,
and greedy matching techniques provide suitable accuracy.
There is little variation in their performance when applied
to data with two random drawing order swaps vs. five. In
the later case, the drawing order is essentially random
because the typical symbol in our study had about five
primitives. Note that each random swap actually results in
two primitives having random positions in the drawing
order.

Our experiments did not explicitly evaluate our recog-
nizer’s insensitivity to orientation and non-uniform scaling.
As our representation is entirely insensitive to orientation,
we expect that our overall approach is insensitive to ori-
entation. Likewise, because our representation describes the
topology of a shape, our approach is tolerant of non-uniform

scaling. However, it would be useful to conduct further
studies to quantify this.

We do not yet have an automated means of evaluating
the performance of the proximity matcher used for
training. We do, however, have a tool that allows us to
visually inspect the matches it produces. We have
informally examined some of the data and have found
that the approach is reliable. Although we have not
separately evaluated the performance of the proximity
matcher in a systematic way, its performance can be
inferred from the overall performance of our system.
Because the system as a whole performed well, the
proximity matcher must have performed well.

In future work, we plan to explore the possibility of
using feedback from our recognizer to improve segmenta-
tion. The pen stroke segmenter performed accurately, but
examination of the data revealed that some of the symbols
did contain missing or extra primitives. Likewise, some
primitives that were intended to be lines were classified as
arcs, and vice versa. Some of these errors were due to
sloppy drawing and ambiguity, while others were a result
of processing errors. Once a symbol has been classified,
the segmenter could be informed of mismatches between
the segmentation of the unknown symbol and that of the
matching definition so that the segmentation could be
improved.

9. Conclusion

We have presented a trainable symbol recognizer for
pen-based user interfaces. The approach is suitable for
multi-stroke symbols, is insensitive to rotation, and is
tolerant of uniform and non-uniform scaling (i.c., different
parts of a shape being scaled differently). Furthermore, our
user studies have demonstrated that our approach allows a
symbol to be drawn with any drawing order. If, however,
the user maintains a relatively consistent drawing order,
our techniques can take advantage of this and operate
more efficiently.

A symbol is represented internally as an attributed
relational graph that describes both its geometry and
topology. A symbol definition is also represented as an
attributed relational graph, but the attributes are learned
from training examples and are described statistically.
Using a statistical representation makes our approach
robust to the types of variations common in hand-drawn
shapes.

Symbol recognition involves finding the symbol defini-
tion whose attributed relational graph best matches that of
the unknown symbol. We have developed a novel set of
metrics for comparing graphs in this domain. Much of the
power of our approach derives from these metrics, and the
particular set of attributes encoded in the graphs.

One challenge addressed in the current work is how to
perform graph matching in an efficient fashion so as to achieve
both tolerance for drawing variation and interactive per-
formance. We presented five approximate graph-matching
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techniques: stochastic matching, which is based on stochastic
search; error-driven matching, which uses local matching
errors to drive the solution to an optimal match; greedy
matching, which uses greedy search; hybrid matching,
which uses exhaustive search for small problems and
stochastic matching for larger ones; and sort matching,
which relies on geometric information to accelerate the
matching. We have also developed a ““proximity’” matcher
which is used for training purposes.

Our user studies have revealed a number of tradeoffs
between these techniques. The hybrid matcher is the most
accurate but most expensive approach. Nevertheless, it is
still sufficiently fast for interactive use. The stochastic
matcher achieves high accuracy and can take advantage of
consistency in the drawing order. If the user maintains a
consistent drawing order, relatively little computation is
needed. If the drawing order varies greatly, the amount of
computation can be directly adjusted to maintain high
accuracy. The greedy matcher provides the best tradeoff
between accuracy and cost: it achieves relatively high
accuracy and is fast. The error-driven matcher is accurate,
but for a given amount of computation, is not as accurate
as the stochastic matcher. The sort matcher is the least
accurate approach and requires consistent drawing orien-
tation. However, because this method is particularly
efficient, it may be a good solution when computational
resources are constrained, such as with a PDA.
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