
1

s
e
p
t
a
fl
e
d
s
a
i

s
o
e
p
e
s
s
i
l
Y
m
q
f
t
t
c
Y
a

p
2
2
E
C

J

Downl
Levent Burak Kara
Mechanical Engineering Department,

Carnegie Mellon University,
Pittsburgh, PA 15213

e-mail: lkara@andrew.cmu.edu

Leslie Gennari
ExxonMobil Chemical Company,

4500 Bayway Drive,
Baytown, TX 77520

e-mail: leslie.m.gennari@exxonmobil.com

Thomas F. Stahovich
Mechanical Engineering Department,

University of California,
Riverside, CA 92521

e-mail: stahov@engr.ucr.edu

A Sketch-Based Tool for Analyzing
Vibratory Mechanical Systems
Sketches are a ubiquitous form of communication in engineering design due to their
simplicity and efficiency. However, because of a lack of suitable machine-interpretation
techniques, they are virtually unusable with current computer-aided design and engineer-
ing tools. The informal nature of sketches and their inherent ambiguity present a number
of challenges to the development of such techniques. Here we address one particular
challenge, the task of reliably locating and recognizing the intended visual objects from
a continuous stream of pen strokes. We present an integrated sketch parsing and recog-
nition approach, based on a novel mark-group-recognize paradigm, which is tailored to
the domain of mechanical systems. In the first step of processing, the sketch is examined
to identify certain delimiting symbols called “markers.” The remaining pen strokes are
then partitioned into distinct clusters, each representing a single symbol. Finally, a train-
able symbol recognizer is used to find the best interpretation of each cluster. We have
used these techniques to build a sketch-based tool for designing and analyzing vibratory
mechanical systems. This tool enables designers to analyze and animate vibratory sys-
tems by simply sketching them on a tablet computer. User studies indicate that even
first-time users find our tool to be effective. �DOI: 10.1115/1.2965595�

Keywords: sketch understanding, pen computing, sketch parsing, symbol recognition,
vibratory mechanical systems
Introduction
In many disciplines, sketches have great utility as a problem

olving tool as they provide a convenient medium for recording
lusive thoughts, visualizing and testing emerging ideas, and com-
actly and efficiently representing a variety of types of informa-
ion such as spatial, temporal, and causal relationships. Sketches
re particularly useful in the early stages of design, where their
uidity and ease of construction enable creativity and the rapid
xploration of ideas �1�. In a seminal study of the importance of
rawing in mechanical design, Ullman et al. �2� demonstrated that
ketches are a particularly useful form of graphical representation
nd that “computer-aided �CAD� systems must allow for sketch-
ng input.”

This is consistent with several recent empirical studies demon-
trating that sketching has a positive impact on the final outcome
f a design project. For example, in a study involving mechanical
ngineering graduate students, Schütze et al. �3� found a strong
ositive correlation between the number of sketches drawn in the
arly phases of design and the quality of the resulting design
olution. Based on their studies, they concluded that “digital
ketching tools. . . can create potentially large time and cost sav-
ngs for computer-aided design in mechanical engineering.” Simi-
arly, in a study involving undergraduate engineering students,
ang �4� found a positive correlation between the number of di-
ensioned sketches drawn early in the design process and the

uality of the resulting design. Likewise, Song and Agogino �5�
ound that the total number of sketches drawn by student design
eams has an increasingly positive effect on the design outcome as
he design proceeds from preliminary investigation, through con-
eptual design, to more detailed design. A more recent study by
ang and Cham �6� suggests that the design outcome depends on
broader range of factors than just the number of sketches and

Contributed by the Design Theory and Methodology Committee of ASME for
ublication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received September
4, 2007; final manuscript received May 14, 2008; published online September 10,
008. Review conducted by Yan Jin. Paper presented at the ASME 2004 Design
ngineering Technical Conferences and Computers and Information in Engineering

onference �DETC2004�, Salt Lake City, UT, September 28–October 2, 2004.

ournal of Mechanical Design Copyright © 20

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
that the number of sketches drawn may depend on the particular
designer’s need for an external representation for visualizing be-
havior. Other works similarly emphasize the role of sketching in
design �7�.

Despite the evidence suggesting that sketching is an essential
part of engineering design, most contemporary engineering soft-
ware still cannot work effectively from sketch input. This is due to
the lack of suitable machine-interpretation techniques. The infor-
mal nature of sketches and their inherent ambiguity present a
number of challenges to the development of such techniques. In
the present work, we address one particular challenge, the task of
reliably locating and recognizing the intended visual objects from
a continuous stream of pen strokes. We present an integrated
sketch parsing and recognition approach tailored to the domain of
mechanical systems. Here, we use the term “parsing” to refer to
the task of locating visual objects. Our approach is based on a
novel mark-group-recognize paradigm. In the first step of process-
ing, the sketch is examined to identify certain delimiting symbols
called “markers.” Once these are identified, the remaining pen
strokes are partitioned into distinct clusters, each representing a
single symbol. Finally, a trainable symbol recognizer is used to
find the best interpretation of each cluster.

To demonstrate the utility of our techniques, we have developed
a sketch-based tool for designing and analyzing multibody vibra-
tory mechanical systems. This tool allows designers to draw as
they would on paper, with minimal constraints imposed by the
sketch understanding engine. Unlike paper sketches, however, the
sketches created with our tool are “live” in the sense that design-
ers can interact with them to change various model parameters
and observe the physical response through live animations of vi-
bratory behavior. The tool’s interface �Fig. 1� enables designers to
sketch vibratory systems comprised of any number of masses,
springs, dampers, forces, and grounds. These objects can be drawn
in any order, and each can consist of multiple strokes. Because of
our automated parsing technique, the designer is not required to
provide explicit cues, such as button presses or pauses, to demar-
cate symbols. New components can be added to the sketch at any
time.
This domain presents several challenges that make it an inter-

OCTOBER 2008, Vol. 130 / 101101-108 by ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



e
c
s
o
s
i
d
r
t
v
j
t
s
p

a
c
a
o
t
a
s
t
d
a
s
t

p
m

1

Downl
sting test of our techniques. First, it features a variety of graphi-
al objects such as masses, springs, and dampers that are typically
patially adjacent and, at times, overlapping. This makes the task
f separating objects difficult. Second, different instances of the
ame object, say, a spring, may exhibit relatively large differences
n shape, even within a single sketch drawn by one particular
esigner. Hence, the shape recognizers used in our system must
eliably accommodate such variations, while retaining the ability
o differentiate between different types of objects. Third, a wide
ariety of vibratory systems can be constructed using these ob-
ects, thus making sketch interpretation a nontrivial task. Finally,
he designer’s need to examine the vibratory behavior of the
ketched system and interactively adjust the design parameters
resents interesting user interface design issues.

In addition to its utility for design, our software may also have
pplications in engineering education. For instance, our software
ould enhance the lecture experience by allowing an instructor to
nalyze and animate vibratory systems by simply sketching them
n an electronic whiteboard, just as one would ordinarily sketch
hem on a conventional blackboard. Similarly, our software en-
bles students to solve problems using the same graphical repre-
entations they ordinarily use when solving problems on paper,
hus allowing them to focus on problem solving rather than on the
etails of operating an analysis tool. Although we have not yet
ssessed the educational value of our software, other recent work
uggests that pen-based user interfaces can be effective instruc-
ional tools �8�.

The remainder of this paper is organized as follows. Section 2
rovides a more extensive description of the challenges in auto-

Fig. 1 A typical vibratory system created with our softwa
of it, and displays the results in the form of live animations
with recognized objects to interactively change their param
atic sketch interpretation and presents an overview of our solu-

01101-2 / Vol. 130, OCTOBER 2008

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
tion to those challenges. This is followed by a survey of previous
research on sketch-based systems, with an emphasis on parsing
and recognition techniques. Next, the details of our parsing and
recognition techniques are presented, along with an analysis of
their computational complexity. The user interface of our sketch-
based design tool is then presented, along with results of a user
study evaluating the tool’s usability. Finally, a discussion of the
work and conclusions are presented.

2 Challenges and Proposed Approach
One of the fundamental challenges in sketch-based computer

interaction that distinguishes it from traditional interaction mecha-
nisms has to do with the difficulty of interpreting hand drawings.
Unlike text-based or WIMPy �Windows, Icons, Menus, Pointer�
input, hand drawing tends to be highly informal, inconsistent, and
ambiguous. Thus, for a sketch-based system to be of practical
utility, it must robustly cope with the variations and ambiguities
inherent in hand drawings so as to interpret the visual scene the
way the user intended.

Such difficulties give rise to a variety of challenges in sketch
understanding. One concerns sketch parsing, the task of grouping
a user’s pen strokes into the intended symbols without requiring
the user to indicate when one symbol ends and the next one be-
gins. This is a difficult problem as the strokes can be grouped in
many different ways, and moreover, the number of stroke groups
to consider increases exponentially with the number of strokes. To

The program interprets the sketch, performs a simulation
d graphs of performance variables. The user can interact

ers.
re.
an
et
avoid these difficulties, many current systems require the user to

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



e
a
A
s
c

p
c
m
c
p
o
m
t
c
s
t
f
s
t

t
a
a
s
d
p
o
b
s
f
f

p
o
u
s
c
a
g
m
u

3

p
e
m
c
r
i
w
n
s
o
n
n
Z
m
d
M
g
o
a
t
t
a

J

Downl
xplicitly indicate the intended partitioning of the ink by pressing
button on the stylus or by pausing between symbols �9,10�.
lternatively, some systems require each object to be drawn in a

ingle pen stroke �11�. However, these sorts of constraints typi-
ally result in a less than natural drawing experience.

Our approach to parsing is based on a mark-group-recognize
aradigm. The first step involves a preliminary recognition pro-
ess in which the stream of pen strokes is examined to identify
arkers, symbols that are easily and reliably extracted from a

ontinuous stream of input. The special-purpose recognizers em-
loyed in this step achieve high reliability because they are based
n the drawing conventions specific to the domain. Once the
arker symbols are identified, the remaining strokes are parti-

ioned into distinct clusters. This is done using a general-purpose
lustering algorithm that takes as input a cloud of unprocessed pen
trokes and groups them into distinct clusters, each corresponding
o a single symbol. Note that our parser is provided with no in-
ormation about the sizes and shapes of the clusters, the number of
trokes they might contain, or even the overall number of clusters
o be identified.

Another challenge in sketch understanding is symbol recogni-
ion, the task of recognizing individual hand-drawn objects such
s geometric shapes, glyphs, and symbols. The task of differenti-
ting between, say, a damper and a spring symbol is the focus of
ymbol recognition. In this work, we employ a multistroke,
omain-independent, trainable symbol recognizer we developed
reviously �12�. The recognizer computes the best interpretation
f each cluster by comparing it to a database of definition sym-
ols. One advantage of this recognizer is that it can learn a new
ymbol definition from only a few training examples—even as
ew as ten examples may be adequate—thus making it possible
or users to customize the system to their own drawing styles.

In previous work, we implemented a mark-group-recognize ap-
roach that was suitable only for networklike diagrams consisting
f symbols linked together with arrows �13�. This approach was
sed to create a sketch-based interface for MATLAB’s SIMULINK

oftware. For that problem, arrows are the marker symbols and
lustering relies on grouping each pen stroke with the nearest
rrow head or tail. In the current work, we have substantially
eneralized the approach by the introduction of a clustering
ethod that does not rely on arrows. This greatly extends the

sefulness of the approach beyond networklike diagrams.

Related Work
Researchers have explored a wide variety of techniques for

arsing sketches and other graphical images. For example, Saund
t al. �14� presented a system that uses Gestalt principles to deter-
ine the salient objects represented in a line drawing. Their work

oncerns only the grouping of the strokes and does not employ
ecognition to verify whether the identified groups are, in fact, the
ntended ones. Jacobs �15� described a system to recognize objects
ith straight-line perimeter representations. The system uses a
umber of heuristic rules to group edges that likely come from a
ingle object, and then uses simple recognizers to identify the
bjects represented by the edges. However, because the tech-
iques require straight-line segments and sharp corners, they may
ot be well suited to informal hand-drawn sketches. LaViola and
eleznik �16� described an interface for recognizing handwritten
athematical expressions, but they require explicit gestures to

emarcate the various lines of an expression. Notowidigdo and
iller �17� described a system for interpreting structured dia-

rams such as flowcharts, but their techniques are intended for
ff-line computation. Costagliola and Deufemia �18� presented an
pproach based on “left-to-right” �LR� parsing for the construc-
ion of visual language editors. They employed “extended posi-
ional grammars” to encode the attributes of the graphical objects

nd presented a set of production/reduction rules for the grammar.

ournal of Mechanical Design

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
Inspired by the advances in speech recognition, some ap-
proaches require visual objects to be drawn with a predefined
sequence of pen strokes �19,20�. While useful at reducing compu-
tational complexity, the strong temporal dependency of these
methods forces the user to remember the correct order in which to
draw the pen strokes. Other approaches employ constrained
search methods in which a multitude of partial interpretations of
an image are generated, and then additional evidence is used to
either support or refute the interpretations �21�. Such approaches
often face difficulties resulting from nonoptimal thresholds that
either prematurely terminate a promising search path or retain a
futile one for too long.

Shilman et al. �22� presented an approach to ink parsing that
relies on a manually coded visual grammar. The grammar defines
composite objects hierarchically in terms of lower level objects.
The lowest level objects—individual pen strokes—must be recog-
nizable in isolation �with Rubine’s method �23��, although ambi-
guity can be tolerated. Our approach does not rely on single-
stroke shapes. In more recent work, Shilman and Viola �24�
improved upon this approach by first generating a multitude of
candidate stroke groups, and then evaluating each candidate using
a fast bitmap-based recognizer. Their parsing scheme is similar to
ours in that strokes are grouped only if they are spatially proxi-
mate. Our preliminary recognition step, however, helps us pro-
duce only the salient stroke groups whereas their approach uses a
produce-many, eliminate-many strategy.

Alvarado and Davis �25� described a parsing approach based on
dynamically constructed Bayesian networks. Based on a set of
competing hypotheses originating from a set of structural shape
descriptions, input strokes are used as evidence that favor certain
hypotheses over others. Because of a reliance on precise structural
shape definitions during hypothesis evaluation, missing or extra
strokes can adversely affect performance. Our parsing and recog-
nition techniques are less sensitive to noise at that level because
our system separates the task of parsing and recognition. Our
parser requires only that a subset of the symbols—the marker
symbols—be recognized accurately.

Researchers have developed a wide variety of approaches to
shape and symbol recognition. Some approaches require the entire
shape or symbol to be drawn in a single stroke �23,26�. For ex-
ample, the method in Ref. �1� uses conic sections to classify pen
strokes as lines, arcs, and corners. Systems such as those in Refs.
�27,20� allow for multistroke symbols but require shapes to be
drawn with a consistent pen stroke order. Some other multistroke
recognizers allow for variable stroke order but are hard coded
�28,29�. Systems such as those in Refs. �9�, �30�, and �31� are
trainable but typically require a multitude of training examples. In
contrast, our recognizer in insensitive to stroke order is suitable
for both single and multistroke symbols and can learn a definition
from only a few prototype examples. Kara and Stahovich �32�
presented a multistroke recognizer based on a down-sampled bit-
map representation. The approach is well suited to “sketchy”
drawings, such as those with overstroking. However, as the
method is based on geometry and not on topology, it is sensitive
to nonuniform scaling and large variations in shape.

4 Overview of the Approach
Figure 2 illustrates the overall process for interpreting a sketch

of a vibratory system. The first step is a preliminary recognition
process that examines the stream of pen strokes to identify marker
symbols. Once these are identified, the remaining strokes are par-
titioned into clusters, each representing a single symbol. Next, a
general-purpose symbol recognizer is used to determine which
component each cluster represents. Finally, the connectivity of the
components is examined, enabling a mathematical model of the
vibratory behavior of the sketched system to be derived. Sections

5–8 describe each of these steps in detail.

OCTOBER 2008, Vol. 130 / 101101-3

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5

e
i
m
g
p
t

m
p
t
o
e
g
l
a
g

s
f
f
s
t
e
F
e
t
e
p

F

F
t
r
n
a

1

Downl
Preliminary Recognition
One key to successful sketch understanding lies in the ability to

stablish the ground truths about the sketch early on before costly
nterpretation errors occur. Our approach is based on the use of

arker symbols, symbols that are easy to recognize and that can
uide the interpretation of the remainder of the sketch. This ap-
roach is similar in spirit to the construction of “islands of cer-
ainty” in the Hearsay-II speech understanding system �33�.

In the domain of discrete vibratory systems, we have found
ass and ground symbols to be good marker symbols as they

ossess a number of unique geometric and temporal characteris-
ics that facilitate their recognition. �Note that our work is focused
n schematic rather than on pictorial sketches of devices.� For
xample, masses are invariably drawn as closed loops, while
round symbols are characterized by a sequence of short parallel
ine segments corresponding to the hatches. In the first step of
nalysis we exploit these features to identify the masses and
rounds in the sketch.

Recognizing Masses. Identifying mass symbols involves finding
ets of consecutively drawn strokes that connect end to end to
orm closed loops. To determine if a particular set of strokes
orms such a loop, our program constructs a fully connected
troke chain comprised of the original strokes and a set of hypo-
hetical linkages between them. The latter are formed by joining
ach stroke endpoint to the nearest endpoint of some other stroke.
or example in Fig. 3, endpoint A of stroke 1 is connected to
ndpoint A� of stroke 2 with the hypothetical linkage AA� because
hese two endpoints are closer to each other than to any other
ndpoints. In a perfect closed loop, all strokes would be connected
recisely at their endpoints and the total “linkage length,” defined

Preliminary recognition

Clustering

Symbol recognition

Connectivity analysis

Pen strokes

Mathematical model

ig. 2 Process for interpreting a sketch of a vibratory system

A

A’

B
B’ C

C’

1

3

2

1- AA’ - 2 - CC’ - 3 - BB’

ig. 3 Masses are identified as “stroke chains.” The mass on
he left is described by the stroke chain on the right. The mass
ecognizer is insensitive to drawing order and direction. „The
umbers next to the strokes indicate the drawing order, and the

rrowheads indicate the drawing direction.…

01101-4 / Vol. 130, OCTOBER 2008

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
as the sum of the lengths of the hypothetical linkages, would be
zero. �In Fig. 3, the total linkage length is �AA��+ �BB��+ �CC��.�
However, to account for “sketchiness,” we use a thresholded cri-
terion that accepts a closure if the total linkage length is less than
or equal to 10% of the total length of the pen strokes.1 For strokes
that do not form a closed loop, the linkage length is typically
much larger. For example, it is 100% for a straight line and can be
greater than 100% for an arbitrary stroke set.

Using this approach, our program identifies closed loops com-
prised of up to five consecutively drawn strokes,2 including
single-stroke loops. Although the strokes comprising a particular
mass must be drawn consecutively, they can be drawn in any
order and direction. Also, this approach can successfully recog-
nize arbitrarily shaped bodies and is not restricted to simple pat-
terns such as rectangles. After identifying the closed loops, our
program instantiates the mass objects they represent and marks
the associated strokes as processed to prevent them from later
being considered as parts of other components.

Recognizing Grounds. After identifying the masses in the
sketch, our program focuses attention on the ground symbols.
These are distinguished by a set of short parallel line segments
�i.e., the hatches� that are aligned approximately along a straight
line �Fig. 4�. Moreover, the segments are almost always drawn
consecutively and in a uniform orientation, such as from top to
bottom or vice versa. Our program thus searches for such geomet-
ric and temporal patterns to locate the ground symbols. To prevent
arbitrary parallel strokes from being recognized as grounds, we
require a minimum of four hatches before a ground symbol is
conjectured. To test whether a group of strokes constitutes a
ground symbol, the program determines if �1� they are roughly
uniformly separated, �2� they are more or less parallel, and �3� the
imaginary polyline formed by connecting their starting points,
which we call the skeleton, is approximately a straight line. The
first requirement is satisfied if the separation between the pair of
most distant consecutive strokes �smax� is less than twice the av-
erage separation distance. The second requirement is satisfied if
the vectors defined by connecting each stroke’s first point to its
last point are all oriented toward the same quadrant, for example,
southwest in Fig. 4�b�. The last requirement is satisfied if the
length of the skeleton is within 5% of that of a line connecting the
starting point of the first stroke to the starting point of the last
stroke. Once a sequence of four strokes satisfying these require-

1This threshold was selected empirically. A larger threshold would make the sys-
tem more tolerant of drawing errors but could lead to false positives. A smaller
threshold would tend to reduce false positives but could increase false negatives.

2In an informal study involving a few engineering students, we observed that
users typically draw masses with two or three strokes. An upper limit of five strokes
was selected as a means of reducing computational cost without substantial risk of
false negatives. This limit has worked well in practice but could be increased if false

Fig. 4 „a… Examples of ground symbols our system can recog-
nize. „b… The definition of a ground symbol is based on the
length of the skeleton and the orientation of and separation
between hatches.
negatives become a problem.

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



m
p
p
l
s
s
t

6

t
a
g
d
g
i
i
i
s
b
u

t
e
F
t
s
c
t
p
a
o
k

a
c
o
a
w
s
a
m
c
a

F
m
T
t
a
c

J

Downl
ents has been found, the program determines the extent of the
attern by appending subsequent strokes, one at a time, until the
attern is disrupted. Finally, the stroke representing the skeleton is
ocated and added to the pattern. After identifying the ground
ymbols, the program instantiates the ground objects they repre-
ent and marks the associated strokes as processed to prevent
hem from later being considered as parts of other components.

Clustering
In the previous step, the masses and grounds are identified, but

he remainder of the sketch, which consists of springs, dampers,
nd forces, is left uninterpreted. Eliminating the masses and
rounds from the sketch tends to make these other symbols more
istinct. This is a particularly important property of the mark-
roup-recognize approach. Figure 5�a�, for example, shows what
s left after the masses and grounds are removed from the sketch
n Fig. 1. We divide the task of identifying the remaining symbols
nto two subtasks. The first is stroke clustering, in which the
trokes are grouped into clusters corresponding to distinct sym-
ols. The second is recognition, in which each cluster is classified
sing the symbol recognizer described in Sec. 7.

The goal of clustering is to group the unprocessed strokes �i.e.,
hose not belonging to masses or grounds� into clusters, such that
ach cluster contains only strokes belonging to a single symbol.
or example, in Fig. 5, there are six clusters corresponding to the

wo springs, the three dampers, and the force. There are four is-
ues that complicate the problem. The first is that distinct clusters
an be arbitrarily close to one another. Hence there is no fixed
hreshold distance below which two strokes would be considered
art of the same cluster. Second, clusters can have arbitrary sizes
nd shapes. Third, each cluster may contain an arbitrary number
f strokes. Fourth, and most importantly, there is no means of
nowing, a priori, the number of clusters to be located.

Our clustering approach relies on the fact that once the masses
nd grounds have been removed from the sketch, the remaining
lusters typically occur at spatially distinct regions and do not
verlap. Furthermore, while the distance between two clusters is
rbitrary, it is usually greater than the distance between the strokes
ithin a cluster. Hence, our clustering technique partitions the

trokes into clusters, such that each cluster contains strokes that
re nearer to one another than they are to other clusters. To imple-
ent this idea, we have adopted the agglomerative hierarchical

lustering algorithm described in Ref. �34�. Note that while this

ig. 5 „a… The objects remaining to be identified once the
asses and the grounds in Fig. 1 have been recognized. „b…

he clustering algorithm is run until a single cluster is ob-
ained. The intended clusters, which are encircled with ellipses,
re then identified by examining the distance between the two
lusters merged at each iteration.
lgorithm has been applied to other problems, it is useful in this

ournal of Mechanical Design

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
domain precisely because the preliminary recognition process ac-
centuates the separation between clusters.

The clustering procedure is facilitated if the sketch is viewed as
a collection of data points rather than of pen strokes. In this rep-
resentation, each data point initially forms a distinct seed cluster.
The algorithm takes as input these seed clusters and repeatedly
merges them until a single all-encompassing cluster is obtained.
At each iteration, the two nearest clusters are merged, resulting in
a bigger cluster containing the data points from the two clusters.
Each iteration thus reduces the number of clusters by 1.

For the purpose of merging clusters, we define the distance
between two clusters as the minimum distance between a point in
one cluster and a point in the other. The distance between two
clusters A and B can be expressed more formally as

d�A,B� = min
a�A,b�B

�a − b� �1�

where �a−b� is the Euclidean distance between point a in cluster
A and point b in cluster B. In this formulation d�A ,B� is known as
the nearest-neighbor distance. At each iteration of the clustering
algorithm, the program computes this distance for all pairs of
clusters and merges the pair having the minimum distance. Al-
though other distance measures could be used, such as farthest
neighbor, we have found the nearest-neighbor measure to be most
suitable as it favors thin and elongated clusters due to a phenom-
enon called “chaining” �34�. The springs, dampers, and forces in
our domain often benefit from this effect.

Because we assume that each pen stroke belongs to a single
symbol, we accelerate the clustering process by merging all seed
clusters originating from a given pen stroke. Once this is done, the
usual merging process continues as before. We have found this to
greatly reduce the amount of computation needed for clustering.

The lack of a priori knowledge about the number of clusters to
be identified presents a challenge for this analysis. If this number
were known, the clustering algorithm could be terminated when
the desired number of clusters was located. In our case, however,
this number must be determined automatically. Fortunately, the
clustering algorithm provides a means to accomplish this. The
distance between the pair of clusters merged at each iteration can
be stored as a dissimilarity score �. Because the nearest clusters
are merged at each iteration, � monotonically increases with the
number of iterations. The key, however, is that a large increase in
� is usually indicative of a “forced merge” �34�—a merge that
combines two distant clusters—and thus can be used as a stopping
criterion.

We exploit this observation to determine the number of distinct

Fig. 6 The dissimilarity score � increases monotonically with
the number of iterations. Sharp leaps, such as the one at itera-
tion 17, usually correspond to forced merges and thus can be
used to determine the number of natural clusters.
symbols in a sketch. Consider Fig. 6 that shows the dissimilarity

OCTOBER 2008, Vol. 130 / 101101-5

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s
5
m
q
t
i
i

T
s
T
o
s
i
i
d
d
s
s

s
n
s
s
o
e
s
s
p
o
c
F
d
o
t
d
s
r
l
m
t

7

w
p
n
d
a
s
i
t
a

F
w
d

1

Downl
core versus the iteration number obtained from the sketch in Fig.
. The large jump from iteration 17 to 18 corresponds to the
erging of the force symbol with the nearby damper. The subse-

uent iterations combine the remaining clusters until a single clus-
er is obtained. Clearly the intended clusters are those obtained by
teration 17. By finding such sharp “leaps” in �, we can thus
dentify the best stopping iteration.

Our criterion for the stopping iteration i� is as follows:

i� = arg max
i

��i+1 − �i

�i − �i−1
· ��i+1 − �i�� �2�

he ratio term in this expression compares the increase in � ob-
erved in one iteration to that observed in the previous iteration.
his is useful for detecting sharp leaps in � such as the one that
ccurs at iteration 17 in Fig. 6. However, because the ratio mea-
ures only the relative increase, if the increase in the previous
teration was minute, even a small increment in the subsequent
teration may undesirably extremize the ratio. This often occurs
uring the initial iterations. To prevent such occurrences from
ictating the stopping iteration, we favor globally large leaps over
maller ones by using the absolute amount of leap ��i+1−�i� as a
caling factor.

The clustering method described above works best when the
ymbols form compact clusters at spatially distant locations. It
aturally allows symbols to be drawn with an arbitrary number of
trokes and is insensitive to the absolute angular orientation of a
ymbol or the angular orientation of one symbol relative to an-
ther. However, it is not well suited to situations in which differ-
nt symbols overlap �Fig. 7�a��, or when an internal gap in a
ymbol is comparable in size to the distance to a neighboring
ymbol �Fig. 7�b��. In the first case, the algorithm will simply
roduce erroneous clusters. In the second case, the right number
f clusters will not be determined reliably as the leap from intra-
luster merges to intercluster merges will not be as distinct as in
ig. 6. Although the first of these issues is uncommon in our
omain �springs, dampers, and forces usually do not overlap�,
ccasionally the second issue does cause errors. We have found
hat most of these errors can be alleviated by keeping the gaps in
ampers to a minimum. Although currently not implemented, our
ystem could exploit the temporal proximity of the strokes to
esolve such problems �strokes belonging to different symbols are
ikely to be temporally separated� or could provide the user with a
eans to interactively rectify mistakes when they occur. We plan

o explore these alternatives in the future.

Symbol Recognition
Once the clusters have been identified, we must determine

hich symbols they represent. We have developed a general-
urpose trainable symbol recognizer for this task �12�. The recog-
izer takes as inputs the raw strokes in a cluster and outputs the
omain object that best matches those strokes. Because masses
nd grounds are already identified in the preliminary recognition
tep, the symbol recognizer presented here is used for distinguish-
ng between springs, dampers, and forces only. However, the rela-
ively small number of patterns to consider in our working ex-

ig. 7 The clustering algorithm fails when symbols overlap or
hen intrasymbol distances are comparable to intersymbol
istances
mple should not obscure the utility of the recognizer. For

01101-6 / Vol. 130, OCTOBER 2008

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
example, Kara �35� reported on results of an earlier version of the
recognizer with a library of 24 engineering symbols.

Segmentation. Our recognizer first decomposes the raw strokes
into line and arc segments that match the original ink. This pro-
cess, called segmentation, provides compact descriptions of the
pen strokes that facilitate recognition. Segmentation involves
searching along each stroke for “segment points,” points that di-
vide the stroke into different geometric primitives. These points
are distinguished by both the kinematics of the pen tip during
drawing and the shape of the resulting ink. Segment points are
generally points at which the pen speed is a minimum, the ink
exhibits high curvature, or the sign of the curvature of the ink
changes �the details can be found in Ref. �36��. Once the segment
points have been identified, a least squares analysis is used to fit
lines and arcs to the ink between the segment points.

Training. Our recognizer uses a feature-based statistical learn-
ing technique to learn new symbol definitions. To train the recog-
nizer, the user draws several examples of a symbol. Each example
can be sketched using any number of strokes drawn in any order.
The examples need not be drawn the same size or at the same
orientation since the recognizer is insensitive to size and rotation
and is robust to moderate nonuniform scaling.

A set of nine geometric features is extracted from the seg-
mented version of each training example. The first eight features
include the number of pen strokes, the number of line segments,
the number of arc segments, the number of endpoint �L� intersec-
tions, the number of midpoint �X� intersections, the number of
endpoint-to-midpoint �T� intersections, the number of pairs of par-
allel lines, and the number of pairs of perpendicular lines. To
account for the sketchiness of a drawing, tolerances are used when
determining if two segments intersect or if two segments are par-
allel or perpendicular.

The final feature is the average distance between endpoints of
the segments. This feature gives information about the relative
size and spacing of segments. This average distance is computed
by determining the distance from each endpoint of every segment
to each endpoint of every other segment. This value is averaged
and is then normalized by the maximum distance between any two
endpoints, thus accounting for scaling. The average distance be-
tween endpoints is insensitive to rotation. Unlike the other eight
features, which can assume only discrete values, this feature is
continuous valued.

Once these nine features have been computed for each of the
training examples of a symbol, a statistical definition model is
constructed. We assume that the training features are distributed
normally, i.e., they can be modeled as Gaussian distributions. A
Gaussian model naturally accounts for variations in the training
examples. However, because eight of the features assume only
discrete values, and moreover we aim to use only a handful of
training data, the continuous Gaussian models we use are not
theoretically appropriate. Nevertheless, our empirical results show
that these models produce highly favorable recognition rates for
the types of symbols considered.

Recognition. The first step in recognizing an unknown symbol,
S, is to extract the same nine features used to describe the training
examples. The values of these features are then compared to those
of each learned definition, Di. Symbol S is classified by the defi-
nition D� that maximizes the probability of match:

D� = arg max
i

P�Di�S� �3�

Here we assume that all definitions are equally likely to occur;
hence we set the prior probabilities of the definitions to be equal.
We also assume that the nine geometric features �xj� are indepen-
dent of one another. Otherwise, a much larger number of training
examples would be required for classification. With these assump-

tions, Bayes’ rule states that the definition that best classifies the

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s
s

A
P
d

B
f
c
t
o
e
c
a
n
a
t
e

t
m
a
b
c
t
f
d
0
o

8

c
a
e
n
b
t
o
d
e
a
e
o
a
o
c

o
i
s
a
s
i
n

p
e
c
m
s
e
h

J

Downl
ymbol is the one that maximizes the likelihood of observing the
ymbol’s individual features:

D� = arg max
i

	
j

P�xj�Di� �4�

s stated above, we assume each statistical definition model
�xj �Di� to be a Gaussian distribution with mean �i,j and standard
eviation �i,j:

P��xj�Di� =
1

�i,j

2�

exp�−
�xj − �i,j�2

2�i,j
2 � �5�

ecause the features are assumed to be independent, this is re-
erred to as a naive Bayesian classifier. This type of classifier is
ommonly thought to produce optimal results only when all fea-
ures are truly independent. This is not a proper assumption for
ur system since some of the features we use are interrelated. For
xample, the number of intersections in a symbol frequently in-
reases with the number of lines and arcs. However, Domingos
nd Pazzani �37� suggested that the naive Bayesian classifier does
ot require independence of the features to be optimal. While the
ctual values of the probabilities of match may not be accurate,
he rankings of the definitions will most likely be correct. Our
mpirical studies have shown this to be the case for our problem.

Because of our assumption of a Gaussian distribution, defini-
ions in which the training examples show no variation in one or

ore features cause difficulty during recognition. This situation is
common occurrence because we often rely on only a small num-
er of training examples and because eight of the features used for
lassification can assume only discrete values. To prevent defini-
ions from becoming overly rigid in this way, we require that all
eatures, with the exception of the continuously valued average
istance between endpoints, have a standard deviation of at least
.3. This significantly increases recognition rates, especially when
nly a few examples have been used for training.

Connectivity Analysis
The final interpretation step is determining how the recognized

omponents are connected to one another. This is accomplished in
straightforward fashion by considering geometric proximity. The

nds of a spring or damper are assumed to be connected to the
earest masses and grounds. Likewise, each force is assumed to
e connected to the mass nearest its end. For example, in Fig. 1,
he right end of spring k1 is connected to mass m1 because no
ther masses or grounds are closer. For this analysis, we define the
istance between an endpoint and a mass or ground as the Euclid-
an distance between that point and the center of the coordinate-
ligned bounding box of the mass or ground. We require that each
nd of a spring or damper be connected to precisely one mass or
ne ground symbol. Each mass or ground, however, may have an
rbitrary number of springs or dampers attached to it. Currently,
ur analysis excludes the case in which springs and dampers are
onnected end to end.

The connectivity analysis is designed to avoid the pitfalls that
ccur when a sketch is interpreted literally. Our goal is to infer the
ntended vibratory model, despite errors and ambiguities in the
ketch. For instance, in Fig. 1, although c1 and m1 are not actu-
lly attached, our program decides, just as anybody seeing the
ketch would, that the two are intended to be connected. A literal
nterpretation, on the other hand, would consider the two compo-
ents to be disconnected.

After determining the connectivity between components, our
rogram constructs the equations of motion. For the discrete, lin-
ar, and time-invariant systems we consider, these equations are
onveniently described in terms of mass, damping, and stiffness
atrices; the displacement and forcing vectors; and the initial po-

ition and velocity vectors. To simplify the generation of these
quations, we assume that each mass has 1D motion along the

orizontal direction. This assumption is not a limitation of our

ournal of Mechanical Design

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
sketch interpretation techniques but rather avoids issues related to
computing simulations, which is not the focus of this work. The
system equations are simulated by MATLAB, which runs in the
background. The solution is a displacement vector, the elements
of which are the displacements of each of the masses as a function
of time. These results are displayed to the user in the form of
graphs and as an animation of the user’s sketch in which masses
translate and dampers and springs stretch and compress �Fig. 1�.

9 Complexity Analysis
The preliminary recognition step identifies the mass and ground

symbols in the sketch. We assume that these symbols are formed
by consecutively drawn strokes. With this assumption, the compu-
tational complexity of detecting these symbols is O�k ·n�, where k
is the maximum number of strokes that a symbol can contain and
n is the total number of strokes in the sketch. k is typically a small
number. For instance, the mass recognizer searches for closed
contours containing up to five strokes, and hence k is 5. Likewise,
although the ground recognizer does not have an explicit upper
limit on the number of strokes to be considered, in practice the
number of hatches in a ground symbol rarely exceeds about seven
strokes.

If the requirement of temporal consecutiveness were relaxed in
the detection of these symbols, all stroke groups containing up to
k strokes would need to be considered. In that case, the cost of
identifying the masses and grounds would be �i=1

k � n
k

�=O�nk�, re-
sulting in an inefficient procedure. Although the requirement of
consecutiveness imposes some constraint on drawing, we believe
that this constraint is balanced by the significant reduction in com-
putational complexity that is achieved. Note that this requirement
applies only to marker symbols. The remaining symbols need not
be drawn with consecutive strokes.

The complexity of the stroke clustering algorithm is O�n3�. This
is because at each iteration of the algorithm, we identify the near-
est two clusters in a naive way by considering all cluster pairs.
Each iteration thus has O�n2� complexity. �Although not imple-
mented, it is possible to compute the two nearest clusters with
more efficient algorithms that run in O�n log n�.� This process is
repeated until a single all-encompassing cluster is obtained, which
requires O�n� iterations. In actuality, the number of clusters is
reduced by 1 at each iteration; thus the overall complexity is sub-
cubic.

Finally, the complexity of the recognition step is O�c ·d�, where
c is the number of stroke clusters and d is the number of domain
symbols. This is because the recognizer compares every cluster to
every symbol definition.

To provide a sense of the kind of performance actually achieved
in practice, Fig. 8 shows performance data from three different
sketches. These sketches contain between 18 and 148 pen strokes.
For comparison, the sketch in Fig. 1 contains 44 strokes, 6 marker
symbols, and 6 clusters, which is slightly less complex than Case
2 in the table. The table lists the amount of CPU time required for
preliminary recognition, clustering, and symbol recognition. It is
clear from these examples that the performance is quite acceptable
for interactive use. Even with 148 pen strokes, processing took
only a little more than 3 s on a CPU that was not particularly fast.

10 User Interaction
Our software is deployed on a 9�12 in.2 Wacom Cintiq digi-

tizing tablet with a cordless stylus. This tablet is also a liquid
crystal �LCD� display, which enables users to see virtual ink di-
rectly under the stylus, thus providing a working environment
similar to pen and paper. The tablet provides time stamped data
packets containing the coordinates of the stylus tip. Additionally,
the stylus has two buttons located along its shaft, which provide
functionality similar to that of mouse buttons.

After completing the drawing, the user initiates interpretation of

the sketch by tapping the “process” button located at the top left

OCTOBER 2008, Vol. 130 / 101101-7

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



c
t
n
u
a
c
t
w
r
e
d
f
M
g
w
F
a

h
c
d
m
c
g
t

p
t
m
d
p
t
c
w
w
i
a
f
o
s

s
p
b
t
i
c
d

by

1

Downl
orner of the drawing surface. At this point, the program processes
he collection of strokes and identifies the mechanical compo-
ents. The program demonstrates its understanding by displaying
nique text labels next to the identified components. The labels
re similar to those an engineer might use. For example, k1 indi-
ates that the component is a spring and, furthermore, that it was
he first spring drawn. Similarly, m3 indicates that the component
as the third mass drawn. A default value of 1 is assigned to the

elevant properties of each spring, damper, and external force. For
xample, each spring is assigned a stiffness of 1 N/m, and each
amper is assigned a damping constant of 1 N s /m. External
orces have the form Fo cos�� · t�, with Fo=1 N and �=1 rad /s.

asses are assigned mass values proportional to their size. The
eometrically largest mass symbol is assigned a mass of 1 kg,
hile the remaining ones receive proportionally smaller values.
or example, a mass symbol half the size of the largest one is
ssigned a mass of 0.5 kg.

Once the sketch is interpreted, users can study the system be-
avior directly from the sketch interface. For example, the user
an run a live animation by tapping the “simulate” button on the
rawing surface. When the user does this, the sketch itself is ani-
ated: The masses move and the springs and dampers stretch and

ompress. The simulation results are also displayed in the form of
raphs. As shown in Fig. 1, the graphical output consists of posi-
ion versus time plots and the frequency response of the system.

The user can change the default parameters of an object by
ointing to it with the stylus and clicking one of the stylus’ but-
ons. Figure 1 shows an example. Here, the user has clicked on a

ass symbol, bringing up a dialog box specialized to masses. This
ialog box contains fields for editing the mass value, the initial
osition, and the initial velocity �the latter are 0 by default�. In-
eraction in these dialog boxes is also sketch based in that users
an change existing parameter values by crossing out the old ones
ith a delete gesture �a stroke through the number� and simply
riting in the new values. The new values are recognized using an

mage-based symbol recognizer we previously developed �32� and
re then displayed in computer fonts. Similar dialog boxes exist
or the other kinds of components. Changes made to the properties
f an object are automatically transferred to MATLAB and a new
imulation is performed.

The user has the option of viewing the model in its original
ketchy form or in a cleaned up iconic form. The iconic form
reserves the size of the original shapes. The user can toggle
etween these two views by tapping the “toggle view” button on
he drawing surface. Users of our system have indicated that the
nformality of the sketchy view gives a sense of freedom and
reativity, while the iconic view gives a sense of completeness and

P
R

Number of Strokes = 18
Number of Markers= 2
Number of Clusters = 3

1

4
Number of Strokes = 52
Number of Markers= 6
Number of Clusters = 6

Number of Strokes = 148
Number of Markers= 20
Number of Clusters = 18

1

Case 1

Case 2

Case 3

Fig. 8 Processing times of the va
ferent sketches. All times are in m
cludes both ground and mass sym
GHz Pentium 4 machine with 256 M
efiniteness.

01101-8 / Vol. 130, OCTOBER 2008

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
11 Evaluation and Discussion
We asked 13 subjects, most of them were graduate and under-

graduate mechanical engineering students, to sketch two vibratory
systems.3 Each participant provided two sketches of each system
for a total of four sketches. Figure 9 shows four typical sketches
from the study and their corresponding interpretations. Partici-
pants had very little or no experience with the LCD tablet. More-
over, the test was conducted in a walk-up-and-draw fashion in
which participants were nearly immediately asked to start draw-
ing. Only a brief warm-up period of about 30 s was given to allow
a participant to become familiar with the stylus and LCD tablet.
No explanation was given about how the program performs its
task. For example, participants were not told that the system be-
gins by looking for closed loops and hatches to identify masses
and ground symbols. Each session involved only data collection.
The data were processed at a later time so as to prevent the par-
ticipants from adjusting their drawing style based on our pro-
gram’s output.

The initial results indicate that we have a sound parsing and
recognition approach. While our parsing algorithm worked quite
successfully, when it did fail, it was due to the phenomenon illus-
trated in Fig. 7�b�, in which symbols are too close to one another.
For the sketches in which parsing was successful, we found our
feature-based symbol recognizer to be highly accurate, despite the
fact that none of the participants were involved in training the
recognizer. The recognizer was previously trained by one of the
authors using ten training examples for each symbol. Using such a
small amount of training data, none of which was provided by the
study participants, provides a challenging test of the recognizer’s
performance. We found that the rare misrecognitions were due to
deficiencies in the segmentation process caused by participants
drawing too quickly or too small.

Our mass recognizer worked correctly for 11 of the 13 partici-
pants. One participant sometimes drew a mass and spring together
in a single pen stroke. Another drew small triangles for the arrow-
heads on the forces, which were then misrecognized as masses.
We believe that this situation can be fixed relatively easily by
filtering out masses that are significantly smaller than the other
masses.

Our ground recognizer worked correctly for 9 of the 13 partici-
pants. One participant drew only three hatch strokes, while our
program requires a minimum of four. A second participant drew
ground symbols with three sets of hatches, each containing three

3To ensure consistency across participants, they were asked to sketch vibratory
systems that were presented in a schematic drawing. While this study design does
provide a meaningful evaluation of our software, it would also be useful to conduct

inary
nition

Stroke
Clustering

Symbol
Recognition

s. Less than 14 ms. 326 ms.

s. 581 ms.55 ms.

ms. 627 ms.1170 ms.

us program modules for three dif-
econds. “Number of markers” in-

s. Experiments conducted on a 1.7
tes of RAM.
relim
ecog

52 m

20 m

392

rio
illis
bol
additional studies in which subjects were asked to sketch devices of their choosing.

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s
p
o
a
g
t
t
s
b
t
v
m
o

a
t
m
e
s
t
s
i
a

J

Downl
trokes that were drawn far apart from each other. A third partici-
ant varied the directions of the hatch strokes, for example, with
ne pointing to the southwest, another pointing to the northeast,
nd so on. These three situations could be handled by a more
eneral definition of a ground symbol. In particular, we expect
hat there are only a few common styles of hatches. We expect
hat a special-purpose recognizer could be built for each such
tyle. A fourth participant sometimes used a single stroke to draw
oth a spring and a ground and rarely lifted the pen while drawing
he hatches. These findings suggest that to accommodate a wider
ariety of users, it may be necessary to adjust some of the geo-
etric criteria used in our special-purpose mass and ground rec-

gnizers.
Occasionally, the participants would try to improve the appear-

nce of their sketch after it was nearly completed. For example,
hey might add a small bit of ink to try to close the boundary of a

ass or they might try to extend a ground symbol by adding a few
xtra hatches. Our mass and ground recognizers require that
trokes be drawn consecutively. Thus when new ink is added in
his way, it is identified as a separate symbol. We are working to
olve this problem by relaxing the requirement for temporal prox-
mity when recognizing mass and ground symbols. Note that such

Fig. 9 Examples of sketches from t
dded ink typically does not pose problems in the recognition of

ournal of Mechanical Design

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
springs, dampers, and forces, as our clustering approach is not
sensitive to the temporal order, and moreover our feature-based
recognizer is robust to a few extra or missing strokes.

Our program did work as expected for the majority of the study
participants. This is quite encouraging given that they had no ex-
perience with our system, and no information about how it
worked, prior to the study. As described above, we are working to
resolve the problems that some participants encountered. How-
ever, providing users with even minimal information about how
the system works would also prevent errors and would still pro-
vide a natural drawing environment. To help reveal the complex-
ity of sketches our system can undertake, Fig. 10 shows a sketch
consisting of 92 strokes. The sketch is accurately recognized ex-
cept for one spring symbol.

Our results suggest that the mark-group-recognize technique
works well for the domain of vibratory mechanical systems. We
believe that this technique also has direct application to other
domains. For example, we have used it to interpret networklike
diagrams consisting of symbols linked together with arrows �13�.
We are continuing to explore ways to further generalize the mark-
group-recognize technique. For example, in the work presented
here, temporal proximity is used to locate the marker symbols and

user study and their interpretations
he
spatial proximity is used to locate the other symbols. It may be

OCTOBER 2008, Vol. 130 / 101101-9

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



p
t

1

t
s
i

m….

1

Downl
ossible to create a more general technique in which spatial and
emporal information are combined to locate individual symbols.

2 Summary and Conclusions
We are working to develop sketch understanding techniques

hat will enable engineering software to work from the kinds of
ketches engineers ordinarily draw when designing, communicat-

Fig. 10 An example sketch attempted by our sys
one spring symbol „enclosed in box at the botto
ng, and problem solving. There are many challenges to be faced

01101-10 / Vol. 130, OCTOBER 2008

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
in creating such techniques. This work focuses specifically on
sketch parsing, the task of automatically separating a stream of
pen strokes into distinct symbols. To this end, we have presented
a novel mark-group-recognize approach to sketch parsing. Our
parser helps to provide a natural drawing environment by allow-
ing the user to draw continuously, without needing to indicate
when one symbol ends and the next one begins. In the first step of

. The sketch is accurately recognized except for
tem
parsing, easy-to-recognize “marker symbols” are extracted from

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t
A
s
F
s
t
d

d
a
s
i
d
u
r
s
s
t

R

J

Downl
he input stream, thus helping to separate the remaining symbols.
clustering algorithm is then used to group the remaining pen

trokes into distinct clusters, each representing a unique symbol.
inally, the clusters are recognized with a trainable multistroke
ymbol recognizer. This recognizer uses a feature-based represen-
ation and relies on a statistical model, thus making it robust to
rawing variations, such as variations in drawing order and shape.

We have used these techniques to build a sketch-based tool for
esigning and analyzing vibratory mechanical systems. This tool
llows users to construct a computational model of a vibratory
ystem by simply sketching the system on an LCD tablet. Our tool
nterprets the sketch, analyzes the vibratory behavior, and pro-
uces an animation of that behavior by directly animating the
ser’s sketch. Our user studies have shown that our parsing and
ecognition algorithms work well even for novice users. While our
oftware is not a comprehensive vibration analysis tool, it is one
tep toward our vision of enabling natural sketch-based interfaces
o support engineering design and analysis.

eferences
�1� Shpitalni, M., and Lipson, H., 1995, “Classification of Sketch Strokes and

Corner Detection Using Conic Sections and Adaptive Clustering,” ASME J.
Mech. Des., 119, pp. 131–135.

�2� Ullman, D. G., Wood, S., and Craig, D., 1990, “The Importance of Drawing in
the Mechanical Design Process,” Comput. Graph., 14�2�, pp. 263–274.

�3� Schutze, M., Sachse, P., and Romer, A., 2003, “Support Value of Sketching in
the Design Process,” Res. Eng. Des., 14, pp. 89–97.

�4� Yang, M. C., 2003, “Concept Generation and Sketching: Correlations With
Design Outcome,” ASME Design Engineering Technical Conferences and De-
sign Theory and Methodology Conference, Chicago, IL, September 2–6.

�5� Song, S., and Agogino, A. M., 2004, “Insights on Designers’ Sketching Ac-
tivities in New Product Design Teams,” ASME Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, Salt
Lake City, UT, September 28–October 2.

�6� Yang, M. C., and Cham, J. G., 2007, “An Analysis of Sketching Skill and its
Role in Early Stage Engineering Design,” ASME J. Mech. Des., 129�5�, pp.
476–482.

�7� Chusilp, P., and Jin, Y., 2006, “Impact of Mental Iteration on Concept Gen-
eration,” ASME J. Mech. Des., 128�1�, pp. 14–25.

�8� de Silva, R., Bischel, D. T., Lee, W., Peterson, E. J., Calfee, R. C., and Sta-
hovich, T. F., 2007, “Kirchhoff’s Pen: A Pen-Based Circuit Analysis Tutor,”
Eurographics Workshop on Sketch-Based Interfaces and Modeling, June 11–
13, Annecy, France.

�9� Fonseca, M. J., Pimentel, C., and Jorge, J. A., 2002, “Cali-an Online Scribble
Recognizer for Calligraphic Interfaces,” AAAI Spring Symposium on Sketch
Understanding, March 25–27, Palo Alto, CA, pp. 51–58.

�10� Narayanaswamy, S., 1996, “Pen and Speech Recognition in the User Interface
for Mobile Multimedia Terminals,” Ph.D. thesis, University of California at
Berkeley, Berkeley, CA.

�11� Landay, J. A., and Myers, B. A., 2001, “Sketching Interfaces: Toward More
Human Interface Design,” IEEE Computer, 34�3�, pp. 56–64.

�12� Gennari, L., Kara, L. B., and Stahovich, T. F., 2004, “Combining Geometry
and Domain Knowledge to Interpret Hand-Drawn Diagrams,” AAAI Fall Sym-
posium Series 2004: Making Pen-Based Interaction Intelligent and Natural,
October 21–24, Washington, D.C.

�13� Kara, L. B., and Stahovich, T. F., 2004, “Hierarchical Parsing and Recognition
of Hand-Sketched Diagrams,” User Interface Software Technology �UIST�,
October 24–27, Santa Fe, NM.

�14� Saund, E., Mahoney, J., Fleet, D., Larner, D., and Lank, E., 2002, “Perceptual
Organisation as a Foundation for Intelligent Sketch Editing,” AAAI Spring
Symposium on Sketch Understanding, March 25–27, Palo Alto, CA, pp. 118–
125.
ournal of Mechanical Design

oaded 21 Oct 2008 to 128.2.48.84. Redistribution subject to ASME 
�15� Jacobs, D. W., 1988, “The Use of Grouping in Visual Object Recognition,”
MIT AI Lab, Technical Report No. 1023.

�16� LaViola J., and Zeleznik, R., 2004, “Mathpad2: A System for the Creation and
Exploration of Mathematical Sketches,” ACM Transactions on Graphics �Pro-
ceedings of SIGGRAPH 2004�, August 8–12, Los Angeles, CA, Vol. 23, pp.
432–440.

�17� Notowidigdo, M., and Miller, R. C., 2004, “Off-Line Sketch Interpretation,”
AAAI Fall Symposium Series 2004: Making Pen-Based Interaction Intelligent
and Natural, October 21–24, Washington, D.C.

�18� Costagliola, G., and Deufemia, V., 2003, “Visual Language Editors Based on lr
Parsing Techniques,” Proceedings of the Eighth International Workshop on
Parsing Technologies �IWPT’03�, Nancy, France.

�19� Sezgin, T. M., and Davis, R., 2005, Hmm-Based Efficient Sketch Recognition,
International Conference on Intelligent User Interfaces �IUI’05�, New York,
January 9–12.

�20� Yasuda, H., Takahashi, K., and Matsumoto, T., 2000, “A Discrete Hmm for
Online Handwriting Recognition,” Int. J. Pattern Recognit. Artif. Intell., 14�5�,
pp. 675–688.

�21� Grimson W. E. L., 1991, “The Combinatorics of Heuristic Search Termination
for Object Recognition in Cluttered Environments,” IEEE Trans. Pattern Anal.
Mach. Intell., 13�9�, pp. 920–935.

�22� Shilman, M., Pasula, H., Russell, S., and Newton, R. 2002, “Statistical Visual
Language Models for Ink Parsing,” AAAI Spring Symposium on Sketch Un-
derstanding, March 25–27, Palo Alto, CA, pp. 126–132.

�23� Rubine, D., 1991, “Specifying Gestures by Example,” Comput. Graph., 25,
pp. 329–337.

�24� Shilman, M., and Viola, P., 2004, “Spatial Recognition and Grouping of Text
and Graphics,” EU-ROGRAPHICS Workshop on Sketch-Based Interfaces and
Modeling, August 30–31, Grenoble, France.

�25� Alvarado, C., and Davis, R., 2005, “Dynamically Constructed Bayes Nets for
Multi-Domain Sketch Understanding,” International Joint Conference on Arti-
ficial Intelligence, July 30–August 5, Edinburgh, Scotland, UK.

�26� Kimura, T. D., Apte, A., and Sengupta, S., 1994, “A Graphic Diagram Editor
for Pen Computers,” Software Concepts and Tools, pp. 82–95.

�27� Ozer, O. F., Ozun, O., Tuzel, C. O., Atalay, V., and Cetin, A. E., 2001,
“Vision-Based Single-Stroke Character Recognition for Wearable Computing,”
IEEE Intell. Syst., 16�3�, pp. 33–37.

�28� Apte, A., Vo, V., and Kimura, T. D., 1993, “Recognizing Multistroke Geomet-
ric Shapes: An Experimental Evaluation,” Proceedings of the UIST 93, No-
vember 3–5, Atlanta, GA, pp. 121–128.

�29� Fonseca, M. J., and Jorge, J. A., 2000, “Using Fuzzy Logic to Recognize
Geometric Shapes Interactively,” Proceedings of the Ninth International Con-
ference on Fuzzy Systems �FUZZ-IEEE 2000�, San Antonio, TX, May 2000.

�30� Matsakis, N. E., 1999, “Recognition of Handwritten Mathematical Expres-
sions,” MS thesis, MIT, Cambridge.

�31� Hse, H., and Newton, A. R., 2004, “Sketched Symbol Recognition Using
Zernike Moments,” 17th International Conference on Pattern Recognition,
Cambridge, UK, Vol. 1, pp. 367–370.

�32� Kara, L. B., and Stahovich, T. F., 2004, “An Image-Based Trainable Symbol
Recognizer for Sketch-Based Interfaces,” AAAI Fall Symposium Series 2004:
Making Pen-Based Interaction Intelligent and Natural, October 21–24, Wash-
ington, D.C.

�33� Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Raj Reddy, D., 1980, “The
Hearsay-II Speech Understanding System: Integrating Knowldge to Resolve
Uncertainty,” ACM Comput. Surv., 12�2�, pp. 213–253.

�34� Duda, R. O., Hart, P. E., and Stork, D. G., 2001, Pattern Classification, 2nd
ed., Wiley, New York.

�35� Kara, L. B., 2004, “Automatic Parsing and Recognition of Hand-Drawn
Sketches for Pen-Based Computer Interfaces,” Ph.D. thesis, Carnegie Mellon
University, Pittsburgh, PA.

�36� Stahovich, T. F., 2004, “Segmentation of Pen Strokes Using Pen Speed,”
AAAI Fall Symposium Series 2004: Making Pen-Based Interaction Intelligent
and Natural, October 21–24, Washington, D.C.

�37� Domingos, P., and Pazzani, M. J., 1997, “Beyond Independence: Conditions
for the Optimality of the Simple Bayesian Classifier,” Mach. Learn., 29, pp.
103–130.
OCTOBER 2008, Vol. 130 / 101101-11

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


