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ABSTRACT
Sketches, whether hand-drawn or computer generated, are

a natural and integral part of the design process. Despite this
fact, modern day computational design tools are ill-equipped to
take full advantage of sketching input. The computational chal-
lenges of recognizing sketches are easily overcome by human
visual recognition and much insight stands to be gained by em-
ulating human cognitive processes. Creating robust, automated
tools that overcome the ambiguity of sketching input would al-
low for advances not only in the practice of engineering design,
but in the education of design itself. One first step toward the de-
velopment of a robust sketching tool is to determine how humans
interpret mechanical engineering diagrams. This paper presents
two contributions toward the goal of an automated diagram un-
derstanding system. First, a method is presented to gain insight
into human diagram recognition using techniques analogous to
peripheral vision and human attention. Following this, a cogni-
tive model of human diagram understanding is presented from
which to further develop computational design tools. With this
work, researchers should be able to (1) improve understanding
of human diagram recognition and (2) use our model to emulate
human diagram recognition in future computational design tools.

INTRODUCTION
Sketches and diagrams are some of the oldest and most

widely used tools by engineers. They are the fastest way for
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us to record our ideas in visual form and they act as an essential
element in group communication. Engineers and architects [1]
are famous for “back of the envelope” sketches, and some even
use drawing as a thinking tool [2]. Decades of study into the role
of sketching in the design process have demonstrated its impor-
tance. Ullman et al. [3], in a seminal study on the importance
of drawing in mechanical design, concluded that “CAD systems
must allow for sketching input”. Recent work has echoed Ull-
man’s findings, further necessitating the development of intelli-
gent sketch understanding systems. Shah et al. [4] show that col-
laborative sketching methods produce designs of higher quality
when compared with non-sketching methods. Work by McKoy
et al. [5] furthers Shah’s research, and concludes that “Sketching
is best for representing ideas generated during conceptual design,
compared to textual representations.” Schütze et al. [6] showed
a strong positive correlation between sketching and resultant de-
sign quality, concluding that “digital sketching tools... can create
potentially large time and cost savings for computer-aided de-
sign in mechanical engineering.” Work done by Tversky [7, 8],
Yang et al. [9, 10], Song and Agogino [11], and others [12] have
reinforced the importance of sketching tools in the engineering
design process.

Despite the importance of sketching in the engineering de-
sign process, most modern day Computer Aided Design (CAD)
systems have difficulty tapping into this ubiquitous form of com-
munication. Sketching is inherently ambiguous and the same
symbol can have different meanings depending on both the con-
text and the domain (the symbol for a spring and a resistor are
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identical, yet they mean different things). In addition, unlike
sketches generated via a tablet PC, scanned sketches lack tem-
poral information about stroke order which might help identify
or segment symbols. Despite these challenges, humans are ca-
pable of performing sketch identification with relative ease. By
understanding the ways that humans perform sketch recognition,
it may be possible to develop computational methods that over-
come sketch ambiguity and perform more akin to human recog-
nition.

Recognizing diagrams, which are cleaner and less ambigu-
ous than sketches, is the first step in enabling more efficient
sketch-based computational tools. For the purpose of this work,
the type of diagrams studied are mechanical engineering text-
book diagrams, examples of which can be seen in Fig. 11. In
this work, a new method is presented that dissects the human di-
agram recognition process in order to understand how humans
overcome diagram ambiguity. Results from a small five person
user study are presented and the significance of the results is dis-
cussed. We also present a cognitive model of human diagram un-
derstanding that lays the groundwork for the future development
of computational tools that emulate human recognition. This new
method, along with the cognitive model, represents a new avenue
for solutions to the challenges of sketch recognition noted above.
Our main contributions are two-fold: (1) the new testing method
enables a new direction of research into human diagram under-
standing, using techniques based on peripheral vision and human
attention, and (2) the cognitive model provides a foundation of
knowledge from which new computational tools can arise that
emulate human cognitive processes.

RELATED WORK
The problem of sketch and diagram understanding has been

explored for a number of years in a wide variety of fields,
including computer science, engineering, and cognitive psy-
chology. Relevant research toward solving this problem can
be broken down into three main areas: Sketch Identification,
Sketch/Diagram Understanding, and Human Visual Understand-
ing. The following section will present related research and pub-
lications in each of these areas.

The goal of Sketch Identification research is to use visual
information to identify elements within a sketch or diagram.
This not only includes research in identifying symbols them-
selves, but also in how to group or segment relevant symbols
together. Ramani et al. have demonstrated the power and rele-
vance that sketch identification techniques can have on the me-
chanical design process. Through the use of probability based
classifiers, Ramani et al. were able to use three sketches of a
part to accurately identify and retrieve a corresponding solid
model [13]. Igarashi et al. showed how identifying certain ge-
ometric relations between lines, such as parallelism, could al-
low for the beautification of sketches [14]. Igarashi’s methods

provide insight, from both a human and computational perspec-
tive, on how geometric relations play a part in sketch recogni-
tion. Saund et al. demonstrate how the use of gestalt principles,
such as smooth continuation and spatial proximity can group and
segment sketches in a way that better emulates human perfor-
mance [15, 16]. Kara et al. showed how stroke clustering algo-
rithms based on minimum spanning trees can be used effectively
to segment and identify elements in an online sketch environ-
ment [17, 18].

In contrast with sketch identification, the field of sketch
and diagram understanding undertakes the challenge of drawing
qualitative meaning from symbols. Rather than purely identify-
ing symbols, sketch and diagram understanding attempts to as-
sess the qualitative behavior of elements within a sketch, for the
purposes of identification and simulation. For the past decade,
Robert Futrelle has been developing the Diagram Understanding
System, utilizing context-based constraint grammars and spatial
indexing to identify 2D graph-based scientific data [19, 20]. By
formulating the task of symbol identification and simulation as
a constraint satisfaction problem, Kurtoglu and Stahovich have
produced a symbol recognition system capable of correctly deter-
mining the meaning of a limited set of symbols used across mul-
tiple domains [21]. Similar goals were achieved by Alvarado and
Davis through dynamically constructed bayes nets, wherein both
user stroke data and contextual information informed the recog-
nition process [22, 23], and through “categorical and situational
rules” [24]. Causal reasoning techniques, specifically Qualita-
tive Configuration Spaces, have been explored by Stahovich and
Kara, and have been used to not only computationally simulate
the behavior of mechanical diagrams but also to synthesize new
designs [25–27].

Lastly, cognitive psychologists have been studying attention
and visual perception for a number of years in an attempt to un-
derstand human cognitive functions. Specifically for diagram
recognition, Tversky et al. have produced a number of publi-
cations exploring the roles of demarcations such as arrows in
mechanical diagrams [7], the cognitive processes of spatial cog-
nition [28], and the attentional focus that designers give to their
own sketches [8].

The work presented in this paper, while related to the previ-
ous research described above, differentiates itself by integrating
elements from both the cognitive psychology and computer vi-
sion communities. This paper proposes a cognitive model for
diagram understanding, but aligns itself with the goal of devel-
oping a computational infrastructure upon which future research
can be based. Unlike much prior cognitive psychology research,
our work focuses specifically on the recognition and mental sim-
ulation of mechanical diagrams. Yet our work is developed in
a broader context than much of the sketch identification or dia-
gram understanding research to date. By providing a common
platform from which these fields can work together, our work
aims to make the computational emulation of human diagram-
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Figure 1. Humans use top-down processing to identify the dalmatian

matic processing achievable.

BACKGROUND: CURRENT HUMAN VISUAL RECOGNI-
TION THEORIES

For decades, biologists, psychologists, and many others have
studied the way our brains perceive images. Current understand-
ing groups our abilities into two camps, often called Top-Down
processing and Bottom-Up processing. These two processes
work together simultaneously to help us recognize images.

Top-Down processing, which is more knowledge-driven, in-
volves using information about context or experience to help
identify patterns. An example of top-down processing can be
seen in Fig. 1. The individual blots in the picture do not mean
much to us, but when viewed in the context of the entire pic-
ture we can use them to identify the image of the dalmatian.
The efficacy of top-down processing is largely dependent on user
experience, and interprets new evidence in the context of what
is already known. In contrast, Bottom-Up processing, or data-
driven processing, uses the aggregate of individual features in
certain symbols in order to identify them. This is the same way
many modern computer symbol recognizers work, by identifying
specific features and associating them with a distinct classifica-
tion. Within the psychology community there are four common
theories to explain bottom-up processing: Template matching,
Prototype theory, Feature Analysis, and Recognition by Compo-
nents [29, 30]. Full coverage of these four areas is beyond the
scope of this work, but our user experiences during our studies
suggest that a combination of prototype theory and feature anal-
ysis is used during the recognition process.

TECHNICAL APPROACH
In order to better understand human diagram recognition,

which occurs in a matter of seconds, we first need to slow down
the recognition process. By slowing down the diagram recog-
nition process, key insights can be gained about how humans
gather and use visual information to identify images. Our ap-
proach to slowing down human diagram recognition is based on
separating the human ability to concurrently perform top-down
and bottom-up processing. This is accomplished through a tablet
PC interface that restricts viewing to areas consciously selected
by the user. This section will provide a brief overview of how our
experiment takes advantage of current theories to slow down hu-
man diagram recognition. Lastly, the findings of our experiment
will be discussed.

Slowing Recognition Through Human Disabling
We have devised a combination of two techniques that allow

us to control when users are able to conduct bottom-up versus
top-down processing. Our approach is analogous to the way that
peripheral vision works [29]. In peripheral vision, the eyes can
only focus clearly on one specific portion of an image at any one
time, and everything outside of a certain radius appears blurred.
Our method mimics this phenomenon, forcing the user to con-
sciously select the areas of the image they wish to focus on while
limiting their field of view.

To eliminate bottom-up processing, we first blur the entire
image. In this way the user can only see rough clusters of points,
without the feature detail necessary to perform bottom-up pro-
cessing. With bottom-up processing temporarily suspended, the
user is forced to use top-down processing. In this way, the user
attempts to recognize the image using only contextual informa-
tion and their past experience. An example of such a blurred
image can be seen in Fig. 2.

Once the user has extracted as much information as possible
from the blurred image, the user can interact with the image us-
ing a tablet PC interface by circling or otherwise demarcating a
portion of the image that they wish to uncover. An example of
a user interacting with our interface can be seen in Fig. 3. This
will de-blur the image in the selected portion, allowing access to
a small amount of feature information from which the user can
conduct bottom-up processing. In order to prevent the user from
circling and uncovering the entire image at once, a blur is applied
to the selected area in proportion to the area of the selection. The
smaller the circled area, the crisper the underlying image will be-
come. This relationship is described in Eqn. 1, and an example
of this can be seen in Fig. 2.

Selection Blur ∝ C ∗

√
Areaselection

Areaimage
(1)

Where Aselection is the area of the polygon selected by the user,
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Figure 2. (a) The original textbook image (b) The blurred image initially
seen by the user (c) Selected area de-blurred by the user

Aimage is the area of the original image, and C is a blurring con-
stant that can be adjusted by whoever is conducting the experi-
ment. The user can then repeat this process of selection multiple
times until the problem is identified. It should be noted, however,
that the user is only able to de-blur one section of the image at
one time. This means that previously clear areas will be blurred
once again when the user selects a new focal area. This choice
better mimics the process of shifting attention around an image,
and discourages the user from simply uncovering the entire im-
age over time.

Throughout the experiment, as the user begins to uncover
more and more information, we ask the user to verbalize their
thought processes and decisions, recording them using a built-in
microphone. By recording their verbal descriptions along with
their pen strokes, we are able to play back the entire session
without the use of video recording equipment. The user is also
provided with a yellow canvas, as seen in Fig. 10, upon which

Figure 3. Users interact with the program using tablet interface

Figure 4. An example heat map showing the areas most important to
the user. The user was able to correctly identify the image using only the
selected information.

they can sketch or record their hypotheses as they unfold. In ad-
dition to recording the user during the session, we also record a
final “heat map” which overlays the areas the user selected on the
original image. An example of this can be seen in Fig. 4. This
allows us to focus on which areas the user thought were the most
important for the understanding of the image. In our tests we de-
fine “understanding” to be the ability to describe, either orally or
visually, the qualitative behavior of the mechanical system. This
includes identifying each piece of the image and being able to
describe how those pieces interact and change in relation to each
other.

Our method of using selective de-blurring of the image al-
lows constant information access to top-down processing, but
only select information access to bottom-up processing. This al-
lows us to slow down the process of human diagram recognition
enough so that users are able to verbalize their thought processes
and decisions more clearly. In the following section, user studies
are presented which show some of the results obtained using our
method.
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Figure 5. Each image existed with and without labels and demarcations

User Testing
In order to test the efficacy of our method at helping under-

stand human diagram recognition, we tested it on five mechanical
engineering students at Carnegie Mellon University. This section
will present the implementation of our method, along with the re-
sults gained through our five subjects.

Experimental Implementation Our method was im-
plemented using a Java Applet run on a Tablet PC, and used a
set of 14 images selected from a variety of Mechanical Engi-
neering textbooks across a number of disciplines [31–35]. The
set of images used in this study is included at the end of the pa-
per in Fig. 11. We duplicated the set of 14 images and removed
all demarcations, such as labels and arrows, such that only the
constituents of the diagram were left. This resulted in a total
set of 28 images that were used in the experiment. An example
comparison between the sets can be seen in Fig. 5. This set of
28 images was divided into 2 corresponding sets of mutually ex-
clusive images, each set containing 7 images with labels and 7
without labels. The users were assigned one of these image sets
and were shown a randomly selected image within that set. We
ensured that the users never saw the same image twice, whether
labeled or not.

In order to get the users to select only the portions of the

image that were of greatest importance, the recognition task was
proposed as a game. The object of the game was to get the low-
est possible “score,” which increased based on the number and
size of the circles drawn. In this manner, we discouraged the
user from excessively circling parts of the image that were un-
necessary for understanding. The users were also given a yellow
canvas upon which they could sketch what they thought the sys-
tem looked like. In addition to helping the user, it also allowed
us to roughly capture their mental model throughout the test.

In order to test the new experimental method, five seniors in
mechanical engineering were independently evaluated in a con-
trolled environment. Each subject was placed in a room with
one of the researchers conducting the study, and only had access
to the Tablet PC interface used during the study. Each student
was told that they would be shown a set of textbook diagrams
that may or may not have labels on them. The student was in-
structed that the goal was to identify the original image, as well
as to describe the qualitative behavior of the objects shown in
the image. Students were instructed to verbally describe their
thought process after each selection, and that they could elect
to use the canvas to draw out their ideas if desired. The was
no time-limit imposed on the students, as this might have stifled
each student’s ability to express his or her thought process ver-
bally. The test was conducted for 1 hour, or until the student had
correctly identified 10 images. Each student’s pen stroke infor-
mation was recorded, along with a voice and video recording of
the session so that it could be played back for further analysis.

Our user studies, in addition to testing our method’s efficacy,
were aimed at validating the following hypotheses:

1. Visual labels, such as arrows, letters, or phrases, that are not
part of the individual constituents of the image, help us un-
derstand images at a much faster rate, with less information.

2. Visual labels help us delineate between cases where the
model geometry is ambiguous, such as in cases where bars
could be rigid as opposed to flexible.

3. Humans use clusters of points to help us define spatial re-
lationships between subsections of an image and then focus
on specific features such as intersections of lines, symmetry,
or common symbols to reinforce our hypotheses regarding
those spatial relationships.

4. Certain parts of images, such as long continuous lines, are
not as essential to image understanding and many humans do
not need this information to correctly identify the function of
the diagram.

Results After performing the tests on five senior Me-
chanical Engineering students, several key observations were
recorded. These observations later went on to form the basis
for our cognitive model of human diagram understanding. Our
results indicated that the presence of labels, such as arrows and
equations decreased both the time required to identify the dia-
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Figure 6. Users tried searching for words to resolve ambiguity

gram and the difficulty of overcoming the ambiguity within the
diagram. Other results indicated that the attention of the users
was drawn to dense clusters of points that defined “information
rich” areas, particularly at interfaces between objects. The phe-
nomenon of confirmation bias was also noted as users developed
their final hypothesis.

Our first hypothesis addresses the role of labels, arrows, and
other descriptive marks. While statistically significant conclu-
sions cannot be drawn from our sample, we did notice that the
lack of labels caused significant problems for students, specifi-
cally when identifying the fluid damper seen in Fig. 5. In this
case, the student was unable to resolve the ambiguity in the im-
age without labels. As seen in Fig. 6, the user eventually started
searching around empty parts of the image, trying to find labels to
solidify his understanding of the image. This same example also
shows that visual labels help us delineate between cases where
the model geometry is ambiguous. In Fig. 6, the lack of labels
caused a great deal of frustration for users as they tried to resolve
the ambiguity inherent in diagram recognition.

The practice of using dense clusters of points to define areas
of focus was used extensively by all participants. Many users
based future selections off the amount of data that might be un-
covered in a specific region. Areas with interactions or dense
populations of points are more “information rich” and can lead
to solution convergence faster. This behavior was noticed across
all users.

In tandem with the notion that humans uses point clusters as
visual anchor points, humans will also avoid paying attention to
less “information rich” areas of an image, such as long continu-
ous lines. This is due to the human ability to use gestalt principles
to connect or associate things that cannot be seen directly. Users
rationalized the entire image without having to see it directly.
An example can be seen in Fig. 7, where the user was able to
use symmetry and continuation to correctly recognize most of
the image without the need to inspect the features. This result
implies that not all the feature information contained within an

Figure 7. Humans use Gestalt principles, such as symmetry, to facilitate
the recognition process

Figure 8. Users searched for interactions between objects to resolve
ambiguity

image is needed in order to make a correct identification of the
image.

One additional observation noted beyond our listed hypothe-
ses was the importance of interactions between objects in iden-
tifying the purpose of the diagram. Users spent the most time
observing how objects interacted with one another, and not with
identifying the actual objects themselves. The interfaces between
objects are information rich, since they dictate the constraints or
relations that govern each object. For example, a rectangular
block of mass contains only information about the object, while
identifying a pin joint between an arm and a mass contains in-
formation about the objects themselves, as well as the kinematic
constraints that govern them. Interfaces are so important that sev-
eral users explicitly searched for interactions in order to reduce
the ambiguity in the diagram, such as in Fig. 8.

The last major conclusion drawn from our results is the hu-
man tendency to fixate on one hypothesis while collecting evi-
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dence. Initially, the user has many hypotheses about what the
problem might be. However, as the user uncovers parts of the
image, they select a “dominant hypothesis,” which represents the
best potential representation of the problem given what they have
seen thus far. This dominant hypothesis is used by the user to
simulate the system in their head as they uncover the problem.
The user is unable to store multiple mental models in active at-
tention, and as a result the user fixates on one hypothesis in an
attempt to prove or disprove it. As the user gathers information
from the diagram, the current hypothesis acts as a filter which
considers the new evidence in the context of the dominant hy-
pothesis. This behavior is expressed in more detail in the next
section where the cognitive model is presented.

In summation, the results of our user testing indicated the
following key issues:

1. Labels, such as arrows, words, or equations, substantially
improve the recognition process by resolving ambiguity and
providing additional, though often redundant, information.

2. Human attention is drawn towards “information rich” areas
of a diagram, such as dense clusters of points, or the bound-
aries between objects. Humans want to maximize the infor-
mation gained with every shift in attention.

3. Humans use geometric relations, such as parallelism, and
gestalt principles, such as smooth continuation, in order to
predict areas that cannot be seen directly. Localized assump-
tions about visual information are used to minimize the need
for additional information.

4. Humans can suffer from confirmation bias, often filtering in-
formation to support their beliefs. When significant enough
cognitive dissonance develops, they reconsider their beliefs.

COGNITIVE MODEL
Following the development and testing of the experimental

approach described above, a cognitive model was developed to
describe the process that humans go through when recognizing
diagrams. The cognitive model presented here can act as the ba-
sis for the development of computational tools that emulate the
human diagram recognition process. The initial development of
the cognitive model was drawn from prior informal observations
made when noticing how users interacted with sketches and dia-
grams, as well as from current visual recognition theories in cog-
nitive psychology [29]. From this initial model, hypotheses were
generated that could be tested using the experimental method de-
scribed above. After performing user testing to validate these
hypotheses, the initial model was refined into the current model
presented below.

Overview
The cognitive model is broken down into four steps: Gather,

Recall, Identify, and Reconcile. The first step, Gather, describes

how we focus attention on parts of an image, as well as predict
new areas upon which to focus. The Recall step pulls information
from our past experience, such as domain knowledge or symbols,
to aid in interpreting new information. The Identify step uses
feature information gained from steps 1 and 2 to identify symbols
or interactions between symbols. Finally, the Reconcile step uses
new information to generate, update, and refine mental models,
or “hypotheses,” about the problem. These steps are repeated
cyclically in order to refine a “dominant hypothesis” which is a
mental model of the diagram seen by the user. The model itself
is presented in Fig. 9, and each step will be discussed in greater
detail throughout the coming sections.

Step 1 - Gather
When viewing images, humans are unable to focus on ev-

ery area of the visual field at once. Instead, humans attend to
select areas of an image at one time, shifting attention to differ-
ent parts of the image as needed. This process has been explored
by the cognitive psychology community, and studies have shown
that humans actively focus on some parts of images over oth-
ers, depending on the information they hope to gain from the
image [36]. The proposed cognitive model emulates these be-
haviors in the Gather step, where the human selects an area to
focus attention on.

In the model, the dominant hypothesis provides a mental
picture of the diagram which humans use to predict where fu-
ture attention should be focused. For example, take the image
and mental model shown in Fig. 10. The human can use his or
her mental model to predict the location of new prominent fea-
tures in the model. Instead of exploring all areas of the image,
the human instead predicts the next area to focus on based on
which areas will be most likely to either prove or disprove the
mental model.

Step 2 - Recall
Once an area has been selected in the Gather step, humans

need to retrieve information from their past experiences in order
to help identify the new visual information. The cognitive model
breaks this step into three areas: A pattern library, an interac-
tion library, and a set of domain schemata. Each of these parts
is utilized by the cognitive model to help identify symbols and
hypotheses that are consistent with past experiences.

The pattern library is a storage area in memory for all of
the past symbols seen by the human. This library stores visual
prototypes of common objects such as instantiations of springs,
dampers, masses, and pumps, among other symbols. These pro-
totype images can be deformed to match similar images within
a diagram. This library is akin to recognition approaches pro-
posed by prototype theory within the cognitive psychology com-
munity [29].

In contrast with the pattern library, the interaction library
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Figure 9. The cognitive model of human diagram understanding

Figure 10. Mental model helps predict new focus areas

stores information about how objects are related or connected
with one another. This purpose of the interaction library is

to help identify how various objects in a scene are connected
together. As an example, springs are known to connect with
masses, dampers, springs, and other devices, but are not known
to connect with electrical inductors, fluid valves, or resistors. In
this way, the interaction library acts as a set of constraints on
how symbols are interpreted. Its role in the recognition process
is explained in more detail in Step 3.

Finally, the domain schemata is a previous set of rules and
assumptions, learned through experience, that govern how ele-
ments should behave within a specific domain. For example, the
domain schemata for an undergraduate dynamics problem may
include:

1. A list of expected elements. Examples include springs,
dampers, masses, cams, rope, etc.

2. Initial assumptions regarding those elements. Examples in-
clude that springs should be considered massless, each mass
should be kinematically constrained to move in 1-2 degrees
of freedom, bars should be considered rigid, etc.

The extent of the domain schemata is large and difficult to quan-
tify, so the examples presented do not represent an exhaustive
set. Future research will have to be conducted to explore the
depth of this area in greater detail. The domain schemata is used
to bring identified symbols and interactions together into a co-
hesive whole. It allows humans to tie in pieces of the diagram
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into a mental model that can simulate the behavior of the system.
The use of the domain schemata in generating a mental model is
explained in greater detail in Step 4.

Step 3 - Identify
The identification step is responsible for taking in visual

information and using past experience to correctly identify the
meaning of a symbol. This process is two fold.

First, the mind identifies all elements that have the same ge-
ometric representation as the current visual input. An example of
this step is where a jagged line is interpreted as either a spring,
an electrical resistor, or a thermal resistor. In order to accomplish
this, information is pulled from the pattern library, discussed in
the Recall step. Our research did not investigate the exact cogni-
tive process by which recognition takes place, but it aligns itself
well with either prototype theory or feature recognition theories
proposed by the cognitive psychology community [29]. These
recognition techniques have also been explored computationally,
and form a good basis for future development within the model.

Our current model separates the identification step into 3
main components: The label recognizer, object recognizer, and
interaction recognizer. The delineation between components is
made based on the purpose of different parts of an image, as well
as the scope and type of symbols being identified.

Label Recognizer The label recognizer is responsible
for identifying elements such as letters, equations, and other la-
bels which are demarcations in the diagram, rather than objects
of the diagram themselves. Labels are differentiated from the
objects within the diagrams due to both their size and their func-
tion within the diagram. Labels such as letters or arrows are of-
ten small when compared with the objects they describe, and are
spatially segmented from the diagram. A comparison with and
without these labels can be seen in Fig. 5.

The ability to locate and identify labels such as letters or
arrows allows a gain in knowledge regarding both the domain
and behavior of the overall diagram. Arrows often indicate key
directions of motion or critical dimensions relative to the quali-
tative behavior of the diagram. Likewise, letters, equations, and
phrases provide similar knowledge regarding how the diagram
behaves. While the exact model cannot be determined from la-
bels alone, they are able to quickly define the domain of the prob-
lem.

Object Recognizer The object recognizer is where the
physical elements of the diagram itself are determined. Similar
to the label recognizer, the object recognizer draws information
from the pattern library in order to determine whether incoming
visual information is part of a set of already known images. If
the object is located within the pattern library, it is considered

“recognized” and is sent on to be reconciled with the dominant
hypothesis.

If only part of an object is seen, such as the corner of a box,
the recognition process uses context to help identify the parts of
an image that are unseen. In order to do this, geometric relations,
such as parallelism and symmetry [14], as well as gestalt princi-
ples, such as smooth continuation [16], are used to predict what
the entirety of the object might be. If enough evidence exists in
support of the prediction, then information is passed to the Rec-
oncile step. If not enough evidence exists, additional information
must be obtained from the diagram.

Interaction Recognizer If visual evidence cannot be
identified by either the label or object recognizer, it is passed off
to the interaction recognizer. The interaction recognizer is differ-
ent from the previous recognizers in that its focus is not on the
objects themselves, but rather the boundaries between objects.
This recognizer links objects together in ways that are compat-
ible with the definitions defined in the interaction library of the
Recall step.

An example of visual evidence that is processed by the in-
teraction recognizer is the connection between the spring and the
wall in Fig. 7. By using the knowledge that the end of the spring
connects perpendicularly to the wall, the mind can assume, with
higher probability, that the spring operates in a one dimensional
fashion in a direction normal to the wall.

Step 4 - Reconcile
The final step of the recognition process occurs when in-

coming visual information is reconciled with the current mental
model. Throughout the recognition process, the mind adjusts an
internal model of the problem that includes information about
not only the geometric configuration of the parts, but also about
the behavioral characteristics of each element. The process by
which this model is transformed over time involves the genera-
tion of candidate hypotheses, the weighting of these candidates
in accordance to current evidence, and the selection of a “domi-
nant hypothesis” which is then used to assist in other parts of the
recognition process. Once the first piece of evidence is collected,
multiple low-fidelity candidate hypotheses are created. As addi-
tional visual information is gained, the mind contrasts the ev-
idence against different hypotheses and gives more support to
some hypotheses over others. Eventually, the mind is unable to
maintain all candidate hypotheses in the same level of detail, and
selects the most probable idea as the dominant hypothesis.

With an influx of new information, the dominant hypothesis
can undergo three types of changes: An addition to the model, an
object-level change, or a domain-level change. An addition to the
model occurs when a new piece of evidence is found which ex-
tends the current model, without affecting any pre-existing com-
ponents of the model. An object-level change occurs when a new
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piece of evidence causes a change in one of the existing pieces of
the model. An example of this could be finding the word “flex-
ible” next to a bar, and changing the object from a rigid bar, to
a bar that can elastically deform. A domain-level change occurs
when a piece of evidence is found which alters the fundamental
domain of the problem, from a Dynamics to a Thermal Fluid do-
main for instance. All three changes occur as new evidence is
collected, and the mind eventually converges on a mental model
that matches the goal problem.

ANALYSIS AND IMPLICATIONS
While the work presented here describes our initial attempts

to develop a cognitive model of human diagram recognition, a
number of insights remain for further analysis. These issues in-
clude the relationship between the proposed cognitive model and
the results seen through our user testing, further extensions of our
testing method through which the model can be tested, future di-
rections of research that this work allows, and an overview of
some of the pitfalls of human recognition that should be avoided
when developing computational tools.

Implications for studying human diagram recognition
Though the proposed testing method is designed to slow

down the human diagram recognition process without substan-
tially altering it, extensions to our method would allow for ad-
ditional results not covered in this work. While the selective
de-blurring technique does not slow down cognitive processes
in all steps, it does slow down the speed at which information
can be gathered. While this substantially affects recognition
speed, it only minimally affects the overall cognitive process.
Our method, being analogous to peripheral vision, tracks the field
of view in a way similar to that of modern eye tracking [36]. The
difference in our technique is that it establishes a verbal proto-
col through which the internal mental model can be recorded.
Results from an eye tracking study using images similar to our
work could further validate this claim.

This work provides a platform upon which many future re-
search directions can be pursued. Two main areas of future re-
search include the validation of the cognitive model through spe-
cific experiments designed to test subsections of the model, and
the development of a computational model based on the cogni-
tive model presented in this work. In order to increase the ac-
curacy and utility of the current model, further research should
be conducted to better understand how hypothesis solutions are
generated and maintained over the course of the recognition pro-
cess. Our current testing method can slow down the gathering of
information within the model, but is not best suited for observing
how components of the model are assembled into a hypothesis,
leaving this area open to future research.

Implications for development of computational tools
The cognitive model was developed specifically to facilitate

implementation in a software architecture, and as such represents
a serial process. However, it is not clear that the human cognitive
process completely follows this serial sequence and evidence has
shown that human cognition is capable of both serial and parallel
processing [29]. Since our experimental method is not yet able
to isolate parallel processing steps, the cognitive model does not
yet reflect these attributes of human cognition.

Since our cognitive model is based on our user testing, there
exist a number of similarities that emulate common human cog-
nitive processes. User testing revealed that labels, words, and
demarcations such as arrows helped reduce ambiguity within the
diagram and lead to faster, more confident diagram recognition.
Our model takes this into account by designating a separate la-
bel recognizer specifically designed to detect these features. Re-
search indicated that humans pay specific attention to how ob-
jects interact with one another in order to determine qualitative
behavior. As a result, the model includes a recognizer designed
to facilitate the recognition of interactions between objects. A
curious phenomenon noted in user studies was the presence of
confirmation bias, wherein the user would filter and evaluate new
evidence only in the context of the dominant hypothesis, rather
than taking previous hypotheses into account. For this reason,
our model includes the fact that once a dominant hypothesis is
selected, new evidence is compared against only the dominant
hypothesis. Only when evidence is found to contradict the dom-
inant hypothesis is the hypothesis significantly altered. Lastly,
our model takes into account the ability of humans to predict the
location of new data, based off the use of geometric relations and
gestalt principles seen during user testing.

Besides improving the testing method, our current model
can be used to start developing computational tools that emu-
late human diagram recognition. By taking each component of
the model and substituting it with a computational process, it
becomes possible to link processes together which emulate hu-
man recognition. In so doing, the cognitive model can not only
be further validated, but also updated to include additional el-
ements found while implementing a computational equivalent.
Much research has already been conducted on certain aspects of
the sub components, such as the recognizers [13, 14, 17, 22] and
the physical reasoning required to generate qualitative hypothe-
ses [21, 25, 37]. Much of this research could be used to assist
in the creation of a computational tool that utilizes our current
cognitive model.

Finally, the results of the user studies raised the question of
whether the human mind is a good model to base computational
recognition systems on. While humans are very good at identi-
fying diagrams, they also suffer from critical issues that modern
computational tools may not want to inherit. One of these is-
sues, confirmation bias, increased the amount of time required
for recognition in a number of the users tested. Since humans

10 Copyright c© 2009 by ASME



select a dominant hypothesis as the working model, rather than
treating each hypothesis equally, humans start to become blind
to potential interpretations of symbols that are not supported in
their mental model. In studies this often caused users to pursue a
faulty hypothesis until enough evidence accrued to cause cogni-
tive dissonance between what they saw and what they believed.
This is caused by the fact that humans lack the working mem-
ory capacity that computers have, and are not capable of holding
multiple competing hypotheses in memory equally. While the
use of confirmation bias reduces the cognitive load on humans,
it might increase the rate of false recognitions or decrease the
speed at which problems are correctly recognized.

DISCUSSIONS AND CONCLUSIONS
Diagrams and sketches represent a key medium by which

people exchange ideas throughout the design process. Develop-
ing a robust tool that recognizes diagrams and sketches would al-
low for substantial advances in both the speed and efficacy of the
design process. This is particularly true when applied to commu-
nication within design teams that are not collocated. By allowing
computational tools the ability not only to transfer visual infor-
mation, but to also interpret and analyze it, these tools can be
used as additive members within the visual design process. Even
given the prevalence of computer aided design tools within the
engineering design community, the need still exists to develop
tools that are capable of interacting with visual information along
with their human counterparts.

Despite the need of these tools, several challenges exist that
have hindered the development of diagram recognition tools thus
far. The most prevalent of these challenges is the inherent ambi-
guity in the symbol nomenclature used across multiple domains,
along with isolating and identifying those symbols. However,
humans have little to no trouble identifying diagrams quickly
and easily. By understanding how humans are able to identify
diagrams, much insight can be gained in how to develop better
computational tools.

We have proposed a new technique to slow down the human
diagram recognition process. The technique uses dynamic blur-
ring of a target image to separate the top-down and bottom-up
processing that humans normally perform simultaneously. By
having humans select areas of interest, we can create a step wise
record of how their internal hypothesis unfolds. This method can
be used on any type of PC, on any set of images, and is applicable
to a wide variety of domains. Since this method was only tested
on a relatively small set of five users the true significance of these
findings is not known. Despite the small test size, insights gained
from these tests are still valuable for developing tools that aid in
both single and multi-user sketch recognition.

Our user studies utilizing our testing method lead to the de-
velopment of a cognitive model of human diagram understand-
ing. Our cognitive model breaks the human diagram recognition

process down into four main steps. The first step, Gather, pre-
dicts where to focus attention for new information and collects
low-level visual information. The second step, Recall, pulls rel-
evant information from past experience to assist in the recogni-
tion process. The third step, Identify, uses past experience and
low-level visual information to recognize both objects as well
as interfaces between objects. The last step, Reconcile, updates
an internal mental model using newly identified information in
order to produce the Dominant Hypothesis. The Dominant Hy-
pothesis is an abstract internal model of the diagram that can be
simulated by the mind in order to assess both the geometric and
behavioral qualities of the diagram.

Since our test subject pool was limited to five seniors in Me-
chanical Engineering, our results are not readily generalizable to
non-experts. The studies assumed that the subjects already had
prior experience with common labels and graphical elements in
Mechanical Engineering. The authors are currently pursuing a
wider subject pool across different ages and academic fields in
order to study how experience changes these results.

This work leads to many new areas of open study. In par-
ticular, our testing method allows for study of the human dia-
gram recognition process. This method can be supplemented
with additional experiments to further understand how humans
generate internal models of diagrams. Our cognitive model pro-
vides a platform upon which a computational structure can be
constructed to mirror human diagram recognition. While emulat-
ing some aspects of human behavior, such as confirmation bias,
may not be desired, we believe the strategy of modeling compu-
tational tools on human behavior is still fundamentally sound.
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Figure 11. The 14 images used during our study. Images taken from [31–35].
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