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ABSTRACT
Hand-drawn sketches are powerful cognitive devices for the

efficient exploration, visualization and communication of emerg-
ing ideas in engineering design. It is desirable that CAD/CAE
tools be able to recognize the back-of-the-envelope sketches and
extract the intended engineering models. Yet this is a non-
trivial task for freehand sketches. Here we present a novel,
neural network-based approach designed for the recognition of
network-like sketches. Our approach leverages a trainable, de-
tector/recognizer and an autonomous procedure for the genera-
tion of training samples. Prior to deployment, a Convolutional
Neural Network is trained on a few labeled prototypical sketches
and learns the definitions of the visual objects. When deployed,
the trained network scans the input sketch at different resolutions
with a fixed-size sliding window, detects instances of defined
symbols and outputs an engineering model. We demonstrate the
effectiveness of the proposed approach in different engineering
domains with different types of sketching inputs.

INTRODUCTION
Freehand engineering sketches have unique traits that dif-

fer themselves from the formal CAD/CAE models: the former
are sketchy, informal and with minimal commitment to details
and precision, while the latter are quite the opposite. Sketches
are powerful cognitive devices in the early stages of engineering
design where their minimalist traits and ease of construction en-
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able the engineers to efficiently and conveniently explore emerg-
ing ideas [1]. They also relieve the engineers of the mental bur-
dens of attending to less relevant intricacies such as the precise
size, shape, location and color, allowing them to focus on the
more central issues and thus facilitate creativity for conceptual
design [2]. Moreover, sketches are compact visual representa-
tions of rich engineering information regarding the spatial con-
figurations and hierarchy of objects, temporal flow and/or causal
relations of events, and they enhance the communication of ab-
stract ideas in a collaborative setting. Several empirical studies
have evidenced the strong positive correlation between the qual-
ity of the final design outcome and the number of sketches drawn
in various stages of the design process [3–7].

Researchers agree that, based on the important role of
sketches in design, it is desirable that CAD/CAE tools be able
to work with freehand sketching inputs and extract the intended
engineering models. For instance, Ullman et al. [8] observed
that sketches are particularly useful graphical representations
and proposed that “CAD systems must allow for sketching in-
put.” Schutze et al. [4] concluded that “digital sketching tools...
can create potentially large time and cost savings for computer-
aided design in mechanical engineering.” Indeed, the rapid,
autonomous conversion from the back-of-the-envelop sketches
to formal CAD/CAE models, if achieved, would enable the
engineers to harness the computational power of sophisticated
CAD/CAE tools at the very early stages of the design process
while still enjoying the natural fluidity and ease of sketched in-
put.
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Figure 1. Sketches of mechanical vibration systems that exhibits high
variability in drawing styles, scales and over-tracing strokes

However, the conversion from sketches to CAD/CAE mod-
els, i.e., the task of sketch recognition, is non-trivial. Kara
et al. [9] summarized the two major challenges in sketch recog-
nition as sketch parsing, (i.e., the sub-task of grouping strokes
or pixels to form intended symbols, or, in other words, locat-
ing the bounding box or convex hull of each symbol) and sym-
bol recognition (i.e., the sub-task of mapping each stroke/pixel
group obtained in parsing into defined symbols). Sketch pars-
ing is complicated by the fact that a freehand sketch contains
unknown number of symbols, symbols can be drawn at virtu-
ally any location on the canvas and they may be of different
sizes. Symbol recognition is rendered difficult because of the
inherently informal nature of sketches and the variabilities in per-
sonal drawing skills and styles. For example, Figure 1 highlights
those challenges: although a body mass is customarily defined
as a rectangle, none of the sketches in Figure 1 features perfect
rectangular shapes; instead, they exhibit different drawing styles,
scale and some even have extraneous, over-tracing strokes. Addi-
tionally, we propose the third challenge here: the co-dependence
of the sketch parsing and symbol recognition. Sketch parsing
would require certain amount of recognition in order to group
together strokes or pixels that form defined symbols, meanwhile
symbol recognition is predicated on the parsing process that clus-
ters the strokes or pixels in a meaningful way and isolate a sym-
bol from others. Should parsing and recognition be completely
de-coupled? Which should precede the other? Should they be
tackled iteratively? Those are the challenging questions yet to be
investigated.

In this paper, we address the triple challenges by a general
approach designed for the recognition of network-like sketches
which encompass a wide range of graphical, engineering models,
including but not limited to mechanical linkages, multi-body vi-
bration systems, electric circuits, algorithmic flowcharts, control

systems, UML diagrams, etc. Our approach is based on the Con-
volutional Neural Network introduced by LeCun et al. [10] and
also inspired by the success of Convolutional Neural Network for
face detection in digital photographs [11, 12]. At the core of our
approach is a multi-layer Convolutional Neural Network, acting
as a synergetic detector/recognizer for hand-drawn symbols. By
applying a sliding window to the input sketch at different reso-
lutions and feeding the content inside the sliding window to the
Convolutional Neural Network recognizer, sketch parsing is per-
formed implicitly in conjunction with symbol recognition.

Our approach differs from previous sketch recognition sys-
tems in that (1) it is a generalized approach not tailored towards a
particular domain, unlike previous works that employ heuristics
specific to a certain domain, and (2) it is purely based on the spa-
tial layout of pixel intensities of the input sketches and therefore
is applicable to sketches represented as images (e.g., scanned im-
ages, screen captures), while most previous works rely on the
explicit information of strokes and hence are limited to sketches
drawn with a digitizer on a tablet PC.

In the reminder of this paper, we first review the relevant
works in sketch recognition and Convolutional Neural Network.
Afterwards we present an overview and the details of our ap-
proach, followed by evaluations of the proposed approach in two
engineering domains with different types of sketching inputs. Fi-
nally, we discuss the current limitations, compensations and pos-
sible future extensions of our approach and present conclusions.

RELATED WORK
Sketch Recognition

The advent of tablet PC technology and recent surges of
interests in pen-enabled software applications have spawned a
number of sketch recognition systems. Depending on the inter-
nal representations of sketches, those systems can be relegated to
two categories: stroke-based or image-based. The former cate-
gory of systems view sketches as a stream of time-stamped, sam-
ple points on the trajectory of the pen tip, captured on a tablet
PC or a digital whiteboard. The latter category of systems view
a sketch as an image which can be obtained from virtually any
image acquisition device (e.g., scanner, digital camera, webcam,
screenshot). Below is a brief review of each category with em-
phasis on systems that recognizes the sketches in engineering do-
mains.

Earlier works in stroke-based recognition require each sym-
bol to be drawn in a single stroke [13, 14] or in predefined order
[15], or require explicit user input (e.g., gesturing with the dig-
itizer or pressing a key) to demarcate the various symbols [16].
Such constraints reduce the complexity of the parsing and recog-
nition tasks but compromise the natural fluidity of sketching.

Probabilistic graphical models and inference algorithms
have been used for stroke-based sketch recognition. Alvarado
and Davis [17] developed a parsing approach that evaluates a
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set of competing structural hypothesis by conducting inference
in dynamically constructed Bayesian networks. Missing or ex-
tra strokes can adversely affect the performance, due to the de-
pendence on precise structural shape descriptions. Sezgin and
Davis [18] described a statistical framework for the recognition
of hand-drawn electric circuits based on Dynamic Bayesian Net-
works (a generalization of Hidden Markov Model [19], a math-
ematical model widely used in speech recognition) that allows
temporal interspersing of strokes from different symbols. Cowan
and Szummer [20] presented an approach based on Conditional
Random Fields for simultaneous parsing and recognition and
demonstrated their approach in the domain of sketched organi-
zational charts. Both [18, 20] made simplifying assumptions re-
garding the maximum clique size, so as to make the computation
tractable. However, such assumptions may limit the use of their
approaches for complex sketches in practice.

Kara et al. introduced the mark-group-recognize approach
and applied to several sketch domains, including control system
diagram [21] and multi-body mechanical vibratory system [9].
In the mark step, landmark symbols or regions of interest are
detected using domain-specific heuristics, so as to provide cues
to the subsequent steps. In the group step, strokes are grouped
together to form clusters of candidate symbols, per their spatial
layout relative to the landmarks. In the final step recognition,
a symbol recognizer is applied to the stroke clusters to yield a
full interpretation of the whole sketch. The manual design of
domain-specific heuristics is crucial to the success of the entire
recognition pipeline and it may require keen observations into
the domain at hand. This precludes the easy re-targeting of this
approach to new engineering domains.

All the aforementioned recognition approaches are stroke-
based and hence dependent on hardware (e.g., tablet PCs, digital
whiteboards). They cannot be applied to cases where sketches
are acquired as images that store only the spatial layout of pixels,
not the temporal information of stroke trajectory.

Image-based recognition poses elevated challenge, due to
the absence of a priori information of strokes. Saund et al. [22]
presented a system that uses Gestalt principles to search for
the perceptually closed paths in drawings and sketches. Their
work only described the parsing technique, but have not em-
ployed recognition. Kara et al. [23] described an image-based
technique for the recognition of isolated symbols. Their recog-
nition technique computes several template matching distances
to extract feature vectors from the input image and then uses
a Gaussian Bayes classifier to recognize the symbol. It is de-
signed to be used jointly with a stroke-based parser and there-
fore the entire sketch recognition process is still stroke-based,
rather than purely image-based. Notowidigdo and Miller’s [24]
off-line sketch recognition technique used hand-coded rules to
find shapes (e.g., circles, rectangles) in an image rendered from a
sketch and used empirical thresholds to filter false positives. It is
not straightforward to extend beyond the simple domains of two

or three simple geometric primitives. And the empirical thresh-
olds, if not properly tuned, is observed to cause high rate of false
positives.

Convolutional Neural Network for Visual Detection
Convolutional Neural Network was first introduced by Le-

Cun et al. [10] as a general purpose mathematical model for
machine learning. They differs from the conventional, fully-
connected neural network [25, 26] in three key architectural as-
pects: local receptive fields, shared weights and sub-sampling.
Local receptive fields describe the sparse, localized fashion that
certain layers are connected to previous layers. Weights sharing
results in a reduction in the total number of trainable weights and
facilitate training. Dot-product of the input with shared weights
on localized connections is equivalent to performing convolution
on the input. Sub-sampling reduces the resolution of the input
and produces a blurred version of the input. Such architectural
differences ensure better robustness to moderate size variations
and shape distortions in the inputs.

Convolutional Neural Networks have demonstrated record
performance in recognizing handwritten digits [27]. Garcia and
Delakis [11] developed Convolutional Neural Network face de-
tection systems that outperformed other face detectors with alter-
native techniques (e.g., hand-crafted features [28], conventional
neural network [29]). Osadchy et al. [12] developed an improved
Convolutional Neural Network face detector capable of estimat-
ing face poses while performing recognition, achieving a large
degree of rotation invariance.

OVERVIEW
Our approach to freehand, network-like sketch recognition

leverages a Convolutional Neural Network as a synergetic de-
tector/recognizer that scans the input sketch at different resolu-
tions with a fixed-size sliding window. We also propose an au-
tonomous procedure for the generation of training samples.

At the heart of our approach is a six-layer Convolutional
Neural Network. It maps a fixed-size input image to a code that
indicates the symbol category (i.e., the label) of the input image.
The Convolutional Neural Network takes as input pixel intensity
values in a fixed-size region of an input image. The first few lay-
ers of the network are alternating convolutional layers and sub-
sampling layers that can be trained to extract distinctive local
features from the input. The remainder of the network are fully-
connected layers that classify the feature matrices extracted by
previous layers from input images and produce a human-readable
output.

Prior to deployment, a Convolutional Neural Network needs
to be trained on a few labeled prototypical sketches from which a
training set is initialized. To cover a wider range shape variations
of sketched symbols and reduce the incidence of false positive
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Figure 2. The architecture of the convolutional neural network

recognitions, the training set is then iteratively and autonomously
expanded, demanding no further manual interventions from the
user.

Once deployed, the trained network scans an input sketch at
different resolutions with a fixed-size sliding window. Such ex-
haustive scanning seeks to cover every region of the input sketch
and maximize the chance of detecting each instance of the de-
fined symbol. Measures are taken to address certain computation
redundancy during scanning and accelerate the process. Finally,
outputs from different sub-windows and different resolutions are
merged to build an engineering model.

DETAILS OF THE PROPOSED APPROACH
Network Architecture

The Convolutional Neural Network we propose for sketch
recognition has six layers, as shown in Figure 2. The first four
layers are alternating convolutional layers and sub-sampling lay-
ers, which are architectures unique to Convolutional Neural Net-
works. The last two layers are fully connected layers, like those
of the conventional, fully-connected neural network.

The input to the network (hence the input to the first layer
of the Convolutional Neural Network, i.e., Convolutional Layer
1) is an image of fixed size. To ease subsequent discussions and
without losing generality, let us assume that the input is an im-
age of 32×32 pixels. The input image is represented as a matrix
where each element is the intensity value of the pixel at the cor-
responding location.

In the Convolutional Layer 1, each output element is con-
nected to a small region (for instance, 5× 5 pixels) of the input

image. The adjacent elements in the Convolutional Layer 1 are
connected to regions in the input image that are largely overlap-
ping, with one pixel offset. This forms the local receptive fields.
To obtain the value of one output element of this layer, a dot
product is performed between pixel values in the 5× 5 regions
connected to this output element in question and the 25 weights
on the connections, added by a bias term. For all output ele-
ments, the 25 weights and the bias term involved in the compu-
tations share the same values and this architectural characteristic
is known as the shared weights. The above operation of dot-
products across the input image with shared weights amounts to
applying a convolutional kernel of 5× 5 pixels to a 32× 32 im-
age and results in a 28×28 real-valued matrix. The 5×5 kernel
can be seen as trainable feature extractors, detecting local fea-
tures such as oriented strokes, strokes ends and junctions. Those
feature extractors are to be trained in a data-driven fashion to
adapt to the visual features of a specific problem domain, instead
of being manually coded. The output matrix of the convolution
represents the spatial layout of responses to the feature detectors
and are hence called feature maps. In practice, more than one
sets of 5× 5 kernels (feature detectors) are convolved with the
input and multiple sets of feature maps are obtained. In our case
of Convolutional Layer 1, five feature maps are obtained.

Sub-sampling Layer 1 takes every feature map produced by
Convolutional Layer 1 as input, and applies weighted local av-
eraging and sub-sampling to reduce the resolution of the feature
maps by half. This serves to blur the feature maps such that the
exact locations of the detected features are no longer important.
In doing so, the sensitivity of subsequent layers to moderate scale
variation and shape distortions are reduced. After Sub-sampling
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Layer 1, the number of feature maps (in this case, five) remain
the same and the sizes are reduced to 14×14.

The purposes of Convolutional Layer 2 and Sub-sampling
Layer 2 are mostly the same with the previous layers, except
for two important aspects: first, they take feature maps as input,
therefore they extract features of features, namely, the higher-
order features (for instance, the co-occurrence of a junction in
the center and a sharp corner on the right); second, they produce
more feature maps than do the first pair of convolutional/sub-
sampling layers, which is empirically shown to benefit the recog-
nition performance [10]. After the second round of convolution
and sub-sampling, the number of feature maps is grown to thirty
and the sizes are reduced to 5×5, which is too small for further
convolution or sub-sampling.

The final two layer are fully-connected to classify the feature
maps outputted by Sub-sampling Layer 2 into a human-readable
label of symbol categories. The input to Fully-connected Layer
is a long vector constructed by concatenating rows of the thirty
5×5 feature maps outputted by Sub-sampling Layer 2. To com-
pute the output of Fully-connected Layer, the input vector is
taken a dot-product with the weight vector of each connection
in Fully-connected Layer, to which a bias term is added. A sim-
ilar process is repeated to computer the output of Output Layer.
The number of output elements in Output Layer equals the the
number of defined symbol categories plus one. The extra cate-
gory is used to represent the negative symbol category, namely,
pixel patterns that do not form any defined symbols. The output
values are normalized to mimic probabilities. To interpret the fi-
nal output of the Convolutional Neural Network, the index of the
node with the maximum output value is taken as the recognition
result. For example, an output of (0.6,0.1,0.1,0.0,0.2) means
that the input image belongs to the first out of four defined sym-
bol categories, while an output of (0.1,0.1,0.1,0.1,0.6) indicate
that the input image belongs none of the four defined categories.
This format is also known as the 1-of-n or indicator code.

In sum, the Convolutional Neural Network works as follows:
a 32×32 input image is convolved with five sets of 5×5 kernels
to obtain five 28× 28 feature maps. The five feature maps un-
dergo weighted local averaging and sub-sampling, resulting in
five 14×14 feature maps. Afterwards, those five 14×14 feature
maps are convolved with 150 (30×5, i.e., five sets of kernels per
output feature map) sets of 5× 5 kernels to yield thirty 10× 10
feature maps. After the second sub-sampling layer, those feature
maps are reduced to 5×5. Then they are reshaped to construct a
feature vector and taken as input by the last two fully-connected
layers, which produces a 1-of-n code to indicate the symbol cat-
egory of the input.

Training
Stochastic Gradient Descent The Convolutional

Neural Network is trained with the back-propagation algorithm

[25]. During training, weights are updated to minimize an opti-
mization target called the loss function. Here we use a particular
formulation of loss function called the cross-entropy or negative
log likelihood loss function [26], which is designed to reflect the
discrepancy between the desired output and the actual output on
the training set with the current set of weights.

Our method uses a stochastic version of the back-
propagation training algorithm known as Stochastic Gradient De-
scent. A stochastic, approximate gradient is evaluated in term
of each training instance and network weights are thereby up-
dated in proportion to those gradient at the frequency of once per
training sample. In contrast, the alternative, namely batch Gradi-
ent Descent, defers the weight update after iterating through the
entire training set and calculating the exact gradient of the loss
function. The advantages of the stochastic are reliable conver-
gence and speed-up over the batch training [10].

Interested readers are referred to [30] for detailed mathemat-
ical derivations of the gradients and the weight update equations
in Convolutional Neural Networks.

Obtaining Initial Training Data To initiate the training
of the network, a user is supposed to provide a few labeled pro-
totypical sketches to the training procedure. A labeled sketch
refers to a sketch on which the user has drawn the rectangular
bounding box for each symbol and attached descriptive labels
(e.g., spring, damper, mass) to the bounding box. This is the
only manual intervention required from the user. The rest of the
training procedure is autonomous.

In our approach, a training sample is a 32× 32 gray-scale
image patch with its label encoded as a 1-of-n code. The in-
put size and label encoding is designed to be compatible with
the input and output format of the Convolutional Neural Net-
work described in the previous section. For instance, a label of
(0,1,0,0,0,0) means that the input image belongs to the second
category of the six defined categories. A collection of training
samples constitute a training set.

Training samples can be generally divided into two super-
categories: the positives and the negatives, denoting defined and
undefined pixel patterns that are meant to be detected and re-
jected by the recognizer, respectively.

Each category of positive training samples is obtained by
cropping labeled region from the prototypical sketches and resiz-
ing the cropped image patch to the size of 32× 32, in line with
the input size of the Convolutional Neural Network. Because the
user has supplied the rectangular bounding box and label of each
defined symbol in the prototypical sketches, the creation of the
positive training sets is straightforward.

The training samples of the negative category is initially ob-
tained by randomly cropping unlabeled region from the prototyp-
ical sketches and resizing the resultant image patches to the size
of 32× 32. Regions in the prototypical sketches that are with-

5 Copyright c© 2009 by ASME



Figure 3. A seed training sample (left) and additional training samples
generated from it by random affine transformations (right), aliased due to
quantization

out positive labels or has only a small overlap with the positively
labeled regions are considered negative regions and cropped as
initial samples of the negative training set.

The size of the initial training set is dependent on the num-
ber of prototypical sketches that the user provides and the num-
ber of defined symbols contained in those sketches. Drawing a
large number of sketches and labeling each of them by hand is a
tedious task for the user and may incur undesired time and com-
puting cost. Therefore, the size of the initial training set is kept
small, usually on the level of dozens of samples per category.

Generating Additional Training Samples Re-
searchers [10, 31] have found that the training of a neural
network would generally require a large number of samples
in order to yield robust recognition performance that are in-
sensitive to moderate shift, rotation or distortion in the inputs.
The larger the training set is, the higher recognition accuracy
and robustness can be attained. Therefore, we propose an
autonomous procedure to easily generate hundreds or thousands
of additional, variant training samples from the dozens of initial
training samples without further user intervention.

New training samples in the positive categories are gener-
ated by applying a set of random affine transformations to the ini-
tial samples. Those transformations are defined to mimic the nat-
ural style variations and shape distortions of free-hand sketches
and include one or more of the follow: rotation within −2 to 2
degrees, non-uniform shearing with shear factors between −0.2
and 0.2, and/or non-uniform down scaling with scale factors be-
tween 0.8 and 1. Figure 3 shows an example of sixteen additional
training samples generated from one seed training sample for the
ground symbol in sketches of mechanical linkages.

To generate more negative samples and effectively suppress

false positives, iterative re-training of the Convolutional Neu-
ral Network and iterative sampling of additional negative im-
age patches are performed as follows. The Convolutional Neural
Network is first trained with the small-sized, initial training sets
and then tested on the prototypical sketches to produce recog-
nitions using the sketch recognition techniques described in the
next section. The recognition results are validated against user-
supplied labels. Regions of false positives are then identified and
ranked according to their probability-like output values. Signif-
icant negative samples are added to the negative training set per
multiple criteria such as whether the rank order is within top n
or whether the output value is above a threshold of Pt . As the
negative training set is thus expanded, a commensurate number
of additional positive training samples are generated using ran-
dom affine transformations, so as to keep the number of samples
in each category balanced. The Convolutional Neural Network
is re-trained with this expanded training set. The above process
of re-training and sampling can be re-iterated for several times
to ensure that the network is trained with an adequate number of
samples. False positive rate and accuracy of the Convolutional
Neural Network can be monitored to decide the termination of
the iteration.

Sketch Recognition
With a trained Convolutional Neural Network, the recogni-

tion of freehand, network-like sketches proceeds as follows.

Sliding Window and The Image Pyramid The input
sketch is converted to a gray-scale image and successively down-
sampled by a constant factor of 1.25 for several times to produce
a series of images with increasingly smaller resolutions than the
original one. Those images form a multi-scale representation
known as the image pyramid, as exemplified in Figure 4. A fixed-
size sliding window is applied to each level of the image pyramid
with a step size of one in both axis directions and traverse every
position within the image. The region inside the window is fed
to the Convolutional Neural Network for recognition. Because of
the exhaustive manner that the sliding window scans the image
at different resolutions, the chance for the Convolutional Neu-
ral Network to detect each sketched symbol is maximized. For
instance, the left-most body mass in Figure 4, oversized for the
sliding window at the original resolution, is gradually shrunk to
fit into the sliding window at resolution 4.

Here we have chosen the smallest image of the pyramid to
be no smaller than to 56×40 pixels, while the base level of im-
age pyramid is 800× 600 pixels. This constructs a 12-level im-
age pyramid. With a 32×32 sliding window, symbols sketched
within the range of approximately 32×32 and 480×480 can fit
into the sliding window at some level of the pyramid and will be
detected if the Convolutional Neural Network is trained to attain
a high degree of accuracy.
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The exhaustive scanning and recognition amounts to per-
forming sketch parsing and symbol recognition in conjunction,
because whenever the Convolutional Neural Network outputs a
non-negative label, a symbol is detected inside the sliding win-
dow and the bounding box of the symbol can be localized from
the current position and the size of the sliding window. This
eliminates the need for a separate sketch parsing step and funda-
mentally differs from previous sketch recognition works [9,21] in
which a heuristic parsing step (or segmentation) precedes symbol
recognition.

Reducing Computational Redundancy Obviously a
large number of computations performed by the Convolutional
Neural Network for overlapping input regions are redundant, due
to the convolutional nature of the first four layers of the network.
For better computational efficiency, the sliding window is actu-
ally implemented as follows. The first four layers of the Convo-
lutional Neural Network are applied to each entire level of the
image pyramid (rather than the individual image patch inside the
sliding window) for once, producing feature maps approximately
(due the boundary effect of convolution) four times smaller than
the input image. Then a sliding window four times smaller than
the original sliding window scans the feature maps and feeds the
contents inside the window to the last two layers of the network
for recognition. Such operations would produce the same detec-
tion results as with the previous approach because of the weight
sharing in the convolutional and sub-sampling layers, and it is
more efficient to perform all the convolutions only once and then
reuse the computation between overlapping sliding windows.

Merging Multiple Detections Some symbols are de-
tected within adjacent sliding windows or at multiple resolutions,
because the Convolutional Neural Network is robust to modest

Table 1. The architectural parameters used in evaluations

Parameter Value

Convolutional kernel size 5×5

Sub-sampling factor 2

Output of Convolutional Layer 1 5 feature maps

Output of Convolutional Layer 2 30 feature maps

Output of Fully-connected Layer 50 nodes

Sliding window size 32×32

Input sketch size 800×600

Level of the image pyramid 12

shift and scale variation. In such cases, multiple detections out-
putted by the network are grouped according to their spatial prox-
imity and the amount of overlap between the input windows, and
the one with the highest output value is retained and the rest are
discarded. After the detection of symbols and, if necessary, some
post-processing that analyzes the connectivity between detected
symbols, an engineering model can be constructed.

EVALUATIONS
Recognizing Sketches of Mechanical Linkages

Implementation This is a simple, proof-of-concept do-
main. Symbol definitions include 4 categories: the ground sym-
bol drawn in a canonical style as shown in Figure ??, the ground
symbol drawn in a simplified way as a triangle, the pivot symbol
defined as a circle, and the negative. Bars that connect pivots and
grounds are represented by line segments.

The architectural parameters of the Convolutional Neural
Network, the sliding window and the image pyramid are the same
as described in foregoing sections and are summarized in Table 1.
Unless otherwise specified, the same implementation is used by
default throughout subsequent evaluations.

For this domain, the mere detection of ground and pivots is
insufficient to extract the intended engineering model. The con-
nectivity between symbols (i.e., the presence of linkages) also
needs to be determined. Towards this end, all pixels inside the
bounding boxes of detected symbols are masked by background
pixels so that the post-recognition canvas only shows the link-
ages as isolated instances of lines. Then a fast image processing
algorithm [32] is utilized to locate the extrema points of each
line (i.e., linkage). Each extrema point is assigned to the nearest
detected symbol and the connectivity between symbols is thus
determined.

With the information regarding the detected symbols and
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their connectivity, the sketch recognition is accomplished and
the intended engineering model can be created by calling the
programming interface of the appropriate CAD/CAE packages
(e.g., MSC.Adams, MATLAB SimuMechanics), which is out of
the scope of this work.

Benchmarks The initial training set includes only two
sketches drawn by a tester using a digital tablet. On average
approximately 20 symbols per category are drawn and labeled in
these sketches as initial samples. During training, the automated
procedure responsible for generating additional training samples
expands the training set to 300 samples per category after 5 times
of re-training, which takes a total of approximately four minutes
on a 2.0 GHz CPU.

Once trained, the recognition of a sketch takes approxi-
mately 2 to 3 seconds if the input sketch is rendered directly from
a digital tablet, or up to 6 seconds if the input is captured from
image acquisition devices, during which 2 to 3 seconds are spent
on image preprocessing (e.g., edge detection, enhancing).

The test set contains 18 mechanical linkage sketches with
various degrees of complexity and a total of 117 symbols. Six
of the sketches are drawn with a digital tablet and the rest are
drawn on A4 paper with a blue ballpoint pen and then captured
using a commodity webcam. All symbols except 3 canonical
style ground symbols and 2 pivots are correctly detected and no
false positive is produced, amounting to an error rate of 5.1%.
Figure 5 shows a correctly recognized test case of a single sketch
featuring three linkages: a Peaucellier-Lipkin linkage, a Crank-
Rocker four-bar linkage and a Watt’s linkage. The style, shape
and size variations are noticeable but have not confounded the
proposed approach.

Recognizing Sketches of Multi-body Vibratory System
Implementation This section aims to evaluate the gener-

ality of our approach, namely, the ease of adapting to a new en-
gineering domain. Also evaluated is the scaling up of the recog-
nition performance, because the defined symbols now fall into 6
categories: ground, body mass, spring, damper, excitation (ar-
row) and negative. The number of outputs from the Convolu-
tional Neural Network is therefore changed to 6. The rest of the
architectural parameters remain unchanged.

By assuming that springs and dampers are not allowed to
connect end to end, the connectivity analysis can be skipped, be-
cause the intended connectivity can be inferred from the spatial
proximity of detected symbols without tracing the lines connect-
ing them [9].

Benchmarks The initial training set includes only one
sketch drawn by a tester using a digital tablet. Around 6 to 8 sym-
bols per category are drawn and labeled in this sketch as initial

P: 0.99 P: 0.99

P: 0.99

P: 0.99

P: 0.99

P: 0.99

P: 0.99

P: 0.99

P: 0.99Gc: 0.99

Gs: 0.99

Gc: 0.99

Gs: 0.99 Gs: 0.99
Gc: 0.99

Figure 5. A digital sketch of mechanical linkages that is correctly rec-
ognized (Bounding boxes and text annotations indicate the locations and
categories of symbols: GC for canonical ground, GS for simplified ground,
P for pivot. The real numbers are the probability-like output values.)

samples. During training, the automated procedure responsible
for generating additional training samples expands the training
set to 400 per category after 5 times of re-training, which takes a
total of approximately 10 minutes on a 2.0 GHz CPU.

Once trained, the recognition of a sketch takes approxi-
mately 3 to 4 seconds if the input sketch is rendered directly from
a digital tablet, or up to 7 seconds if the input is captured from
image acquisition devices, during which 2 to 3 seconds are spent
on image preprocessing (e.g., edge detection, enhancing). It can
be observed that the scaling up of the number of symbol cate-
gories from 4 to 6 leads to increased amount of computation and
thereby noticeable longer running time for recognition.

The test set contains 30 images of various multi-body vibra-
tion systems with 271 symbols. Twelve of the sketches are drawn
with a digital tablet, another fourteen are drawn on A4 paper with
a blue ballpoint pen and then captured using a commodity web-
cam and the remaining four are screen captures of formal, beauti-
fied diagrams taken from the electronic versions of relevant tech-
nical publications. Figure 6 (a), (b) and (c) demonstrate three
exemplary cases of correctly recognized sketches (e.g., a pen-
and-paper sketch captured using webcam, a digital sketch and a
screenshot of a formal drawing from technical publications). A
total of 8 (2.9%) recognition errors occurred, including 5 cases of
false negatives (i.e., overly distorted or small symbols that are un-
detected) and 2 cases of symbol misclassifications (in both cases
dampers are misrecognized as body masses) and 1 case of false
positive is triggered (Pixels from several nearby symbols are mis-
taken as a body mass symbol). These error are shown in Figure 6
(d). Overall, the recognition performance is not significantly de-
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graded as the number of symbol categories are doubled. Also
note that although the recognizer is trained using images ren-
dered from digital sketches, it is applicable to formal, beautified
diagrams as well.

Discussions
Generality and Effectiveness The evaluations sug-

gest that our approach performs reasonably well for both test do-
mains. The Convolutional Neural Network is shown to be robust
to shape distortions inherent in freehand sketches and efficient
for the exhaustive scanning on input images. The autonomous
procedure to expand the training set automates the generation of
additional positive and negative training samples, relieving users
the burden of drawing and hand labeling many training sketches.
The sliding window on the image pyramid enables the detection
of symbols drawn at different scales.

Because of the generic nature of this approach, re-targeting a
new engineering domain does not require substantial changes to
the approach. All that needed is to provide new training samples
(i.e., labeled prototypical sketches of the target domain) and re-
train the Convolutional Neural Network.

The approach works effectively with various sketching in-
puts, including both digital ink collected on a tablet PC and tra-
ditional sketching media (e.g., pen and paper).

Limitations and Future Work Two major limitations
of the current approach are identified. First, the Convolutional
Neural Network lacks complete rotation invariance. In other
words, it may not recognize an input image that is a significantly
rotated version of the training samples. For instance, the resistors
of a bridge circuit are not axis-aligned and exhibit such patterns
of large rotations. Presently this limitation can be compensated
in an ad hoc way by including rotated symbols to the training set,
which will slow down the training process and may have nega-
tive effects on the recognition performance. Future work that
formally address this issue may include the polar transformation
of input symbols [21] or new mathematical models [12].

Second, the Convolutional Neural Network lacks the capa-
bility to exploit contextual cues because recognition is entirely
based on the pixel patterns inside the sliding window. Interac-
tions between neighboring windows are not fully taken into ac-
count of. The possible negative impact is that the recognizer can
be confused by inherently ambiguous symbol definitions. For
examples, in the case of handwritten digit recognition, a digit 0
resembles the top or bottom half of a digit 8, and thus a false pos-
itive of digit 0 will be produced whenever the top or bottom half
of a digit 8 enters the sliding window. None of domains under in-
vestigation in this paper have such ambiguous symbol definitions
and currently there is no measures taken to compensate for this
limitation. In future, relational machine learning model such as
Conditional Random Fields [33] may be incorporated to perform

recognitions with both local features and contextual features.
Additional future works include the integration with Optical

Character Recognizers in order to recognize sketches composed
of both shapes and text annotations and the parallelization of the
recognition pipeline for faster processing.

SUMMARY AND CONCLUSIONS
We present a general approach to recognize network-like,

freehand sketches prevalent in the early design stages. This ap-
proach leverages a Convolutional Neural Network as a synergetic
detector/recognizer and features an autonomous procedure for
the generation of training samples. Evaluations in different do-
mains with different types of input demonstrate the effectiveness
of our approach as a general purpose recognizer for network-like
sketches.

Our approach can be utilized as a building block in various
sketch-based application scenarios. If implemented to take full
advantage of the computing power of modern multi-core proces-
sors and integrated with a gesture recognizer, our approach can
be used to build a sketch-based front end for engineering design
tools. It may also be used, in conjunction with an Optical Charac-
ter Recognizer, as a tool for digitizing hard-copy or image-based
archival design documents (e.g., legacy patents stored entirely as
images that features network-like sketches), which may facilitate
content-based information retrieval and design reuse.

Recent work by Silva et al. [34] has suggested that pen-
based interfaces can be effective instructional tools. Therefore,
we believe that our approach also has niches in engineering ed-
ucation. For instance, our software could enhance the lecture
experience by allowing an instructor to simply sketch on a con-
ventional blackboard, take a snapshot using a webcam and then
simulate and animate the engineering models via a computer
and a projector. Similarly, our approach would enable students
to model and solve engineering problems graphically and intu-
itively using pencil and paper.

This work is a sequel of a series of past works [9, 21, 23, 35]
towards intelligent, sketch-based interface for design. Like Ull-
man et al. [8] and Schutze et al. [4], the authors are proponents of
integrating the natural and intuitive input modality of sketching
with the simulation power of sophisticated CAD/CAE tools. We
hope that such integration will gradually instill computational vi-
tality to the relatively lifeless pen and paper and that, in future,
the pen will be mightier than the mouse-and-keyboard.
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