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ABSTRACT
This paper presents a new point set surfacing method that

employs neural networks for regression. Our technique takes
as input unstructured and possibly noisy point sets represent-
ing two-manifolds in R3. To facilitate parametrization, the set
is first embedded in R2 using neighborhood preserving locally
linear embedding. A neural network is then constructed and
trained that learns a mapping between the embedded 2D para-
metric coordinates and the corresponding 3D space coordinates.
The trained network is then used to generate a tessellation that
spans the parametric space, thereby producing a surface in the
original space. This approach enables the surfacing of noisy and
non-uniformly distributed point sets, and can be applied to open
or closed surfaces. We show the utility of the proposed method
on a number of test models, as well as its application to freeform
surface creation in virtual reality environments.

INTRODUCTION
Current computer-aided design (CAD) tools are not well

suited for use in early conceptual design phases where rapid idea
generation and exploration from unrefined, incomplete user in-
put is paramount [1, 2]. This is a major concern in shape design
specifically, as current tools are tailored for detailed design stages
where the designer must negotiate a large number of parameters
involving complex mathematical descriptors and relationships.
Tools for ideation and early assessment, however, should pro-
vide the user with rapid and intuitive means for shape creation,

thereby eliminating premature commitments to well developed
but unpromising concepts [2, 3].

In this paper, we present a new surface design method that
can take as input 3D point sets, and can generate freeform open
or closed surfaces through a neural network based regression al-
gorithm. In this work, point sets of interest can be sparse, un-
structured, and unevenly distributed, and devoid of normal vector
information. Such point sets frequently arise with the use of new
generation input devices such as 3D optical or magnetic track-
ers in VR environments (Fig. 1) where the points are sampled
from trackers attached to the users’ hands or any part of their
bodies. Such point sets are considerably different in nature than
the widely studied class of range data, where dense point sets are
sampled directly from the surface they represent. In surface de-
sign from point tracking, however, one rarely obtains a full and
dense coverage of the intended surface. Moreover, point sam-
pling may exhibit significant non-uniformity based on the users’
motion speed and their focus on particular regions of the design.
The long term goal of the proposed work is thus to provide in-
dustrial surface design algorithms that can operate on tracking
data to produce surfaces with controllable aesthetic qualities and
associated mechanisms enabling further detailed refinement on
the initial data.

As one step toward this goal, we present a neural network
based surface regression method that takes as input open or
closed point sets in R3, and generates free form surfaces through
a parametric embedding and tessellation in R2. The parametric
embedding is achieved through a local neighborhood preserving
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FIGURE 1. Car seat conceptual design. Point clouds, neural network regressed surfaces, trimmed design.

method. Once a parametrization of the input point set is com-
puted, a mapping between the parametric coordinates of input
points in R2 and their corresponding 3D design space coordi-
nates is trained on a multi-layer, feed-forward, back-propagation
neural network. A tessellation created in the parametric domain
is then fed to the trained network which results in the synthesis
of a two-manifold surface in the design space. A key advance
in the proposed work is that the surface complexity is dictated
by the network topology that iteratively minimizes the under-fit
and over-fit to the available data. This approach is in contrast to
methods that require the designer to inspect the underlying point
set to decide the degree or functional form of the fitted surfaces.
We demonstrate that the proposed approach can be used for cre-
ating free-form surfaces from arbitrary point sets, as well as from
point sets specifically arising from tracking data.

RELATED WORK
In this section we review the previous work in surface cre-

ation, fitting, and approximation of point sets based on the sur-
face representations used; parametric, mesh based and implicit,
followed by a review of the use of neural networks in this field.

Parametric Surfaces: Parametric surfaces are one of the
most widely used representations as they enable compact de-
scriptions, straightforward tessellations with arbitrary resolu-
tions. Gregorski et al. [4] introduced a B-spline surface recon-
struction method for point sets. Their approach utilizes a quad-
tree like data structure to decompose the point set into multiple
smaller point sets. Least squares quadratic fitting of each sub-
point set is then followed by the degree elevation to B-spline
surfaces and blending. Bae et al. [5], focusing primarily on
laser range scanned data, introduced orthogonal coordinate trans-
formations for NURBS surface fitting. The point set is first
transformed into an orthogonal coordinate system, followed by
B-spline fitting which is finally converted to NURBS surfaces.
Adaptive fitting techniques introduced by Pottmann et al. [6, 7]
utilize an active contour model which gradually approximates the
targeted model shape. This iterative approximation minimizes a

quadratic functional composed of an internal surface energy for
smoothness and an approximation error for fitting. Lin et al. [8]
introduce an iterative NURBS curve and surface fitting method-
ology to a given point set which is able to interpolate the point
set. The major restriction of their approach is that the point set
should be pre-ordered. Following a similar approach boundary
condition satisfying NURBS surface fitting is also achieved [9].
The neural network in our method is similar to parametric surface
definitions in the sense that it enables arbitrary resolution tessel-
lation straightforwardly and has a compact definition. However,
the proposed method differs from parametric fitting in that the
functional form of the surface is dictated by the optimized net-
work topology rather than requiring the user to decide the param-
eters of the fit. As shown in the following examples, however, the
proposed method can be easily modified to fit a prescribed func-
tional form such as a parametric surface when desired.

Mesh-based Surfaces: Mesh-based or polygonal surfaces
enable a fastest rendition of many different surface represen-
tations while exhibiting large space requirements. In an early
work, Hoppe et al. [10] address the problem by using local lin-
ear approximations of the point set to create a mesh-based sur-
face that approximates the point set. The first provably cor-
rect mesh-based surface fitting algorithm is presented by Amenta
et al. [11,12]. Given a sufficiently dense point sampling from the
original surface, the approach guarantees the resulting surface to
be topologically correct while interpolating the input samples.
Gopi et al. [13] introduced a sampling criteria such that the fitted
surface is guaranteed to be topologically correct and also pro-
vided algorithms that create mesh-based representations of such
point sets [14]. Based on Delaunay tetrahedralization of a given
point set, Attene et al. [15] introduced a method for closed genus-
n triangulation fitting provided that the points are sampled from
a real object. In 2005, Kuo et al. [16] approached the surface
fitting problem with a region growing algorithm that gradually
adds new triangles to an initial triangulation starting from a seed
region of the point set. Dey et al. [17] presented a mesh-based
surface fitting method applicable to noisy point sets as long as
the noise level is within a specified threshold. Many mesh-based
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FIGURE 2. Neural network surface regression of unstructured point sets. First, a neighborhood preserving embedding is used for parametrization
followed by neural network training. Then the final surface is synthesized by the trained network.

surface fitting algorithms typically require a smoothness or fair-
ness criterion to be minimized which may require considerable
post processing after the initial surface fit [18].

Implicit Surfaces: Implicit representations enable compact
mathematical descriptions and rapid set operations. However,
the tessellation and rendering of such representations is a signif-
icant obstacle requiring specialized algorithms for visualization.
Juttler et al. [19] introduced an approach which results in implicit
least squares reconstruction of spline surfaces tailored for reverse
engineering. A widely used family of implicit surfaces are the
radial basis functions (RBF). In 2004, Kojekine et al. [20] em-
ployed an octree structure to reduce the computational time as-
sociated with RBF spline based volume reconstruction. Ohtake
et al. [21] used implicit surfaces as a way to facilitate intersection
checks on mesh-based geometries. They also employed a simi-
lar approach together with compactly supported RBFs for range
scanner point cloud surface fitting. Wu et al. [22] introduced a
combined approach where they use multiple RBFs where indi-
vidual RBFs construct seed regions that are coalesced into larger
regions through a partition of unity functionals. A key draw-
back of the implicit approaches is the need for specialized vi-
sualization mechanisms. Nonetheless, we believe the proposed
approach is conceptually similar to RBFs in the way it takes a
purely data-driven approach to surface synthesis. The main ad-
vantage of the proposed work is in its ability to generate a tessel-
lation directly within the learned mapping function.

Use of Neural Networks: Barhak et al. [23] utilized neu-
ral network self organizing maps for 2D grid parametrization for
surface reconstruction from 3D points sets. The result of the neu-
ral network is used to create a 3D surface iteratively with the help
of a gradient descent algorithm. Similarly, Galvez et al. [24] and
He et al. [25] utilized neural networks for parametrization and
point ordering, rather then surface creation. Khan et al. [26] in-
troduced an approach for constructing surfaces from boundary
curves that are required to be planar. Their approach addresses
the boundary-to-surface learning problem rather than the point-
to-surface learning problem. Krause et al. [27] implemented a
neural gas neural network [28] for approximating a point set with
disconnected triangles. These triangles do not necessarily span
the whole surface and additional post-processing is required to
ensure connectivity and water-tightness of the final surface. The
method presented in this paper differs from this approach in that
network output in our work is the structured and connected man-
ifold. Additionally, rather than deforming initialized triangles
to a given point set similar to mesh-based approaches, the net-
work presented in this paper serves as a direct tessellation engine
from which a surface can be synthesized with arbitrary resolu-
tion. Other related work [23–26] introduced above do not utilize
neural networks for direct surface creation from arbitrary point
sets as we do, but rather use the network for point ordering or for
surfacing planar boundary curves.
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OVERVIEW
In this paper, we present a neural network regression based

surface creation method from unstructured point sets. Unstruc-
tured point sets of interest are sparse, unevenly distributed, can
be partially detailed and do not necessarily lie on the manifold
they represent. Our methodology consists of two main blocks;
training and synthesis (Figure 2). Training consists of both the
unique embedding of the original points in the 3D space to the
parametric space, and the learning of the mapping between the
parametric coordinates and the 3D coordinates. After the map-
ping is learned, it is used for synthesis in which a fully connected
two-manifold surface is created in the 3D space from a tessella-
tion in the parametric space. For this purpose, the tessellation
vertices in the parametric space are created with a prescribed
density, and are passed through the neural network resulting in
the geometry of the 3D surface.

PARAMETRIZATION
Our parametrization approach is invariant to translations and

rotations, and can be used for surfaces that fold onto themselves.
This capability is achieved using a local neighborhood preserv-
ing nonlinear transformation from the 3D space to the 2D para-
metric space. Two different parametrization methods are used
for open and closed manifolds respectively; both of which are
detailed in the following paragraphs.

Open Two-Manifold Parametrization
For parameterizing open-manifolds we utilize the locally

linear embedding method [29] between R3 and R2. A com-
prehensive review of the method can be found in [29, 30]. The
parametrization tailored to our purposes can be summarized as
follows:

1. A neighborhood Ni for a fixed number of neighbors is cal-
culated for every ~Di in R3 based on the Euclidian distances.
~Di represents the position vector of point i (Fig. 3).

2. A sparse neighborhood weight matrix W is computed by
minimizing Eqn. 1, subject to two constraints; rows of (W )
sum to 1, and Wi j corresponding to ~D j that is not in Ni is
equal to zero.

θ(W ) = ∑
i
|~Di−∑

j
Wi j~D j|2. (1)

3. Using W calculated in step 2, an eigenanalysis minimizes
Eqn. 2 resulting in the 2D parametric embedding ~Pi of the
point ~Di for all points in the original 3D space.

φ(W ) = ∑
i
|~Pi−∑

j
Wi j~Pj|2. (2)

Closed Two-Manifold Parametrization
For parameterizing closed two-manifold surfaces, we utilize

the tangential Laplacian minimization introduced by Zwicker
et al. [31]. This approach aims to uniquely map a closed man-
ifold onto a sphere such that undesired polygon folding is pre-
vented by sliding vertices along local tangent planes. Our closed
manifold parametrization process can be summarized as follows:

1. A neighborhood Ni for a fixed number of neighbors is cal-
culated for every ~Di in R3 based on the Euclidian distances
where ~Di’s are the position vector of input points.

2. An iterative 3D embedding represented by ~P is initialized by
setting ~Pi = ~Di for all i.

3. Adaptive weights are calculated by Eqn. 3, to be used in the
Laplacian approximation (Eqn. 4) where ~Pi are the points in
the current embedding for all j in Ni.
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FIGURE 3. Locally linear embedding for open surface parametriza-
tion.
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FIGURE 4. Laplacian and tangential Laplacian over k-neighbors

4 Copyright c© 2011 by ASME



a b c d 

FIGURE 5. Linear(a), quadratic(b), cubic bézier(c) and 3-layer×2-hidden neuron network(d) fits (top), corresponding error distributions (middle)
and gaussian curvatures (bottom).

Wi j = ||~Pi−~Pj||/||~Di−~D j||. (3)

4. A discrete Laplacian approximation (~Li) is calculated by
Eqn. 4, where weights (Wi j) are given by Eqn. 3 for all j
in Ni and zero for the rest.

~Li =
1
k ∑

j
Wi j(~Pj−~Pi). (4)

where k is the number of neighbors of ~Pi.
5. A normal ~ni associated with ~Pi is calculated by a principal

component analysis (PCA) on Ni. This analysis aims to fit a
local plane to the neighbors of ~Pi. The smallest eigenvector
resulting from the PCA represents the normal to the plane,
and is chosen as an approximation to~ni.

6. An approximate tangential component of the Laplacian, ~Lt
i

is calculated by Eqn. 5.(Fig. 4)

~Lt
i =~Li− (~Li.~ni)~ni (5)

~Lt
i represents the component of ~Li that lies parallel to the

PCA plane computed in Step 5.

7. ~Pi is updated by ~Pi← ~Pi +λ~Lt
i where λ is the damping con-

stant emprically set to 0.5 for all i.
8. Steps 3-8 are iteratively applied until ||Li

t ||< ε for all i.
9. The resulting embedding is projected onto the unit sphere by

normalizing all ~Pi’s by their magnitudes. The resulting em-
bedding is then conveniently parameterized in R2 using the
inclination and azimuth angles of the spherical coordinate
system.

SURFACE REGRESSION

In this section, we present the details of our neural network
regression method for freeform surface creation from point sets.
Neural networks can be treated as functions that map an input
space to an output space (Fig. 6). This general idea can be ex-
ploited in a number of ways. For instance, if we use a single
neuron in the neural network topology given in Fig. 6, with a lin-
ear activation function, mapping from the X ,Y input space to the
Z output space will result in the planar surface fit to the given
points (Fig. 5a). In this scenario, the mapping is from R2 to ℜ1.
Similarly, the network can be designed to regress any input space
to any output space using a prescribed polynomial or parametric
form. Fig. 5 shows various such examples.
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The Learning Problem
In our approach, the key to constructing a surface on the

point set lies in the ability to learn a mapping from the 2D em-
bedded space to the original 3D space. Fig. 6 illustrates the idea.

Here, ~P is the 2D parametric coordinate of the 3D input point
~D as computed using the techniques described in the previous
section. Hence, the surface constructing problem boils down to
a learning problem from R2 to R3.

In this study, we use fully connected, multi-layer, feed-
forward neural networks with back-propagation training as the
mapping structure. For a single hidden layer with n neurons,
with each neuron using a sigmoid activation function, this neural
network will map ~P to ~D with Eqn. 6.

{D}k = σ

(
n

∑
j=1

wk jσ

(
2

∑
i=1

w ji{P}i +w j0

)
+wk0

)
(6)

where

σ(a) =
1

1+ exp(−a)
. (7)

is the sigmoid function.

Neural Network Training
In our approach the numbers of inputs and outputs are fixed

at two and three respectively as dictated by the learning problem.
The number of hidden layers and the number of neurons in each
layer, however, can be chosen as desired. Increasing the number
of neurons or the number of hidden layers will result an increased
degrees of freedom and non-linearity, which may result in an un-
desirable over fitting to the data [32]. On the contrary, an insuf-
ficient number of neurons and/or layers will produce a stiff map,

Pu 
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FIGURE 6. Learning problem and the multi-layer feed-forward net-
work.

which may result in under fitting [32]. Therefore, the number of
neurons and layers must be chosen judiciously. To this end, we
employ an iterative procedure for selecting these parameters as
follows:

1. Decompose the available input to training (85%), validation
(10%) and test sets (5%).

2. Initialize a network with a single hidden layer (nL = 1) and
single neuron (nN = 1) in its hidden layers.

3. Train the network until the validation set performance (PV )
converges.

4. Record the test set performance (PT ) for the current network
configuration.

5. Increase the number of hidden neurons by 1 (nN ← nN +1).

TRAINING VALIDATION TEST 

FIGURE 7. Example sampling prior to learning.

FIGURE 8. Tessellation of the seat back surface.
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FIGURE 9. Parametrization of an open and closed surface with uniformly sampled random points. Open cylinder data points (a-d) and corresponding
parametrization (e-h) for 2000, 500, 150, 38 points respectively. Closed cube data points (i-l) and corresponding spherical parametrization (m-p) for
1800, 450, 150, 60 points respectively. Note that back side of the cube is not shown for visualization purposes but included in the calculations.

Iterate steps 3-5 until PT converges.
6. Record nN and PT for current nL.
7. If nL < nLmax, increase the number of hidden layers by 1

(nL← nL +1). Iterate steps 3-7 until nL = nLmax.
8. Report the network configuration (nL and nN) with the best

performance PT on the test set.

Previous works have shown that this iterative search for the
network architecture prevents over-fitting and under-fitting [32,
33].

For the above training scheme, we need to sample the vali-
dation data set as well as the training data set from the original
input points. To ensure an unbiased coverage of the input space,
we divide the parametric space into 16 subregions and sample
points randomly from a uniform distribution from each subre-
gion. An example is shown in Fig. 7.

Surface Tessellation
After the network is trained on the input data, the parametric

space is divided into a uniform grid of user chosen resolution.
The vertices in this grid are then fed through the trained network
producing the coordinates of the surface in R3, while sharing the
same tessellation topology established in the parametric space.
An example surface tessellation is shown in Fig. 8.

RESULTS
Parametric Embedding

As described in the previous sections, we use locally lin-
ear embedding for parameterizing open surfaces and tangential
Laplacian minimization for parameterizing closed surfaces. In
this section we demonstrate the capabilities and limits of these
parametrization methods. For this purpose, an open cylinder and
a closed cube is utilized for open and closed surface parametriza-
tion respectively. Fig. 9 shows the embedding results on these

7 Copyright c© 2011 by ASME
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FIGURE 10. Heart point set (a) and corresponding spherical embed-
ding (b). Colored regions in the original point set match the same in the
embedding.

a 

b 

FIGURE 11. Points sampled from heart model set (a), neural network
regressed heart surface (b).

two examples. In both cases, the sampling in the original space
becomes increasingly sparse to the point that the underlying ge-
ometry is no longer discernable (Fig. 9d and l). As shown, the
parametric embedding of both examples faithfully capture the in-
tended geometry in the embedded space when the sampling rate
is sufficiently high. This capability diminishes with increasing
sparsity.

Surfacing of Synthetically Sampled Closed Point Sets
This section demonstrates the surface generation algorithm

on a point set that is sampled from an existing heart model. The
original point set sampled from the model is shown in Fig. 10a.

The spherical embedding of this point set (Fig. 10b.), shows
that the local connectivity is preserved. The final neural network
regressed surface is shown in Fig. 11. The topology of the neu-
ral network used for regressing this surface has 3 layers with 5
neurons in each layer.

Conceptual Design in Virtual Reality Environment
We have deployed the proposed method to a Virtual Reality

(VR) design environment. In this system, a magnetic tracker is
attached to the user’s hand producing point samples as the user
gestures in space. Tracking the user’s hand enables the direct dic-
tation of the point set that, in turn, represents the desired surface
geometry. The user may sketch multiple strokes in space in any
desirable direction to indicate the surface shape. The resulting
point sets are used as the input to our regression method, which
leads to the final freeform surface geometry.

Fig. 12a shows the complete point cloud drawn by the
designer representing the multiple surfaces constituting a car
seat. Individual surfaces are demarcated by different colors, and
are separated by the user with a keypress during construction.
Fig. 12c shows the four point sets forming the front and left sides
of the back rest and the seat sections of the seat. Note that they
are all open surfaces. Fig. 12d is the corresponding 2D locally
linear embedding of these point sets. Fig. 12e are the resulting
constructed surfaces. Table 1 shows the number of network lay-
ers and neurons as computed from the iterative network topology
optimizer.

Fig. 1 shows the neural network regression of the front and
back surfaces of the seat. Note that a neural network is trained

TABLE 1. Network degree of freedom.

SURFACE LAYERS NEURONS

Front of the Back Rest 2 3

Seat Section 2 2

Side of the Seat Section 3 3

Side of the Back Rest 3 3
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FIGURE 12. Conceptual design of a car seat. Complete point set (a) created by the user in a virtual reality environment where the position and
orientation of the user’s hand is tracked. Neural network regressed surfaces (b). Point sets for the front and left sides of the back rest and the seat section
(c). Corresponding parameterizations (d). Corresponding regressions (e). For final surfaces after trimming see Figure 1.

and regressed for each individual point set. Table 2 shows the
total network training time for different point sets. In all cases,
once the network is trained, the synthesis is near instantaneous.

Since point sets are treated independently, the synthesized
surface patches do not form shared boundaries. Currently, we

TABLE 2. Time for parametric embedding and topology optimiza-
tion. (On a Intel-i7 1.6 GHz, 4 GB machine.)

Point Set Parametric Topology Opt.

Size Embedding & Learning

100 0.3 sec. 0.3 sec.

1000 2 sec. 2 sec.

10000 12 sec. 12 sec.

blend and trim these surfaces using an off-the-shelf software.

DISCUSSIONS AND CONCLUSION
We presented a neural network regression method for

freeform surface creation on point sets. Point sets of interest
are primarily sparse, unstructured, unevenly distributed and can
be partially detailed. Our surface regression procedure is com-
posed of three steps; parametrization, neural network training,
and synthesis.

On Point Set Parametrization. Two different algorithms are
used for parameterizing a given point set. We use locally lin-
ear embedding for open two-manifold parametrization, and the
tangential Laplacian embedding method for closed surfaces fol-
lowed by an angular decomposition in spherical coordinates. In
Fig. 9, it can be observed that the parametrization is accurate for
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the point sets in which the underlying geometry is discernable to
the human eye, whereas the parametrization deteriorates as the
sampling rate becomes prohibitively low. Point sets that are un-
evenly distributed and/or partially detailed in nature (Figure 12)
are also successfully parameterized. These parameterizations are
independent of the global position and orientation of the point set
and are also able to process surfaces that fold onto themselves.

On Neural Network Training. Once the point set is param-
eterized, a neural network that takes the parametrization and 3D
space coordinates as input-output pairs is trained for surface re-
gression. This training process is controlled by continuously
monitoring the validation and test sets over different network
structures in order to concurrently minimize both under-fitting
and over-fitting. Under-fitting results in a loss of information
in which the regressed surface will exhibit fewer details com-
pared to the intended one. Over-fitting, on the other hand, will
result in a network structure that has excess degrees of freedom,
which typically results in undulations in the synthesized surfaces.
Our approach aims to curtail such phenomena through an inte-
grated network topology optimization and learning algorithm. In
practice, however, further surface quality control and edits may
be necessary that involve direct methods for surface fairing and
smoothing. We believe such tools must be an integral component
of any geometric design system.

On Surface Tessellation. The trained network forms a bridge
between the parametrization domain and the 3D space, thereby
effectively serving as a tessellation mechanism. Through an
automatic or guided grid generation process in the parametric
space, a surface tessellation in 3D can be obtained with a con-
trollable resolution. One such tessellation is shown in Fig. 8.
Currently, the proposed algorithm does not facilitate an explicit
dictation of positional or derivative constraints which are func-
tionalities necessary for defining explicit surface boundaries or
for developing manufacturing procedures. We are currently de-
veloping techniques to incorporate such constraints into the de-
sign environment through the use of meta-networks that satisfy
prescribed constraints through a minimization of energy func-
tionals.
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