
Computer-Aided Design 43 (2011) 278–292
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

From engineering diagrams to engineering models: Visual recognition and
applications
Luoting Fu, Levent Burak Kara ∗

Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States

a r t i c l e i n f o

Article history:
Received 13 August 2009
Accepted 25 December 2010

Keywords:
Network-like engineering diagram
Visual recognition
Convolutional Neural Network
Sketch-based modeling
Engineering document image analysis
Engineering information retrieval

a b s t r a c t

We present a computational recognition approach to convert network-like, image-based engineering
diagrams into engineering models with which computations of interests, such as CAD modeling,
simulation, information retrieval and semantic-aware editing, are enabled. The proposed approach is
designed to work on diagrams produced using computer-aided drawing tools or hand sketches, and
does not rely on temporal information for recognition. Our approach leverages a Convolutional Neural
Network (CNN) as a trainable engineering symbol recognizer. The CNN is capable of learning the visual
features of the defined symbol categories from a few user-supplied prototypical diagrams and a set of
synthetically generated training samples. When deployed, the trained CNN is applied either to the entire
input diagram using a multi-scale sliding window or, where applicable, to each isolated pixel cluster
obtained through Connected Component Analysis (CCA). Then the connectivity between the detected
symbols are analyzed to obtain an attributed graph representing the engineering model conveyed by
the diagram. We evaluate the performance of the approach with benchmark datasets and demonstrate
its utility in different application scenarios, including the construction and simulation of control system
or mechanical vibratory system models from hand-sketched or camera-captured images, content-based
image retrieval for resonant circuits and sematic-aware image editing for floor plans.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Diagrammatic, graphical representations are suitably utilized
to prototype, visualize and communicate rich sets of engineering
concepts, and as such play a key role inmany engineering scenarios
involving design analysis, synthesis, collaboration and education
[1–9].

Human engineers, if presented with an engineering diagram,
are able to recognize the underlying engineering model conveyed
by the diagram, externalize it in a domain-specific computational
environment and perform down-stream tasks of interest. Those
are the typical steps of the design workflow revolving around
diagrams.

In contrast, computers or software agents cannot directly
accomplish the same without access to the underlying model. For
this reason, some digital diagrams created with computational
aids are saved in a software-specific format that retains both
the diagrammatic appearance and, more importantly, the model
information. However, many engineering diagrams are encoded
in the widely available, application-neutral format of pixelated
images. Apart from pixel intensities, no model information

∗ Corresponding author. Tel.: +1 412 268 2509.
E-mail addresses: luoting.fu@cmu.edu (L. Fu), lkara@cmu.edu (L.B. Kara).

0010-4485/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2010.12.011
is stored in those images, necessitating engineering diagram
recognition.

It is desirable to solve engineering diagram recognition, i.e., the
automated conversion from image-based engineering diagrams to
engineering models. The motivations are twofold. Firstly, image-
based engineering diagrams exist in non-trivial quantities in
diverse design and education related scenarios. Examples include
engineering diagrams in patents, textbooks and other technical
archives digitized with scanners, drawings distributed on the web
and indexed by search engines, instructional diagrams drawn on
the white boards or tablet PCs, and prototypical concepts sketched
at the back of an envelope and then digitally captured by a camera.

Secondly, diagram recognition enables a wide spectrum of
model-based, engineering computations on diagrammatic images,
thus enhancing the supportive value of diagrams in design.
Computations of interest include model creation, simulation,
animation, indexing, retrieval and diagram editing operations.
With that, the representational advantage of engineering diagrams
is augmented by the computational support from engineering
software.

In this paper, we tackle the recognition of a particular subset
of engineering diagrams: the network-like diagrams. Within a
network-like diagram, pixels can belong to either symbols or
connectors, and symbols and connectors do not overlap or contain
each other. This definition encompasses a wide range of domains

http://dx.doi.org/10.1016/j.cad.2010.12.011
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:luoting.fu@cmu.edu
mailto:lkara@cmu.edu
http://dx.doi.org/10.1016/j.cad.2010.12.011


L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292 279
Fig. 1. Overview of the proposed approach.
in engineering, including multi-body vibration systems, control
systems, bond graphs, electric circuits, algorithmic flowcharts,
UML diagrams and state machines. In this work, we pursue a
general approach to handle diagrams generated with the aid of
drawing tools as well as diagrams sketched freehand.

The computational challenges herein is a lack of straightforward
mapping from the pixel-based visual representation of a diagram
to the underlying engineering model conveyed by the diagram.
Specifically, the challenges include the need for a trainable image-
based recognizer with desired invariance to a broad range of
appearance variations, while providing interactive performance.
Those challenges are detailed in Section 2.

Shown in Fig. 1, our visual recognition approach for network-
like engineering diagrams consists of several modules. The core
module is a Convolutional Neural Network (CNN) [10] symbol
recognizer. The CNN is trained with labeled images prior to
deployment, as illustrated in Box A of Fig. 1. The objective of
training is for the CNN to learn the distinctive visual features
of each symbol category. A large training dataset with several
hundreds of examples per category is necessary to train a highly
accurate CNN recognizer, but such a large dataset is usually costly
and time-consuming to obtain. To avoid burdening the users with
the collection many training samples, a small training set initially
containing a fewdozens of user-provided samples is iteratively and
autonomously expanded, without requiring manual interventions
from the user.

As Box B shows, the trained CNN is utilized with one of the
following two localization modules to detect symbols within the
input image. Onemodule, based on themulti-scale slidingwindow,
applies the CNN to the input image in an exhaustive manner. It
achieves general applicability at the cost of speed and accuracy. The
othermodule, based on Connected Component Analysis (CCA) [11],
applies the CNN to the selected regions of the input image. It is
applicable to images in which symbols are isolated at the pixel
level, and produces improved accuracy and runtime than the
sliding window.
Subsequently in Box C, the symbols detected by the CNN are
subject to a connectivity analysis and then transformed into an at-
tributed graph which is a domain-independent, intermediate rep-
resentation. Domain-specific post-processing is then performed on
the attributed graph to construct the engineering model repre-
sented by the input diagram. The modules of our approach are de-
scribed in Section 4 and evaluated in Section 5. Applications built
upon our approach are presented in Section 6.

1.1. Contributions

The contributions of our work are threefold. Firstly, it provides
a generalized visual recognition approach applicable to multiple
engineering domains within the defined scope of this paper, inde-
pendent of how the diagrams are drawn (i.e., whether produced
with computer-aided drawing tools, or sketched freehand) or ac-
quired digitally (i.e., whether captured by webcams, scanners or
screen shots, or drawn on a tablet PC). The domain independence
is achieved because the recognizer is trainedwith symbols defined
in the domain of interest and learns the distinguishing features of
symbol categories. The input independence is achieved because
the recognizer is built on visual patterns, rather than particular
temporal or online patterns available only from tablet PCs.

In comparison, previous works in document image analysis
have employed heuristics and/or thresholds valid only for neatly
drafted diagrams or specific domains. Likewise, previous works in
sketch understanding have relied predominantly on the stroke-
level, temporal features of an input sketch and hence are limited
to diagrams drawn with a digitizer on a tablet PC.

Secondly, the CNN recognizer yields a recognition performance
competitive to existing recognition systems on published bench-
mark datasets. As the evaluation in Section 5 has shown, the
CNN recognizer features invariance against man-made or device-
induced appearance distortions that render symbol recognition
difficult. Trained in a data-driven manner, it can obtain high accu-
racy as long as training data is provided. It is also free of the fixed



280 L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292
biases that are otherwise introduced by nonadaptive, hand-crafted
recognition rules.

Thirdly, on the widely available, image-based engineering
diagrams produced at various stages of design, our approach
enables useful engineering computation. For example, the recog-
nition of conceptualization diagrams at the early stages allows the
designer to study the dynamic behaviors of the design concepts
preliminarily depicted as static images, thus facilitating a quick
exploration of design alternatives. The recognition of diagrams in
design archives facilitates the mining, retrieval and reuse of past
designs. The recognition of the diagrams being edited leads to hu-
man–computer interface that assists the users by simplifying com-
plicated editing operations. Demonstrations of such scenarios are
presented in Section 6.

2. Problem statement

2.1. Terminology

An engineering diagram refers to a two-dimensional symbolic
representation of certain engineering information. The word
diagram will be used interchangeably with the word image in
the reminder of this paper, because we are focusing on diagrams
represented as rasterized images.

A subset of all diagrams is thenetwork-like diagrams, also known
as node-link diagrams. It refers to diagrams in which pixels can
belong to either symbols or connectors, and the symbols do not
overlap with or contain each other. Symbols are well-defined
pixel patterns corresponding to particular engineering objects.
Connectors are undirected lines or directed arrows depicting the
relationships between symbols.

2.2. Goal and scope

As stated in Section 1, the goal of this paper is to automate
the recognition of an engineering model from its image-based,
diagrammatical depiction. The input is an image-based diagram
preprocessed for text removal and de-noising. The final output is
the engineering model, constructed per the semantics of the input
diagram, the engineering domain and the application of interest.

The scope of this paper is to recognize network-like diagrams
independent of how they are produced, i.e., whether produced
with computer-aided drawing tools, or sketched freehand, and
independent of the means of acquisition, i.e., whether captured
through webcams, scanners or screen shots, or through digital ink
from tablet PCs.

2.3. Challenges

Kara et al. [12] summarized the twomajor computational tasks
in sketched diagram recognition as parsing (also called symbol
localization) and symbol recognition. During parsing, primitives of
the input, be it pixels or pen strokes, are clustered together if they
form a defined symbol. During the subsequent symbol recognition,
the clusters of primitives are recognized as individual symbols.

For both tasks, different types of variations are the main chal-
lenges. Symbol localization is complicated by the global variations
in terms of the symbols’ locations and scales: the symbols to be lo-
cated can be drawn at virtually any location and any scale within
the input image. Symbol recognition is also rendered difficult be-
cause each defined category of symbols exhibits significant local
visual variations despite the within-category similarities. Fig. 2 (a)
exemplifies such variations: although a body mass is customarily
defined as a rectangle, neither of the bodymass symbols in this di-
agram features a perfectly rectangular shape; instead, they exhibit
different shapes, scales, local distortions and even have extrane-
ous, over-tracing strokes. Such rich variations preclude the use of
trivial template-based algorithms such as pixel-based nearest
Fig. 2. Local visual variations are the major challenge for sketched symbol
recognition. (a) Sketched diagram of a mechanical vibration system that exhibits
high variability in drawing styles, scales, local distortions and over-tracing strokes.
(b) A webcam snapshot of a rectilinear mechanical vibratory system that has
undergone foreshortening due to the relative position between the webcam and
the drawing board.

neighbor. The same argument on variations also extends to dia-
grams formally drawn with drawing tools. The global location and
scale variations still exist. And the local variations, though rela-
tively limited, could still be induced by the differences in terms
of shape definitions, aspect ratios and line widths. The acquisition
of the diagram introduces additional variations. For example, im-
age captured by a digital camera or a webcam are often subject
to perspective and non-rectilinear distortions caused by the lens,
shown in Fig. 2 (b), and occasionally the out-of-plane curvature
of the drawing surface. To sum up, the first challenge for diagram
recognition is the issue of variations. An ideal diagram recognizer
should therefore feature invariance to symbols’ locations, scales, lo-
cal distortions, and missing or extraneous pixels.

In the second place, trainable recognizers, rather than hand-
crafted recognizers based on heuristics and thresholds, are
necessary for two reasons. Firstly, the former can be retrained
to improve upon the unobtrusive feedback that users provide by
confirming or correcting recognition results. In contrast, the latter
are subject to fixed biases and error rates, unless tuned by expert
users. Secondly, the former can be generalized to a wide range of
engineering domains with user-supplied training samples in the
target domain. The latter require expert users to tune the internal
parameters, if they can be tuned at all.

A third but non-trivial challenge for the recognizer is the
interactive performance, especially when the recognizer is to be
employed in sketch-based modeling interfaces. This narrows
the candidate pool of recognition algorithms down to efficient
classifiers, such as feed-forward neural networks, that do not
perform expensive, optimization-based inference at runtime.

Based on the above challenges and desiderata, the invariance
properties, trainability and processing speed of the recognizer
constitute the major design objectives underlying many decisions
of our approach. Howwell our approach addresses those objectives
is shown throughout Sections 5 and 6, and summarized in
Section 7.

3. Related work

3.1. Document image analysis

The capability for a computer to recognize diagrammatical in-
puts has been long sought-after. The document image analysis
community has previously contributed different recognition so-
lutions to network-like diagrams in several engineering domains.
Earlier works focused exclusively on diagrams in a single domain
or a particular input format [13,14]. For example, Lin et al. [15]
and Yu et al. [16] used pre-defined, fixed rules and pattern tem-
plates for symbol localization and recognition. Futrelle et al. [17,18]
proposed a diagram understanding system using Context-based
Constraint Grammars and formulated symbol localization as a
depth-first constraints satisfaction problem. Messmer and Bunke’s
system [19] formulated symbol recognition as an error-tolerant
subgraph matching between symbols defined previously and
symbols drawn in the input diagram. However, those approaches
either relied heavily on manually tuned parameters that are spe-
cific to the application domain [15,19], or assumed vectorized



L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292 281
inputs [17,18,16] which are themselves non-trivial to obtain from
pixelated input images.

Recent works have begun to shift the paradigm to the use of
trainable classifiers for the task of recognizing localized symbols,
achieving improved recognition accuracy. Pre-defined features
such as image statistics are extracted from the preprocessed input
and then used as inputs to a general purpose classifier such as
the Naive Bayes classifier. Exemplary works include [20–27] and
comprehensive reviews are offered in [28,29]. It is noteworthy that
those symbol recognizers require the localization of each symbol in
the input diagram. In comparison, our work investigates both the
localization and the recognition of the symbols.

3.2. Sketch understanding

The advent of the tablet PC technology and the surge of
interest in pen-enabled software applications have spawned a
number of recognizers for sketched diagrams. Earlier works
used constraints to reduce the complexity of recognition but
compromised the natural fluidity of sketching. For example,
earlier works assumed each symbol to be drawn in a single
stroke [30,31] or in a pre-defined order [32,33], or required
explicit user indications (e.g., gesturing with the digitizer or
pressing a key) to demarcate the various symbols [34]. The
FEAsy system [35] featured a rule-based recognizer specialized
in engineering symbols commonly used during Finite Element
Analysis. LADDER [36], also using recognition rules, was designed
to work across multiple domains. Expert knowledge is required
to generate the recognition rules, and the resulting recognizer
is not trainable, thus suffering from fixed biases and error rates.
Probabilistic inference has been recently used as an alternative
[37–40]. Such approaches incorporated the data-driven learning
of parametric classifiers and could improve the recognition
performance with the accumulation of training data and user
feedback. However, they made limiting assumptions regarding
the input diagrams to reduce the computational complexity. Kara
et al. introduced a more tractable mark-group-recognize heuristic
and applied it to several domains, including control system
diagrams [41] and multi-body mechanical vibratory systems [12].
The definition of landmarks, crucial to the success of this approach,
is domain-specific. In fact [41] and [12] chose different landmark
symbols based on the specific graphical layouts of the different
domains. This precludes an easy re-targeting of this approach
to new engineering domains. Moreover, a common trait of the
above approaches is that they rely on the temporal sequence or
demarcation of the strokes. Hence they are dependent on specific
input devices (e.g., tablet PCs, digital white boards) and cannot be
utilized if the input diagrams are acquired as images.

Instances of image-based recognition techniques are yet
insufficient to recognize complete engineering diagrams. Saund
et al. [42] presented a system that uses Gestalt principles to search
for the perceptually closed, low-level geometric primitives in
diagrams, but without the recognition capability for semantically
meaningful symbols. Notowidigdo and Miller’s [43] offline sketch
recognition technique used hard-coded rules to find simple
geometric primitives (e.g., circles, rectangles) in a diagram and
used empirical thresholds to filter false positives. The empirical
thresholds may cause a high rate of false positives. Kara et al. [44]
described an image-based recognizer for isolated, hand-sketched
symbols featuring high geometric variations. They extracted
template matching distances as features for recognition. It resorts
to a separate, stroke-based technique to locate the symbols
within the input image. Pu and Gur [45] described a sketch
segmentation approach based on implicit function fitting and a
greedy search algorithm. It is applicable to both stroke-based input
from tablet PCs and pixel-based input from image acquisition
devices. However, this segmentation approach results in low-level
primitives such as individual lines and arcs, rather than semantic-
level primitives such as symbols. No work has been reported on its
integration with symbol recognizers. Ouyang and Davis’s symbol
recognizer [46] utilized a feed-forward feature extractor and a
deformation template matching algorithm. It shows robustness
in isolated symbol recognition. However, it lacks the symbol
localization capability and its application to complete diagram
recognition has not been reported.

4. Proposed approach

4.1. Overview

The problem of diagram recognition can be decomposed into
four sub-problems: (1) What are the symbols drawn in this input
image or image patch? (2) Where are the symbols located in
this input image, or in other words, which image patch contains
a symbol? (3) How are the symbols connected to each other?
(4) Once the symbols and their connectivity are known, how is
the engineeringmodel built? Those four sub-problems are denoted
as symbol recognition, localization, connectivity analysis and post-
processing, respectively.

Our recognition approach (see Fig. 1) therefore consists of
four functional modules, each addressing one of the sub-problems
above. Synthetic and sketched engineering symbols and diagrams
are used as the running examples to demonstrate the modules in
the subsequent sections.

4.2. Module for recognition: convolutional neural network

4.2.1. Network architecture
The core module of our approach is a multi-layer Convolutional

Neural Network (CNN, see Fig. 3). It performs symbol recognition
by mapping a fixed-size input image to a label that indicates
the symbol category of the input image. A detailed mathematical
definition and analysis of the CNN is described in [10]. Here
we briefly describe the network architecture and emphasize the
intuition behind it.

Each layer of the CNN stores a collection of trainable parameters
and defines a parametric function that computes the output from
the input. The exact form of the parameters and the layer function
depends on the type of the layer. For example, a convolutional layer
such as Convolutional Layer 1 (CL1) in Fig. 3 stores Nf instances
of kw × kh trainable image filters. These filters are essentially
feature extractors that can be trained to respond to distinctive local
features such as oriented edges, line ends and junctions. Given a
w × h input image, CL1 performs 2D convolutions between the
input image and each filter, applies nonlinear thresholding to the
convolution results andproducesNf instances of (w−kw+1)×(h−
kh + 1) 2D intensity matrices called the feature maps. Each feature
map represents the spatial distribution of a feature, reminiscent of
a map of landmarks, hence the name.

The sub-sampling layer, another type of layer in the CNN,works
in tandemwith the convolutional layer. Consider the case of SL1 in
Fig. 3, it takes the output feature maps from CL1 as its own input,
and performs weighted local averaging to sub-sample its inputs
by a factor of s, resulting in Nf instances of (w−kw+1)

s ×
(h−kh+1)

s
featuremaps. This process serves to blur the featuremaps such that
the subsequent layers will not be sensitive to the exact locations
of the detected features. In doing so, the CNN gains invariance to
moderate local distortions such as translations and rotations [47].

The third and last type of layer in the CNN is the fully connected
layer commonly found in regular neural networks [48]. In Fig. 3
this corresponds to FCL and OL. For both layers, the input vector
is multiplied by a trainable weight matrix and then nonlinearly
thresholded, resulting in the output vector. FCL and OL function
together as a two-layer neural classifier. The input vector to FCL



282 L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292
L

Fig. 3. The architecture of the Convolutional Neural Network. The input is an image patch featuring a Sine Wave signal source in the domain of control systems (defined in
Fig. 14).
is a reshaped version of all the output feature maps (essentially a
3D tensor) from the sub-sampling layer immediately before FCL,
namely SL2 in the case of Fig. 3. The output of FCL is forwarded to
OL as the latter’s input. The components of the output vector of OL,
also known as labels, represent the pattern categories of interest
in the target domain. The component with the maximal numerical
value determines the category of the input image.

The CNN trained for several domains in this paper consists
of two pairs of convolutional layers and sub-sampling layers
in succession (i.e., CL1, SL1, CL2 and SL2), followed by a fully
connected layer FCL and finally an output layer OL. The trainable
parameters (e.g., filters, weights matrices) of each layer are
optimized in a data-driven fashion during training, in order
to adapt to the visual features of a specific domain. Refer to
Section 4.2.2 for more details regarding the training of the CNN.

The structural parameters of the CNN, such as the number
of layers and the number of trainable filters on each layer,
are empirically determined during training. A simple rule-of-
thumb [10] that works well is to start small and increase those
numbers until further increments do not lead to significant
performance improvement, or until the training and recognition
speeds becomeunbearable. This is automated using a control script
which underlies our choice of a six-layers CNN with the particular
amount of trainable filters.

The unique insight is that, by training the CNN parameters,
input images in the same category would result in similar
intermediate feature maps and eventually the same output label,
even in the presence of geometric distortions among them.
With such invariance to distortions, robust symbol recognition
performance is achieved, as shown in Sections 5 and 6. Moreover,
by using a recognizer on image-based inputs, our approach is not
limited to stroke-based diagrams from tablet PCs.

4.2.2. Training
Before deployment, the CNN is trained with the Stochastic

Gradient Descent algorithm [10], otherwise its internal parameters
remain randomly initialized and are expected to perform poorly
for the recognition tasks. During training, parameters are updated
to minimize the discrepancy between the reference labels and
the computed labels on the training set. In doing so, the CNN
extracts the visual knowledge that encodes the distinctive features
and desired invariance properties of the symbol categories from
training samples. We refer the readers to [10,47,49] for detailed
mathematical derivations of the gradients and the parameter
update equations in CNN. The following paragraphs will focus on
the collection and synthesis of training samples.

To initiate training, the users are required to provide a few
labeled prototypical diagrams on which they have marked the
bounding boxes for all symbols and has attached categorical labels
(e.g., spring, damper, mass) to the bounding boxes. This is the
only manual intervention required from the user. The rest of the
training procedure is automated.

The training samples are therefore pairs of image patches
cropped from the prototypical diagrams, and their categorical
Fig. 4. Seed training samples (first column on the left) and additional training
samples synthetically generated from the seeds by random local distortions
and global transformations (the other columns). The images are aliased due to
quantization. Top row: Scope. Middle row: Sum. Bottom row: Ramp signal.

labels. Samples of the defined symbol categories are extracted
directly from the user-provided bounding boxes and labels. In
addition to the defined categories, one additional ‘‘non-symbol’’
category is initialized by randomly cropping three types of regions
from the prototypical diagrams, namely regions without labels,
regions having negligible overlaps with the user-labeled regions
and regions containing multiple labels. The non-symbol category
is introduced to help the CNN suppress false positives that occur
when the CNN is used in conjunction with the sliding window
method for symbol localization (described later in Section 4.3). The
cropped image patches are scaled and padded to fit the input size
of the CNN.

4.2.3. Expanding the training dataset
Theoretical and empirical evidence [50,10,51] suggests that the

training datasetmust have a substantial volume and rich variations
to train a highly accurate and robust CNN. Therefore the training
dataset is expanded to include synthetically generated training
samples, without requiring the user to manually create a large
training dataset.

Synthetic samples in the symbol categories are generated
by applying a set of random local distortions [52] and global
affine transformations to the initial samples. The local distortions
are applied by computing a new intensity value for every
pixel as a smoothed stochastic interpolation of the neighboring
pixels. The global transformations include non-uniform scaling,
in-plane rotation and shear of the entire image. They mimic the
style variations and shape distortions that users and/or image
acquisition devices would naturally introduce. Fig. 4 shows several
additional training samples generated from seed training samples
of hand-sketched symbols in control systems.

To generatemore samples in the non-symbol category, the CNN
is retrained and additional non-symbol patches are sampled in the
process. The CNN is first trained with the initial training sets and
tested against the prototypical diagramswith user-supplied labels.
Regions causing false positives are then selectively added to the
non-symbol training set. A commensurate number of additional
training samples are generated using random distortions to keep
the numbers of samples balanced across the symbol and non-
symbol categories. The CNN is then retrained with the expanded
training set. This process is re-iterated to ensure that the network
is trained with an adequate number of samples to suppress false



L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292 283
positives on the training set and generalize such ability to testing
diagrams. The false positive rate and the accuracy of the CNN can
be monitored to determine the termination of such iterations.

Another viable way to generate more training samples is to
collect user feedback such as corrections of misclassified and false
positive patterns, as well as the absence of corrections, namely
the tacit confirmations, of correct yet low-confidence patterns. By
adding such patterns into the training set and retraining the CNN
with them, the CNN’s accuracy can be improved throughout its life
cycle. This is a benefit unavailable with non-trainable systems.

4.2.4. Recognition
A trained CNNworks as follows to recognize an unknown image

patch: it first convolves the input image patch with the set of
learned image filters to extract features, then sub-samples the
resulting feature maps for invariance against distortions. And the
alternation of convolution and sub-sampling is repeated as needed
until finally the feature maps are classified using a two-layer fully
connected neural network. The final output is a normalized vector
whose length equals to the number of categories to be recognized,
including the defined categories and the non-symbol category. The
n-th output value can be seen as the likelihood that the input
belongs to the n-th category. Fig. 5 shows the input image (a Scope
symbol), the internal states, the parameters (e.g., learned image
filters and weights) and the output vector of a CNN trained for
recognizing control system diagrams. Here the output of the CNN
corresponds to the correct label of the input image.

The CNN is biologically inspired. Physiologists [53] have
discovered ‘‘simple cells’’ that function similarly to a convolutional
layer and ‘‘complex cells’’ that function similarly to a sub-sampling
layer in the visual cortex of cats. Successful applications of the CNN
in optical character recognition [52] and visual detection of human
faces from photos [47] have demonstrated the strength of the CNN
to handle large variations in the inputs. To the best knowledge of
the authors, the proposed approach is the first to apply the CNN to
the visual recognition of image-based engineering diagrams.

4.3. Modules for localization

The CNN described in the foregoing section has an input
layer of limited size that can be utilized to recognize a single
image patch. Referring back to the problem decomposition in
Section 4.1, an isolated symbol recognizer such as CNN must
therefore be used in conjunction with a localization module to
yield a complete recognition of an input diagram. To this end,
we propose the following two localization modules: the multi-
scale sliding window and the Connected Component Analysis.
Both methods take a diagram as input, and output the locations
of the symbols in the diagram, without requiring explicit user
demarcations or prior definition of heuristic landmarks.

4.3.1. The sliding window and the multi-scale image pyramid
Recall that the major challenges for symbol localization are the

scale and location variations of the symbols drawn in the sketch.
To handle such challenges, one possible design rationale for the
localization module is to search for symbols exhaustively across
different locations and scales of the input diagram.

A trivial search scheme is to apply the CNN to the input image
through a fixed-size sliding window. This essentially involves
searching across different locations at a single scale, and will only
yield detections having the same scale as the input window, or
figuratively the field-of-view, of the CNN. Symbols larger than
that will not fit completely into the sliding window. Symbols
substantially smaller could appear too small and blurred due to
quantization. In both cases, the CNN will not identify all the
distinctive features necessary for symbol detection.
Fig. 5. The internal states and the parameters of a CNN trained for recognizing
control system block diagrams. The expression below each row denotes the
dimension of that row. (a) A 32-by-32 input image of a Scope block. (b) 5 sets of
5-by-5 filters in CL1. (c) 5 sets of 28-by-28 feature maps produced by CL1. (d) 5 sets
of 14-by-14 feature maps outputted by Sub-sampling Layer 1. (e) 30 sets of 10-by-
10 feature maps outputted by CL2. (f) 30 sets of 5-by-5 feature maps outputted
by SL2. (g) A 40-element vector outputted by FL1, each painted as a gray-scale
cells. (h) A 17-element vector outputted by the last layer, each representing the
likelihood that the input belongs one of the 17 defined categories. Here the most
likely category of the input is the first one, namely the cell with the lightest shade
on the left. For visual clarity, each featuremap and cell has been normalized to 256-
level gray-scale such that the minimum values correspond to black pixels and the
maximum values to white.

Our solution is to complement the sliding window idea with a
multi-scale image representation so as to search across different
locations as well as scales. The input diagram is first converted
to a gray-scale image and successively sub-sampled to produce
a series of images with lower resolutions than the original one.
Those images form a multi-scale representation known as the
image pyramid, as exemplified in Fig. 6. A sliding window of fixed
size is then applied to different levels of the image pyramid with
a unit step size in both axis directions and thereby traverses
every position within the image. The region inside the window is
extracted as a single image patch and then passed to the CNN for
recognition.

The sub-sampling factor f between successive levels of the
image pyramid is chosen to complement the built-in and learned
scale invariance of the CNN, such that symbols drawn at any scale
within a large, continuous range can be detected. Consider an
image pyramid I0, I1, . . . , In where In is generated by sub-sampling
I0 for n times, each time for a factor of f (f > 1). Assume, without
losing generality, that a CNNwith aw0×w0 square slidingwindow
on I0 is able to detect symbols whose sizes are within the range of
R0 = [w0 · l, w0 · u], because of the CNN’s built-in and learned
scale invariance. Here l and u are coefficients indicating the lower
and upper bounds of detectable symbol sizes, normalized by w0.
Per this definition, 0 < l < u ≤ 1. It is straightforward to see
that, if the w0 × w0 sliding windows is applied on I1, then it is
equivalent to applying a larger, (w0 · f ) × (w0 · f ) window on I0,



284 L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292
Fig. 6. Sliding windows on different levels of the image pyramid and the
recognition results at four window positions.

because I1 is created by sub-sampling I0 once for a factor of f . With
this (w0 · f )× (w0 · f )window on I0, it is now possible to recognize
symbolswhose sizes arewithin the range of R1 = [w0 ·f ·l, w0 ·f ·u].
If f ≤

u
l , then the two ranges R0 and R1 will overlap, ensuring that

symbols sized within the expanded, continuous range of R0 ∪ R1
can be detected. With an n-level image pyramid, the detectable
symbol size range would therefore be equal to R0 ∪R1 ∪ · · ·∪Rn =

[w0 · l, w0 · u · f n−1
].

The number of levels in the image pyramid is determined by
the largest permissible symbol size which is usually constrained
by the dimension of the drawing surface. In the absence of such a
bound, the input image can be sub-sampled repeatedly until the
whole diagram fits into the sliding window.

A proper choice of those parameters would result in an
exhaustive scan of the input with the multi-resolution sliding
window, and the chances for the CNN to detect symbols at different
locations and scales are thusmaximized. For instance, the left-most
bodymass symbol in Fig. 6, oversized for the sliding window at the
base resolution, is gradually shrunk to fit into the sliding window
at location 4 in a lower resolution and subsequently recognized by
the CNN.

A large number of computations performed by the CNN for
overlapping input patches are convolutions using a common set
of filters and are therefore redundant. As suggested in [10],
we implement the sliding window as follows to improve
computational efficiency. Rather than scanning the 6-layer CNN on
each level of the image pyramid in a window-by-window fashion,
the first four layers of the CNN are first applied to each level in full,
producing featuremaps approximately four times smaller than the
input. Then a sliding window four times smaller than the original
one scans the feature maps and feeds the contents inside the
window to the last two layers of the trained CNN for recognition.
Such operations reuse the convolution results shared between
overlapping inputs and produce the same results that would be
otherwise obtained without reusing the redundant computation.

Fig. 7 (a) shows that symbols can be detected within adjacent
sliding windows or at multiple resolutions, because the CNN is
robust to modest translations and scale variations. In such cases,
multiple detections by the CNN are grouped according to their
Fig. 7. The detection of a body mass symbol in a simple vibratory system diagram.
(a) Multiple detections of the body mass, each with different sliding window
position, scale and likelihood output. (b) The detection with the highest likelihood
is retained.

Fig. 8. The result of CCA on an 8×8 image containing two connected components.
Each cell in the grid represents a pixel. (a) The input image. (b) CCA results. Colored
pixels indicate different connected components.

spatial proximity and the amount of common overlap. The one
with the maximum likelihood value is retained while the rest are
discarded, as shown in Fig. 7 (b).

4.3.2. Connected component analysis
As an alternative to the multi-scale sliding window, Connected

Component Analysis (CCA) [54–56] localizes symbols more
efficiently by considering the pixel-level connectivity of the input
diagram.

A pixel at location (x, y) is said to be connected to the pixels at
the coordinates (x±1, y), (x, y±1), (x±1, y±1) and (x±1, y∓1).
CCA algorithms output a list of such connected pixel regions within
a binary input images. Fig. 8 shows an example of CCA result on a
toy example containing two connected components: a square blob
and a slanted edge.

When a diagram features non-overlapping connectors and
symbols that each form a connected component, CCA can be
applied in such cases as an efficient and accurate alternative to the
sliding window. Fig. 9 shows the following steps of applying CCA
to a control system block diagram where the symbols are drawn
following the definitions in Fig. 14.

First a binary version of the input diagram (Fig. 9 (a)) was
produced by thresholding the gray-scale input image. Pixels with
intensities greater than the median pixel value are classified as
foreground and those below the median as background. CCA finds
the bounding boxes and pixel coordinates of each connected
components, as shown in Fig. 9 (b). Note that at this step nothing
is passed to the CNN for recognition yet.

Two components are merged into one, if the overlapping ratio
ρ (defined below) of the two components under consideration
exceeds a trainable decision parameter δ. The overlapping ratio
ρ of two components is defined as the overlapping area between
their bounding boxes, divided by the bounding box area of the
smaller component. ρ = 1 corresponds to the special case that
the larger competent completely contains the smaller one. The
trainable parameter δ is set to the minimum of the overlapping
ratio of any two components belonging to the same symbol from
the training dataset. Fig. 9(b) and (c) illustrate such a merging
process. The small components annotated with arrows in Fig. 9(b),
such as the horizontal stroke, the question mark and the plus sign,
are merged with components encircling them to form connected
components that represent the Scope, Sum and Random symbols,
respectively. In the domain shown in Fig. 9 and further detailed in
Section 6, the value of δ is found to be 0.75.



L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292 285
Fig. 9. The exemplary results of CCA on a fragment of a control system block
diagram. (a) The input diagram. (b) Initial CCA results. Colored bounding boxes
indicate different connected components. Gray arrows indicate small components
that are encircled and merged by other components. (c) Merged CCA results.
Each merged component corresponds to a symbol. (d) The recognition results of
each component produced by the CNN. Note that colors are used to differentiate
connected components, rather than symbols. The symbols drawn here are defined
in Fig. 14.

Eachmerged component, corresponding to a defined symbol or
connector, is then extracted from the gray-scale input image. The
extracted component is then scaled and padded to fit into the input
window of the CNN for recognition.

The recognition result of each connected component in Fig. 9(d)
will be used in the subsequent steps of connectivity analysis
and post-processing. Note that in Fig. 9(d) colors are used to
differentiate connected components, rather than color-coding
different symbol categories.

With the CCA, the CNN is applied only once per connected
component. The number of components is typically far smaller
than the number of sliding windows. This leads to increased
recognition speed over the sliding window and reduces false
positive detections, as observed in Sections 5 and 7.1.3. Moreover,
unlike the sliding window, only one detection per symbol is
produced, thus eliminating the need to merge and suppress
duplicate detections. However, due to the assumption on the
disconnected pixel connectivity in the input image, it is not as
generally applicable as the sliding window. We are investigating
symbol localization schemes that combine the advantages of both.
Recent works [57,58] in computer vision have provided pointers in
this direction.

4.4. Modules for connectivity analysis

Given an input diagram, the output from the two previous
modules, i.e., symbol localization and symbol recognition, are the
bounding box location, size, and label of each symbol contained in
the diagram.

In some engineering domains, such as rectilinear mechanical
vibratory systems, the above information is sufficient to derive the
engineering model embodied in the diagram, because the relative
locations of the symbols implicitly determine the connectivity
between the symbols. For example, a horizontal spring is always
connected to the symbol to its immediate left or right. In such
cases, it is unnecessary to analyze whether there are foreground
pixels connecting the spring symbol to others.

In other domains, however, the connectivity between detected
symbols requires further analysis. For example, electric circuits
feature line connectors between the symbols. In this case, the
connectivity can be analyzed as follows: First, the connectors are
isolated as individual connected components. If CCA is used, then
Fig. 10. Locating connector ends with LLE and PCA. Magenta circles denote ends
located by LLE and blue squares denote PCA results. PCA fails when the connecter
exhibits nonlinear structure.

Fig. 11. Connectivity analysis applied to a simple RLC circuit. (a) The input image.
(b) Recognition results by the sliding window. Colored bounding boxes indicate
different symbol categories. (c) Recognized symbols are masked with white pixels
and connectors are left as individual connected components. (d) The ends of the
connectors are located using LLE and shown in magenta dots.

connectors are already known to be the connected components
discarded by the CNN as non-symbols. If the sliding window
is used, all pixels inside the bounding boxes of the recognized
symbols aremasked by the background pixels such that the canvas
only shows the connectors as individual connected components.

Next, each individual connector undergoes morphological
thinning to reduce the number of pixels. Afterwards, a locally
linear, one-dimensional embedding of the 2D coordinates of the
remaining pixels is computed for each connected component
using the Locally Linear Embedding (LLE) algorithm [59]. The
pixels with the minimum and maximum coordinate values in the
one-dimensional embedding are picked as the two ends of the
connector. This is similar to [60] which used Principle Component
Analysis (PCA, [61]) to order sample points from multiple over-
tracing strokes. The primary difference is that here LLEmaps the 2D
pixel coordinates to an embedded, nonlinear 1D manifold within
the 2D pixel coordinate space, whereas in [60] PCAmaps the point
coordinates to a 1D straight line passing through the 2D point
cloud representing the over-tracing strokes. Therefore, LLE is able
to unroll curved connectors that form nearly closed loops, whereas
PCA cannot handle such cases, as shown in Fig. 10 and observed
by [60].

Finally, each end of a connector is assigned to the nearest
detected symbol. Two symbols assigned to the same connector are
thus connected. Fig. 11 shows an example of the above procedure
applied to a simple RLC circuit. Note that two different types of
sliding windows (i.e., square and rectangular) are used in order to



286 L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292
Fig. 12. (a) A simple diagram depicting a mass–spring system. (b) The
corresponding attributed graph after recognition, localization and connectivity
analysis. (c) The attributes of each vertex. (d) The unattributed edges between
vertices.

obtain tight bounding boxes of symbols and avoid misclassifying
pixels of neighboring symbols or connectors.

Diagrams of some engineering domains feature directed
connections. For example, in control system block diagrams,
arrows are drawn between symbols to indicate the flow of signals.
A directed connector is none other than an undirected connector
featuring additional pixels on one end known as the arrow head.
To locate the arrow head, a small (e.g., 10 × 10) image patch
centered around either ends of the connector under consideration
is extracted and the one with greater density of foreground pixels
is marked as the arrow head.

At this point, all pieces of information required to derive the en-
gineering model (i.e., the locations, labels and connectivity of the
symbols) are extracted from the input diagram. Next, an attributed
graph similar to that shown in Fig. 12 is constructed, with ver-
tices corresponding to detected symbols, edges corresponding to
detected connectors, and attributes corresponding to the categori-
cal labels and the defaultmodel parameters of the symbols. This at-
tributed graph is an application-independent interpretation of the
diagram and an abstraction of themodel conveyed by the diagram.
It decouples the application-dependent post-processing from gen-
eralized diagram recognition. From a system builder’s perspective,
it facilitates system modularization and verification.

4.5. Application-specific post-processing

Application-specific post-processing designed by domain ex-
perts can be applied to the attributed graph to yield the final
engineering model and perform the engineering computations of
interest. Formodel construction and simulation, programmable in-
terface of simulators (e.g., add_block and add_line functions in
MATLAB Simulink) can be called to automatically produce the engi-
neeringmodel from the attributed graph. For searching and editing
purposes, the attributed graph is just stored for subsequent use and
the search or editing routines will access those graphs as needed.
Section 6 illustrates those applications.

5. Evaluations

5.1. Symbol recognition performance of the CNN

This subsection evaluates howwell the CNN symbol recognizer
handles the fundamental challenge in symbol recognition: the
shape variations due to distortions. We evaluate the CNN against
a standard symbol recognition benchmark dataset: the HHreco
dataset of sketched symbols [62]. This dataset includes 7791
shapes in 13 categories. The symbols were collected from 19
different users. Originally the data was recorded on a tablet PC as
time series of pen tipmotions. Here they are quantized as uniform-
width gray-scale images. Examples are shown in Fig. 13.

Our choice of this dataset for evaluation is based on two reasons.
First, the task of recognizing these symbols is representative of
Fig. 13. Sketched shapes from the HHreco dataset. Top row: ellipse, heart,
trapezoid, pentagon, arch, hexagon, square. Bottom row: triangle, parallelogram,
moon, call-out, cube, cylinder. Images are aliased due to quantization.

Fig. 14. 16 defined symbol categories of control system block diagrams. Top row:
Scope, Gain, Mux, Constant, Sum, Transfer Function, Switch, Clock. Bottom row:
SineWave, Ramp, Step, Derivative, Integrator, Sign, Columbus and Viscous Friction,
Random. Images are aliased due to quantization.

symbol recognition tasks in different engineering domains. Second,
the testing set contains a large number of highly variable, hence
challenging, test cases.

In line with published works on this dataset, we train the CNN
with data from 18 out of the 19 users available and test on the data
from the hold-out user without generating supplemental training
data. An accuracy of 97.7% was obtained. This result is higher than
most published results ranging from 92.2% to 96.7% [62] and is
competitive to the state-of-the-art result of 98.2% by Ouyang and
Davis [46].

5.2. Sketch recognition performance of the overall system

This subsection evaluates how well the overall approach
performs in different application domains with diagrams acquired
with different devices. In particular, we evaluate the performance
of recognizing control system diagrams and mechanical vibratory
system diagrams.

For the control system diagrams domain, 16 symbol categories
are defined, following the display styles in MATLAB Simulink. The
symbol definitions are shown in Fig. 14. The connectors in this case
are arrows. Considering the disconnected nature of this domain,
CCA localization is used.

A total of 30 sketches are drawn by 11 users with a digital
tablet, pen-and-paper or Microsoft Word line drawing tools. A
total of 328 symbols belonging to the 16 defined categories are
labeled. Three sketches are used as the initial training set and
approximately 400 synthetic training samples per category are
generated. The rest, containing 264 symbols, are used as the test
set to benchmark the accuracy of the recognition approach. 253
symbols (96%) are correctly recognized and converted to Simulink
functional blocks. Fig. 16 shows several frequently occurring cases
ofmisclassifications of very similarly shaped symbols. Because CCA
localization is used, there is no false positive detection of symbols,
only misclassifications.

To demonstrate the CNN’s robustness against stylistic varia-
tions, we have additionally constructed a miniature dataset con-
taining 80 symbols shown in Fig. 15. These symbols feature
significant variations that are not present in the training samples,
such as over-tracing strokes, dot-dash strokes, strokes with non-
uniform ink widths and occasionally noise pixels, bent or sheared
strokes, and wavy strokes. Our CNN recognizer is able to cor-
rectly recognize 71 out of the 80 symbols. We note that such accu-
racy, though indicative of the CNN’s robustness, does not directly



L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292 287
Fig. 15. A miniature dataset of 80 control system symbols featuring stylistic variations not present in the training dataset. Each row from top to bottom: over-tracing
strokes, dot-dash strokes, strokes with non-uniform widths and occasionally noise pixels, bent or sheared strokes, and wavy strokes. The 9 symbols with bounding boxes
are misclassified by the CNN, while the rest are correctly recognized.
Fig. 16. Misrecognitions of symbols in control system block diagrams. The text
annotations outside the parentheses are ground truth and the text annotations
inside the parentheses are the incorrect labels outputted by the CNN.

correlate with the recognition accuracy on real-world data, due to
the extreme nature of the variations here.

For the mechanical vibratory diagrams, five symbol categories
are defined following engineering convention, including body
mass, spring, damper, excitation and ground. The sliding window
approach is used for localization, because the CCA approach is
not applicable due to the connected nature of vibratory system
diagrams.

A total of 36 diagrams are captured from tablet PC sketches,
hard-copy technical journals and white boards. 359 symbols be-
longing to the five defined categories are drawn and labeled by
9 users. Four diagrams are used as the initial training set and the
training set was expanded to contain approximately 600 synthetic
training samples per category. The rest of the diagrams, containing
307 symbols, are used as the test set to benchmark the accuracy
of the recognition approach. Up to 283 symbols (92%) are correctly
recognized.1 In addition, 10 cases of false positives are produced af-
ter merging the symbol detections outputted by the CNN,2 which
constitute a very small false positive rate given the huge number
of CNN evaluations on the input image. Exemplary cases of recog-
nized diagrams are shown later in Fig. 19. Representative cases of
false positives and misrecognition due to ambiguously shaped or
severely distorted symbols are shown in Figs. 17 and 19(k).

Unlike symbol recognizers, published works on sketch recog-
nizers are often evaluated on different datasets not publicly avail-
able. Hence no detailed comparison can be drawn here and we
can only state that our overall accuracy of above 92% is at least

1 We believe that the difference between the accuracywithmechanical vibration
diagrams and that with Simulink diagrams is due to a few user-introduced
distortions that are not covered by the training samples. Examples include body
masses of elongated or circular shape, or dampers that visually resemble capacitors
or body masses.
2 Many false positive detections produced by the CNNhave low likelihood output.

Therefore they are merged and eliminated by correct symbol detections with high
likelihood and become transparent to the user. The 10 cases here refer to false
positives that are not eliminated by the nearby or overlapping symbol detections
that are correct.
Fig. 17. False positives and misrecognitions of vibratory system diagrams. The
text annotations outside the parentheses are ground truth and the text annotations
inside the parentheses are the incorrect labels outputted by the CNN.

numerically on par with published results on similar engineer-
ing domains [41,63,12]. Yet more importantly, our approach can
be used on image-based diagrams from different engineering do-
mains, while previous works in sketch understanding assumed
online features from tablet PCs or domain-specific heuristics.
Enabling useful engineering computations on widely available,
image-based diagrams from multiple domains is one of the key
contributions of our CNN-based approach.

6. Application scenarios

6.1. Building engineering models from diagrams

In this application, we describe the automated conversion from
static engineering diagrams to functional engineering models.
The resulting models can then be analyzed through numerical
simulations and visualized using animations or time series plots.
We will focus on diagrams of control systems and mechanical
vibratory systems,which are the domains selected for performance
evaluation in Section 5.2.

Both domains have been solved by prior works [41,12] utilizing
domain-specific features and online or stroke-level features from
tablet PC inputs. In contrast, our approach has the advantage
of general applicability: by working with both domains, we
demonstrate the domain independence of our approach; by
working with tablet PC drawings as well as digitally captured
diagrams created on physical media such as paper and white
boards, we show the independence from online features available
only from tablet PCs.

For the control system diagrams, the CNN recognizer is used
in conjunction with the CCA module for localization, because the
symbols and connectors here are drawnwithout overlaps.MATLAB
Simulink is used as the post-processor to build the recognized
engineering model and simulate its dynamic behavior. Exemplary
recognition results are shown in Fig. 18.

For the diagrams of rectilinear mechanical vibratory systems,
the sliding windows approach of localization is used. By applying



288 L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292
Fig. 18. Recognized control system block diagrams and their corresponding Simulink models. From left to right, the diagrams include more components. From top to
bottom, they show more shape variations (a) and (d): Open-loop control system diagrams created with the aid of drawing tools. (b) and (e): Hand-sketched closed-loop
control system. (c) and (f): Hand-sketched PID control system.
Fig. 19. Recognized vibratory system diagrams and their corresponding SimMechanicsmodels. From left to right, the diagrams showmore components. From top to bottom,
they showmore shape variations. (a), (e) and (k) are screen shots from electronic documents. (b), (d), (g) and (j) are captured from drawings made on paper or on the white
board. Note that (g) is (j) subject to foreshortening and camera distortions. (c) and (i) are scanned fromprintedmedia. (f) and (h) are sketchedwith a tablet PC. Each sub-figure
shows the input at the top and the recognition result below. For visual clarity, the corresponding models (d) to (k) are displayed as computer generated drawings, rather
than the SimMechanics models. (k) is a case not fully recognized. The red bounding boxes with dashed borders indicate misclassified symbols.



L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292 289
Fig. 20. (a) User interface of the RLC circuit retriever. (b) Examples of RLC circuits drawn with software tools and recognized for retrieval. (c) Examples of sub-circuit query
items. The bottom three are extracted from the circuits collected in a previous study [63]. The red bounding boxes with dashed borders indicate misclassified symbols. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the sliding window to the rotated versions of an input diagram
that are rotated at the increment of 90°, the CNN is able to
recognize 2D rectilinear vibratory systems.MATLAB SimMechanics
serves as the post-processing module that simulates the dynamic
behavior of the model. Exemplary recognition results, displayed in
SimMechanics style or in a simplified form, are shown in Fig. 19.

6.2. Digitization and retrieval of engineering diagrams

In this scenario, we demonstrate an application that performs
content-based information retrieval of RLC resonant circuit
diagrams. This application, whose interface is shown in Fig. 20(a),
recognizes circuits using the CNN and the sliding window. The
circuits to be recognized include those drawn with software tools
and stored in a database, and those sketched freehand and used
as the query terms. Both database and query term are converted to
attributed graphs and an attributed graphmatching algorithm [64]
is used for retrieval.

Five symbol categories are defined following the engineering
convention, including resistor, inductor, capacitor, junction and
terminal. 24 diagrams of various formally drawn RLC circuits
are downloaded from the internet, among which 448 symbols
were labeled. 6 diagrams containing 82 symbols are used to
train the recognizer. In addition to the above circuits drawn
using diagramming software, we have also collected 34 hand-
sketched sub-circuits as the query items. 8 of them are screen
snapshots from the electronic report of a previous study [63],
slightlymodified to conform to the symbol definition here. The rest
of the query items are drawn by users on a tablet PC. 4 snapshots
and 6 hand-sketched diagrams are used for training and the rest
are hold out for the performance evaluation. The evaluation shows
that all of the formally drawn circuits are correctly recognized,
while 22 out of 24 (91%) hand-sketched query circuits are correctly
recognized. Fig. 20(b) and (c) shows examples of those circuits.

In the domain of electric circuits, we observe that the bounding
box aspect ratios of junctions and resistors differ significantly.
The former is approximately 1:1 whereas the latter is usually 2:1
or greater. If we force the CNN’s input size to conform to one
value, then the detected bounding boxes for the categories with
a significantly different aspect ratio would not be tight and might
include pixels belonging to neighboring connectors or symbols. As
a result, those pixels will be erroneously masked as part of the
symbol and cause errors during connectivity analysis.

To prevent this from happening, two CNNs with different input
aspect ratios are trained. The first, responsible for the detection
of resistor, inductor and capacitor, has an input window with the
aspect ratio of 2:1. The second, responsible for the detection of
junction and terminal, has an inputwindow of 1:1 aspect ratio. The
dual recognizer treatment works well without leaving undetected
connectors or symbols. We also note that here the use of two CNNs
does not break the generality of the proposed approach, although
only one CNN is seen in previous application scenarios. The reason
is that the need for multiple CNNs can be statistically, rather than
manually, determined from the distribution of the aspect ratios of
user-labeled bounding boxes in the training dataset. Multi-modal
distributions, for example, would necessitate multiple CNNs.

After training, our circuit retrieval application is able to take a
hand-sketched circuit as the query term and find, from the stored
diagram database, one or more matching circuits that contain the
query term as sub-circuits.

This application scenario enables engineering diagram retrieval
based on the higher-level, semantic information conveyed by
the pixels, which is more precise and intuitive compared to
the alternatives such as template matching of the lower-level,
pixel patterns of the query and indexed images, [65], or text-
based search of the diagram annotations using textual queries.
In addition, this application scenario shows that our approach is
applicable to work with hand-sketched images as well as images
drawn with software support.

6.3. Intelligent editing

Here we demonstrate the utility of diagram recognition in
facilitating diagram editing. Given an input diagram to be edited,
our editing interface first recognizes the symbols using the CNN
and a localization module applicable to the domain, and then uses
the recognized symbols to simplify editing operations.

If the users wish to edit a symbol in a pixel-based image,
they need to apply the editing tool to all pixels belonging to that
symbol, usually by moving the pointing device. Alternatively, with
the symbols recognized, the users could select and edit only a
convenient subset of pixels belonging to that symbol. Our interface
will propagate the editing operations to the unselected pixels that
also belong to the symbol of interest. Fig. 21 shows an example
of this scenario applied to the domain of floor plans.3 The user is
able to delete the bed symbol by crossing it out with the eraser tip
of a digitizer or a mouse cursor. Without diagram recognition and
intelligent editing, the same editing trajectory would only erase
part of the bed symbol. The user would then have to move the
eraser over all the pixels of the bed symbol to achieve the same

3 This domain targets floor plans generated using Microsoft Visio and captured
using screenshots. The CNN recognizer is trained using 1 example per symbol
category for the five symbol categories shown in Fig. 21. The CCA localization
module is used. Because the test diagram is drawn using the same software tool as
the training example, there is no recognition error. We note that this scenario is not
particularly challenging to recognize, but nonetheless demonstrates the potential
supportive value of diagram recognition in diagram editing.



290 L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292
Fig. 21. Example of deleting a bed symbol with the intelligent editing interface.
(a) The input floor plan to be edited. (b) The user moves the eraser along the red
trajectory. (c) Without semantic support, only pixels on the eraser trajectory is
deleted. The user would have to apply the eraser on all pixels belonging to the bed
symbol, with care that pixels of the two night stands are not erased accidentally.
(d) With semantic-awareness, the intelligent interface would erase all the pixels of
the bed symbol when the cursor movement of (b) is performed.

result, with care not to erase pixels belonging to other adjacent
symbols.

This is similar in spirit to ScanScribe [66]. However, our
application differs from ScanScribe in that ours finds semantically
meaningful structures (i.e., symbols) using the high-level, domain-
specific visual information, while ScanScribe is based on the low-
level, domain-independent Gestalt Laws of Grouping.

7. Discussions

7.1. Addressing the challenges posed in Section 2

7.1.1. Invariance properties and recognition accuracy
Due to its network architecture and training, the CNN has built-

in and learned invariance to shape distortions inherent in freehand
sketches and distortions induced during image acquisition. It
yields accuracy on par with the state-of-the-art sketch recognition
systems. The overall system is able to extract the intended
engineering models from input diagrams for the computations of
interest, regardless of how the diagram is drawn (computer-aided
versus freehand) or where the diagram is drawn (digital media
such as tablet PCs versus physical drawing media such as paper).

7.1.2. Trainability
Because of the trainable nature of this approach, the recognition

accuracy can be improved by interactive user feedback such as
confirmations and corrections. Also, to target a new engineering
domain, the user may simply provide new training samples (i.e.,
labeled prototypical diagrams in the target domain) and retrain the
recognizer, rather than manually tuning the recognizer to the new
domain. And we see no reason why other engineering domains
cannot be tackled using our approach. For example, bond graphs,
petri nets or state machines are drawn in a way similar to the
Simulink block diagrams, that is, with symbols and connectors
disconnected at the pixel level. Therefore those domain can also be
recognizedusing the CNNcombinedwith CCA.Digital circuits, UML
diagrams, flowcharts and family trees, similar to the RLC circuits
and mechanical vibratory diagrams, can be recognized using the
CNN with the sliding window.
The procedure to expand the training set automates the gen-
eration of additional symbol and non-symbol samples, relieving
users the burden of manually drawing and labeling many addi-
tional training sketches.

7.1.3. Computational complexity and processing time
Currently, the processing time of the sliding window is longer

than that of the CCA. With the sliding window, the number of CNN
evaluations is on the order of O(wh), where w and h are the width
and height of the input image andwh is the number of pixels. With
the CCA, the number of CNN evaluations is on the order ofO(ncomp),
where ncomp is the number of connected components, namely the
symbols and the connectors. CCA itself has the time complexity
of O(wh) [56], but we observe that it does not add a significant
overhead: With a 1024 × 768 input diagram, the running time
with the sliding windows is approximately 9 s on a 2.26 GHz CPU.
The running time with the CCA is below 1 s when the number of
symbols are below 40.

In both cases, a fairly interactive conversion from diagrams
to models is achieved. There is still room to improve the pro-
cessing speed by incorporating parallel processing and processor-
optimized convolution codes. Formal user studies are still needed
to assess the impact of the processing speed on the user-perceived
effectiveness of the system and the user performance in design
tasks involving diagrams.

7.2. Future extensions

In this research, we have limited the scope of the features of
the recognizer. Several potentially useful features are yet to be
incorporated. Therefore, we consider the following three major
extensions in the future.

First, the Convolutional Neural Network recognizer can be
enhanced by exploiting context. Currently the CNN recognition
is based entirely on the image-based patterns inside a region of
interest, eitherwithin a slidingwindowor a connected component.
It is not informed by the context, namely, the symbols detected
outside the current region of interest and the domain knowledge
that defines valid relative locations between the symbols. This is
the reason why the lower-left pointing arrow in control system
diagrams is misclassified as a Ramp block, as seen in Fig. 16.
Despite its Ramp-like appearance, it is located between other
symbols, without an arrow pointing to itself. Such contextual
cues could have been integrated into the recognizer and help to
distinguish the arrow from a ramp. To this end, it may be desirable
to incorporate into the recognition pipeline a contextual classifier
such as Conditional Random Fields [67].

In the second place, we have chosen to assume that connectors
are non-intersecting solid lines and to not deal with dotted or
dashed lines. With this, each connector will be a single connected
component if CCA is performed. If this assumption does not hold,
CCA will merge multiple connectors into one single component
or break down one single connector into multiple components.
As a result, the subsequent connectivity analysis performed on
each connected component will no longer be valid. Techniques to
recognize dotted or dashed lines [68,69] need to be incorporated
in the future.

In the third place, additional training samples are synthetically
generated using image distortions that are randomly drawn from
a prescribed set of distortions. This is simple and empirically
effective. Perhaps a data-driven and potentiallymore effectiveway
of generating training samples is to utilize the distortions that are
inferred from existing training datasets, similar to [70].

8. Concluding remarks

In this paper, we present a visual recognition approach for
network-like engineering diagrams. This approach leverages a



L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292 291
Convolutional Neural Network as a symbol recognizer and two
localization methods applicable to a wide spectrum of network-
like engineering diagrams. Evaluations in different application
scenarios with different types of diagrams demonstrate the
effectiveness of our approach.

With our approach, a computer will be able to recognize
the engineering model conveyed by diagrammatical images.
The recognition of the engineering information would enable
computations of engineering interests on the image-based inputs
and this leads to useful applications such as interactive, sketch-
based modeling and simulation, digitization and retrieval of hard-
copy diagrams and semantic-aware editing of diagrams. We
hope the proposed diagram recognition approach, its applications
and its future extensions could add computational support to
engineering diagrams whose supportive values in engineering
problem-solving is known in [5].

Acknowledgements

We would like to thank the anonymous reviewers for their in-
valuable comments and suggestions. This research was supported
by the National Science Foundation CAREER Award #0846730.

References

[1] Ullman DG, Wood S, Craig D. The importance of drawing in the mechanical
design process. Computers and Graphics 1990;14(2):263–74.

[2] Shpitalni M, Lipson H. Classification of sketch strokes and corner detection
using conic sections and adaptive clustering. ASME Journal of Mechanical
Design 1995;119:131–5.

[3] Landay JA, Myers BA. Sketching interfaces: toward more human interface
design. IEEE Computer 2001;34(3):56–64.

[4] Yang MC. Concept generation and sketching: correlations with design
outcome. In: ASME design engineering technical conferences and design
theory and methodology conference. 2003.

[5] SchutzeM, Sachse P, RomerA. Support value of sketching in the designprocess.
Research in Engineering Design 2003;14:89–97.

[6] Song S, Agogino AM. Insights on designers’ sketching activities in new
product design teams. In: ASME design engineering technical conferences and
computers and information in engineering conference. 2004.

[7] Chusilp P, Jin Y. Impact of mental iteration on concept generation. Journal of
Mechanical Design 2006;128(1):14–25.

[8] Yang MC, Cham JG. An analysis of sketching skill and its role in early stage
engineering design. Journal of Mechanical Design 2007;129(5):476–82.

[9] Silva Rd, Bischel DT, Lee W, Peterson EJ, Calfee RC, Stahovich TF. Kirchhoff’s
pen: a pen-based circuit analysis tutor. In: Eurographics workshop on sketch-
based interfaces and modeling. 2007.

[10] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 1998;86(11):2278–324.

[11] Haralick RM, Shapiro LG. Computer and robot vision, vol. I. Addison-Wesley;
1992.

[12] Kara LB, Gennari L, Stahovich TF. A sketch-based tool for analyzing vibratory
mechanical systems. Journal of Mechanical Design 2008;130(10):101101.

[13] Fahn CS, Wang JF, Lee JY. A topology-based component extractor for
understanding electronic circuit diagrams. Computer Vision, Graphics, and
Image Processing 1988;44:119–38.

[14] Okazaki A, Knodo T, Mori K, Tsunekawa S, Kawamoto E. An automatic
circuit diagram reader with loop-structure-based symbol recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence 1988;10(3):
331–41.

[15] Lin X, Shimotsuji S, Minoh M. Efficient diagram understanding with
characteristic pattern detection. Computer Vision, Graphics, and Image
Processing 1985;30:84–106.

[16] Yu Y, Samal A, Seth SC. A system for recognizing a large class of engineering
drawings. IEEE Transactions on Pattern Analysis and Machine Intelligence
1997;19(8):868–90.

[17] Futrelle RP, Kakadiaris IA, Alexander J, Carriero CM, Nikolakis N, Futrelle JM.
Understanding diagrams in technical documents. IEEE Computer 1992;25(7):
75–8.

[18] Futrelle RP, Nikolakis N. Efficient analysis of complex diagrams using
constraint-based parsing. In: International conference on document analysis
and recognition (ICDAR). 1995. p. 782–90.

[19] Messmer BT, Bunke H. Automatic learning and recognition of graphical
symbols in engineering drawings. In: Goos G, Hartmanis J, van Leeuwen J,
editors. Graphics recognition methods and applications, vol. 1072. Springer;
1996. p. 123–34.

[20] Liu W. Example-driven graphics recognition. In: Proceedings of the SSPR2002
(structural, syntactic, and statistical pattern recognition. LNCS, vol. 2396. 2002.
[21] Yan L, Liu W. Engineering drawings recognition using a case-based approach.
In: International conference on document analysis and recognition. 2003.
p. 190–4.

[22] Yang S. Symbol recognition via statistical integration of pixel-level constraint
histograms: a new descriptor. IEEE Transactions on Pattern Analysis and
Machine Intelligence 2005;27(2):278–81.

[23] Zhang W, Wenyin L, Zhang K. Symbol recognition with kernel density
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence
2006;28(12):2020–4.

[24] Barrat S, Tabbone S, Nourrissier P. A Bayesian classifier for symbol recognition.
In: Seventh IAPR international workshop on graphics recognition. 2007.

[25] Luqman MM, Brouard T, Ramel J-Y. Graphic symbol recognition using graph
based signature and Bayesian network classifier. In: International conference
on document analysis and recognition (ICDAR). 2009.

[26] Escalera S, Fornés A, Pujol O, Radeva P, Snchez G, Llads J. Blurred shape model
for binary and grey-level symbol recognition. Pattern Recognition Letters
2009;30(15):1424–33.

[27] Barrat S, Tabbone S. ABayesiannetwork for combiningdescriptors: application
to symbol recognition. International Journal on Document Analysis and
Recognition 2010;13(1):65–75.

[28] Nagy G. Twenty years of document image analysis in PAMI. IEEE Transactions
on Pattern Analysis and Machine Intelligence 2000;22(1):38–62.

[29] Cordella L, Vento M. Symbol recognition in documents: a collection of
techniques?. International Journal on Document Analysis and Recognition
2000;3(2):73–88.

[30] Ozer OF, Ozun O, Tuzel CO, Atalay V, Cetin AE. Vision-based single-stroke
character recognition for wearable computing. IEEE Intelligent Systems and
Applications 2001;16(3):33–7.

[31] Rubine D. Specifying gestures by example. Computer Graphics 1991;25:
329–37.

[32] Yasuda H, Takahashi K, Matsumoto T. A discrete hmm for online handwriting
recognition. International Journal of Pattern Recognition and Artificial
Intelligence 2000;14(5):675–88.

[33] Hall A, Pomm C, Widmayer P. A combinatorial approach to multi-domain
sketch recognition. In: SBIM ’07: proceedings of the 4th eurographics
workshop on sketch-based interfaces and modeling. New York (NY, USA):
ACM; 2007. p. 7–14.

[34] LaViola J, Zeleznik R. Mathpad2: A system for the creation and exploration
of mathematical sketches. In: Proceedings of SIGGRAPH, vol. 23. 2004.
p. 432–40.

[35] Murugappan S, Ramani K. FEAsy: A sketch-based interface integrating
structural analysis in early design. In: Proceedings of the ASME international
design engineering technical conferences and computers and information in
engineering conference 2009, vol. 2. 2009. p. 743–52.

[36] Hammond T, Davis R. LADDER, a sketching language for user interface
developers. Computer and Graphics 2005;29(4):518–32.

[37] Alvarado C, Davis R. Dynamically constructed Bayes nets for multi-domain
sketch understanding. International joint conference on artificial intelligence.
2005.

[38] Alvarado C, Davis R. SketchREAD: a multi-domain sketch recognition engine.
In: UIST ’04: proceedings of the 17th annual ACM symposiumon user interface
software and technology. New York (NY, USA): ACM; 2004. p. 23–32.

[39] Sezgin TM, Davis R. Sketch recognition in interspersed drawings using time-
based graphical models. Computers and Graphics 2008;32(5):500–10.

[40] Cowans PJ, Szummer M. A graphical model for simultaneous partitioning and
labeling. In: AI and statistics. 2005.

[41] Kara LB, Stahovich TF. Hierarchical parsing and recognition of hand-sketched
diagrams. User interface software technology. 2004.

[42] Saund E. Finding perceptually closed paths in sketches and drawings. IEEE
Transactions on Pattern Analysis andMachine Intelligence 2003;(25):475–91.

[43] Notowidigdo M, Miller RC. Off-line sketch interpretation. In: AAAI fall
symposium series 2004:making pen-based interaction intelligent and natural.
2004.

[44] Kara LB, Stahovich TF. An image-based, trainable symbol recognizer for hand-
drawn sketches. Computers and Graphics 2005;29(4):501–17.

[45] Pu J, Gur D. Automated freehand sketch segmentation using radial basis
functions. Computer-Aided Design 2009;41(12):857–64.

[46] Ouyang TY, Davis R. A visual approach to sketched symbol recognition.
In: Proceedings of the 21st international joint conferences on artificial
intelligence (IJCAI-2009). 2009.

[47] Garcia C, Delakis M. Convolutional face finder: a neural architecture for fast
and robust face detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence 2004;26(11):1408–23.

[48] Bishop CM. Neural networks for pattern recognition. USA: Oxford University
Press; 1996.

[49] Bouvrie J. Notes on convolutional neural networks.MIT CBCL tech report. 2006.
p. 38–44.

[50] Huang F-J, LeCun Y. Large-scale learning with svm and convolutional nets
for generic object categorization. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. IEEE Press; 2006.

[51] Osadchy M, LeCun Y, Miller M. Synergistic face detection and pose estimation
with energy-based models. Journal of Machine Learning Research 2007;8:
1197–215.

[52] Simard PY, Steinkraus D, Platt JC. Best practice for convolutional neural
networks applied to visual document analysis. In: International conference on
document analysis and recogntion. 2003. p. 958–962.



292 L. Fu, L.B. Kara / Computer-Aided Design 43 (2011) 278–292
[53] Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. Journal of Physiology 1962;160:106–54.

[54] Shapiro L, Stockman G. Computer vision. Prentice Hall; 2002.
[55] Haralick RM, Shapiro LG. Computer and robot vision. Boston (MA, USA):

Addison-Wesley Longman Publishing Co., Inc; 1992.
[56] Suzuki K, Horiba I, Sugie N. Linear-time connected-component labeling based

on sequential local operations. Computer Vision and Image Understanding
2003;89(1):1–23.

[57] Lampert CH, Blaschko MB, Hofmann T. Efficient subwindow search: a branch
and bound framework for object localization. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2009;31:2129–42.

[58] Lehmann A, Leibe B, Gool LV. Fast prism: Branch and bound hough
transform for object class detection. International Journal of Computer Vision.
http://dx.doi.org/10.1007/s11263-010-0342-x.

[59] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear
embedding. Science 2000;290(5500):2323–6.

[60] Kara LB, Shimada K. Sketch-based 3D shape creation for industrial styling
design. IEEE Computer Graphics and Applications 2007;27(1):60–71.

[61] Bishop CM. Pattern recognition and machine learning. Berlin: Springer; 2006.
[62] Hse H, Newton AR. Sketched symbol recognition using zernike moments.

In: Proceedings of the 17th international conference on pattern recognition,
vol. 1. 2004. p. 367–370.
[63] Gennari L, Kara LB, Stahovich TF. Combining geometry and domain knowledge
to interpret hand-drawn diagrams. Computers and Graphics 2005;29(4):
547–62.

[64] Tong H, Gallagher B, Faloutsos C, Eliassi-Rad T. Fast best-effort pattern match
in large attributed graphs. In: Knowledge discovery and data mining. 2007.

[65] Pu J, Ramani K. On visual similarity based 2d drawing retrieval. Computer-
Aided Design 2006;38(3):249–59.

[66] Saund E, Mahoney J. Scanscribe: perceptually supported diagram image
editing. In: Diagrammatic representation and inference. Springer; 2004.
p. 428–32.

[67] Quattoni A, Collins M, Darrell T. Conditional random fields for object
recognition. In: Neural information processing systems. MIT Press; 2004.
p. 1097–104.

[68] Dori D, Wenyin L, Peleg M. How to win a dashed line detection contest.
In: Goos G, Hartmanis J, van Leeuwen J, editors. Graphics recognitionmethods
and applications, vol. 1072. Springer; 1996. p. 286–300.

[69] Agam G, Luo H, Dinstein I. Morphological approach for dashed lines detection.
In: Goos G, Hartmanis J, van Leeuwen J, editors. Graphics recognitionmethods
and applications, vol. 1072. Springer; 1996. p. 92–105.

[70] Learned-Miller E. Data driven image models through continuous joint
alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence
2006;28(2):236–50.

http://dx.doi.org/10.1007/s11263-010-0342-x

	From engineering diagrams to engineering models: Visual recognition and applications
	Introduction
	Contributions

	Problem statement
	Terminology
	Goal and scope
	Challenges

	Related work
	Document image analysis
	Sketch understanding

	Proposed approach
	Overview
	Module for recognition: convolutional neural network
	Network architecture
	Training
	Expanding the training dataset
	Recognition

	Modules for localization
	The sliding window and the multi-scale image pyramid
	Connected component analysis

	Modules for connectivity analysis
	Application-specific post-processing

	Evaluations
	Symbol recognition performance of the CNN
	Sketch recognition performance of the overall system

	Application scenarios
	Building engineering models from diagrams
	Digitization and retrieval of engineering diagrams
	Intelligent editing

	Discussions
	Addressing the challenges posed in Section 2
	Invariance properties and recognition accuracy
	Trainability
	Computational complexity and processing time

	Future extensions

	Concluding remarks
	Acknowledgements
	References


