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The recognition of pen-based visual patterns such as sketched symbols is amenable to supervised

machine learning models such as neural networks. However, a sizable, labeled training corpus is often

required to learn the high variations of freehand sketches. To circumvent the costs associated with

creating a large training corpus, improve the recognition accuracy with only a limited amount of

training samples and accelerate the development of sketch recognition system for novel sketch

domains, we present a neural network training protocol that consists of three steps. First, a large pool

of unlabeled, synthetic samples are generated from a small set of existing, labeled training samples.

Then, a Deep Belief Network (DBN) is pre-trained with those synthetic, unlabeled samples. Finally, the

pre-trained DBN is fine-tuned using the limited amount of labeled samples for classification. The

training protocol is evaluated against supervised baseline approaches such as the nearest neighbor

classifier and the neural network classifier. The benchmark data sets used are partitioned such that

there are only a few labeled samples for training, yet a large number of labeled test cases featuring rich

variations. Results suggest that our training protocol leads to a significant error reduction compared to

the baseline approaches.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Sketch understanding [1,2] aims to enable the computers to
interpret man-made, freehand sketches and extract the intended
information underlying the input strokes. Fig. 1 shows two
exemplary sketches depicting two engineering systems and the
corresponding engineering model. If successful, sketch under-
standing could provide a natural human-computer interface for
scenarios in which physical, pen-and-paper sketches have been
routinely used, such as the early ideation process or the classroom
instruction. Moreover, sketch understanding could automate the
mining, organization, search and critique of the information
embedded in freehand sketches, potentially resulting in a myriad
of intelligent agents, such as a web spider that crawls through the
drawings in online textbooks and lecture notes to learn the design
rules of electrical systems, an archiver that indexes brainstorming
sketches for later retrieval and reuse, and a computer grader for the
free-body diagrams that students draw in their statics homework.

One of the core problems in sketch understanding is to devise
a symbol recognizer to compute a categorical label for each
segment of the input sketch. Used in conjunction with a sketch
parser that divides the input sketch into segments and possibly a
post-processor that ensures the consistency of the recognition, an
ll rights reserved.

a@cmu.edu (L.B. Kara).
interpretation of the input sketch can be produced. Such problem
decomposition is recurrent in recent sketch recognition systems
[3–8]. For example, in [3], a Convolutional Neural Network recog-
nizer is used with a sliding windows segmenter. The recognition
output of the Convolutional Neural Network is post-processed to
merge the overlapping and non-maximal labels. In [5], a heuristic-
based segmenter is used in conjunction with a Gaussian Bayes
classifier. Because of the particular choice of the segmentation
heuristics for that domain, each segmentation corresponds to an
isolated symbol in the sketch and post-processing is not required. In
[7], the up and down motion of the pen-tip is utilized to segment
the sketch into a number of strokes, and a Conditional Random Field
model plays the dual roles of the recognizer and the post-processor
to output a globally consistent interpretation of the input.

Neural network classifiers [9,10] are particularly appealing
candidates for the recognition of sketched symbols. They feature a
feed-forward classification algorithm capable of rapid classifica-
tion of the input, and a supervised back-propagation training
algorithm capable of the data-driven learning of highly complex
decision boundaries between multiple categories. Neural network
classifiers are known for the high accuracy achieved in various
domains such as freehand-sketched symbols [3,11], handwritten
digits [12] and human faces [13]. However, a large, correctly
labeled training data set with rich, in-class variations is required
to train a highly accurate neural network classifier. Such a
requirement, arising from the rich stylistic variations of uncon-
strained user inputs, is reported in empirical [14–16] and theoretical
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Fig. 1. Top row: two sketches drawn on a tablet PC and on a piece of paper. Bottom

row: the control system and mechanical vibratory system models corresponding to

the sketches above.

L. Fu, L.B. Kara / Computers & Graphics 35 (2011) 955–966956
[17] studies. As a rule of thumb in visual classification in which
complex, non-linear decision boundaries separate the pattern cate-
gories of interest, the performance of a classifier would degrade, if
the size of the training data set is significantly below the dimension
of the input patterns1 [18].

Collecting a large number of training samples and manually
labeling each instance, is time-consuming, costly, laborious and
hence undesirable, especially when targeting a new sketch domain
with new symbol definitions. To circumvent such difficulties and
accelerate the training and deployment of neural network classifiers
for such scenarios, we propose a novel training protocol that relies
on only a handful of training samples2 and achieves higher accuracy
than purely supervised approaches.

The proposed training protocol consists of three steps, as
illustrated in Fig. 2. Prior to applying our approach, a small,
labeled data set of training samples, called the seed samples, is
collected from the users. At the beginning of our approach, a large
pool of synthetic, unlabeled samples are generated from the seed
samples. Then, a Deep Belief Network (DBN, a neural network
variant introduced in [19]) is trained using the unlabeled, synthetic
samples. The learning objective of this step is to maximize the
probability for the DBN to generate the training samples, such that
it would discover the structural regularities underlying the input
patterns and learn a non-linear, hierarchical representation of them.
Finally, the pre-trained DBN from the previous step is used as a
feature extractor and concatenated with an additional layer of
decision units. Together they are fine-tuned as a deep, feed-forward
neural network classifier using the labeled seed samples. The learning
objective here is to minimize the classification errors on the labeled
training set, so as to learn the decision boundaries between the
pattern classes.

The proposed training protocol can be seen as supervised
training preceded and enhanced by the synthesis of unlabeled
training samples and the unsupervised pre-training. The incor-
poration of unsupervised pre-training is inspired by the recent
progress on semi-supervised, transfer learning [20,21] and Deep
Belief Network [19,22–25].

Our contribution is a protocol suitable for training neural
network-based symbol recognizers in novel sketch domains
where it is difficult to employ other existing training approaches.
Specifically, in the scenario we target, the initial number of
labeled samples is limited, no labeled sample synthesizer is
available and no relevant domain with similar symbols exists
for transfer learning. Our approach reduces the need for labeled
training samples and in turn reduces the time or efforts needed to
collect or label such samples from the users, thus enabling
accelerated deployment of sketch understanding systems. The
neural network-based recognizer can work with image-based,
off-line sketches as well as trajectory-based, online sketches. We
focus on the image-based, off-line sketches in this work for two
1 If the input is a feature vector extracted from the input pattern, then the

dimension of the input is the number of features. If the input is an image patch,

then the dimension of the input is the number of pixels.
2 That is, the sample size is smaller than or on par with the input dimension.
reasons. First, such off-line sketches can be drawn on a broader
range of digital or physical drawing surfaces and then captured
using a variety of image or ink acquisition devices, whereas the
acquisition of online sketches relies on tablet PCs or multi-touch
devices. Second, online sketch recognition is confounded by the
issues of stroke-level drawing order and stroke interspersions
[26], whereas such issues do not exist in the image-based
representation.

The rest of this paper is organized as follows: Section 2 reviews
existing training approaches for neural network-based image
classifiers, and shows that our approach is suitable for a scenario
not covered by the existing approaches. Section 3 presents the
step-by-step details of the proposed training protocol. Section 4
evaluates the proposed protocol with three different data sets of
sketched symbols against purely supervised baseline techniques,
and discusses the implications and future works.
2. Related work

Here we present a summary of related work in Fig. 3 and show
their applicability in the form of a decision tree. All the work
reviewed here pertains to the classification task defined in the
root node of the tree, that is, given a collection of user-generated,
labeled training samples XL, classify unlabeled, user-generated
test samples X?.

If the number of user-generated, labeled training samples 9XL9
far exceeds the dimensionality of a sample Dim(x), xAX, it is then
straightforward to perform the purely supervised training of a
neural network classifier using back-propagation [10]. In this
case, the large volume of training set ensures the inclusion of
rich stylistic variations within each class, which in turn results in
accurate classifiers [14–16]. Otherwise, if the sample size is small,
the various approaches reviewed in the subsequent sections can
be utilized.
2.1. Synthetic training samples

In case the number of labeled training samples 9XL9 is below
the dimensionality of each input, if there exists a sample generator
G that takes existing seed samples XL as the inputs and outputs
labeled, synthetics samples ~X

L
, then a viable strategy is to

computationally generate many supplemental training samples
by G, rather than collecting and labeling additional samples by the
users. With such synthetic samples ~X

L
, supervised training can be

performed on the expanded training set ~X
L
[ XL.

Several distortion-based techniques [27–29] have been devel-
oped to generate synthetic samples through global, affine trans-
formations and local, elastic deformations applied to the seed
samples. Such distortions emulate the stylistic variations of
pen-based input patterns naturally induced by the users. However,
the amount of distortions has to be manually tuned through
repeated trial-and-error. If too aggressive, the deformations would
invalidate the labels of the synthetic training samples. For example,
a letter ‘‘I’’ could be deformed into ‘‘J’’ if too much local bending is
allowed to the bottom-half. A digit ‘‘9’’ could be subject to excessive
rotation and becomes a digit ‘‘6’’. Studies [30,31] have shown that
such invalid labels in the training set are detrimental to the
performance of the supervised classifiers. If too conservative, the
deformations only results in a redundant set of synthetic samples
with little variations that does not contribute much to the training.

An alternative to distortion is to interpolate existing training
samples that belong to the same class, in the hope that such
synthetic samples will share the same, valid labels as the original
ones [16,32]. One major limitation is that if the original training
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Fig. 2. Overview of the proposed training approach.

Fig. 3. Overview of the training approaches reviews in Section 2.
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samples exhibit little variations among themselves, then inter-
polation results are similar to that of conservative deformations.

2.2. Semi-supervised learning

In case the aforementioned generator G : GðXL
Þ- ~X

L
does not

exist, if there exists a large set of user-generated, unlabeled
samples X belonging to the same domain as the test set X?, then
semi-supervised learning can utilize such unlabeled samples
to improve the classification accuracy. Early examples of
semi-supervised learning, exemplified by co-training [33], exploit
the redundancy of features and require at least two pre-defined,
disjoint feature sets that can potentially yield the same, accurate
classification of the input. They are unsuitable for the classifica-
tion of image patches where the features are the intensities of
individual pixels, and the pre-determination of the two disjoint
feature sets is overwhelmingly difficult, if not impossible.
Universum [34] is a semi-supervised learning method that eliminates
the requirement of multiple, disjoint feature sets, but at the cost of
new constraint: the unlabeled samples must belong to an extra class
not overlapping with the classes to be recognized. Recent approaches
[19,23,35,36,21] have lifted such constraints, but still require a
sizeable unlabeled training set X.

2.3. Transfer learning

In the absence of a labeled sample synthesizer G or an
unlabeled training set X from the same domain as the test set
X?, transfer learning [24,25,20] utilizes additional, unlabeled
samples Z from a different, but related domain to learn transfer-
able knowledge that improves the performance in the classification
domain. The transferrable knowledge includes feature detectors,
parameter initializations and probability priors. For example in [20],
handwritten digits is observed to facilitate the classification of
handwritten letters, if the feature extractors (i.e., image filters)
learned on digits are used on letters.

However, it is unclear how to choose the related domain Z given
the seed samples XL. A quantified measure of feature relevance or
learning transferability between two domains Z and X, preferably
computable without having to actually perform the transfer learning
from Z to X, has yet to be proposed. In addition, the related domain
Z must by itself feature a large training set.

2.4. Variation learning

If the additional samples from the related domain are correctly
labeled, i.e., (ZL, it is then possible to learn the variations within
each class of ZL, and then port such knowledge to the domain XL

to parameterize a sample generator G that generate a large set of
plausible synthetic samples with valid labels. Existing approaches
in this line are built upon techniques that learn the variations
manifested in a pair [37] or a class [38] of training samples.
However, the learning of transformations is by itself dependent
on large labeled data sets. For example, the handwritten digit
classifier of [38], performing well even with one training sample
per class, is crucially dependent on the variations extracted from
1000 handwritten letters belonging to 10 letter classes.

In [37,38], the learning of the variations and the synthesis of
labeled samples precedes the supervised training. Alternatively,
in [39], the variation learning and the sample synthesis are
informed by the feedbacks outputted during the supervised
training. Their approach is specialized for the synthesis of positive
training samples in binary classification scenarios (e.g., face versus

non-face patterns), and the large set of negative training samples
(e.g., face-like background clutters) still needs to be collected.
Also, the alternations between synthesis and the retraining of the
classifier are computationally expensive.

2.5. Relations to our approach

Having walked through the decision tree in Fig. 3, it is now
clear that our approach addresses a scenario not covered by
previously reviewed approaches. In such a scenario the following
conditions hold: The labeled training samples are scarce; there is
no labeled sample synthesizer; and there is no other sample sets,
labeled or unlabeled, to resort to.

Though seemingly rare and constrained among all possible
scenarios shown in Fig. 3, the above scenario is likely in practice.
Consider the case of developing sketch recognition systems with
only a handful of samples from a limited group of pilot users,
especially when the sketch recognition system under develop-
ment is an exploratory prototype intended to recognize a set of
newly defined symbols. As such, the novel symbols may share
little visual or structural commonalities with existing data sets.
And the shareholders, undecided whether to adopt the sketch
recognition prototype or its non-pen-based alternatives in the
final product, could be unwilling to allocate the resources for
large-scale data collection from many human participants. Those
barriers prevent the use of the other approaches shown in Fig. 3,
leaving only the bottom-left scenario as viable.
3. Training a symbol classifier with a few labeled examples

To circumvent the difficulties of collecting and labeling a large
training data set, and to enable the rapid training and deployment
of neural network classifiers with limited training samples, we
present in the following subsections a three-step training proto-
col that utilizes synthetic training samples and the unsupervised
training [19,22] of DBN models.

3.1. Generating synthetic samples

In this step, the proposed approach starts with a small number
of seed samples XL, i.e., user-generated image patches with
categorical labels. A large number of unlabeled, synthetic training
images are generated by randomly deforming the seed samples.
Various image deformation schemes are incorporated to emulate
the stylistic variations inherent in pen-based patterns. For exam-
ple, the smoothed Gaussian random distortion field [28] mimics
the local oscillations of the pen tip along the stroke trajectory. To
generate such a distortion field, each pixel is first assigned a
vector with each component uniformly drawn from the interval
of (�1, þ1). Then the random vector field is smoothed by
a Gaussian filter with a standard deviation s. The smoothed
random field is then magnified by a factor of a. A distorted image
can be then computed by deforming the original image per the
distortion vector associated with each pixel. Other transforma-
tion, such as the affine transformations (e.g., rotation, scaling and
shear), capture variations at the larger, global scale. Morphological
dilation and erosion of pixels emulate the variations of ink
width due to different drawing scale, different types of pen tips
and different pressure applied to the drawing surface during
sketching.

The control parameters of the random transformations are
tuned by increasing the values used in [28,40], while visually and
interactively inspecting a limited subset of resulting image
patches. The final parameters are obtained through a few iterations
of bracketing, that is, increasing or decreasing the magnitude of the
deformations per visual inspection, until the resulting images
exhibit rich variations, while a small portion (up to � 10%) may
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be overly distorted into patterns not belonging to any classes. Such
over-distorted, non-symbol samples are not manually removed from
the results. The resulting set of synthetic samples, containing
synthetic symbol patterns belonging to the domain as well as
non-symbol patterns, can therefore be denoted as ~X [ ~Z.

Unlike previous works [28,40] that generate labeled samples
~X

L
for supervised training, here the resulting synthetic samples

~X [ ~Z are treated as unlabeled samples in subsequent processing.
Therefore, it is not required to guarantee the validity of all the
labels of the synthetic samples, or manually identify and remove
excessively distorted, non-symbol patterns from the synthetic
samples, or customize the deformation parameters for each
individual symbol class. As a result, the allowed range of defor-
mations are relaxed and more variations are instilled to the synthetic
data set, while less human time is needed to find the precise
deformation parameters that ensure the correctness of the labels of
the synthetic samples.

In the reminder of our paper, we use the following set of
deformation parameters:
�

Fig
soli

thro

look

ove

from
random distortion field smoothed by a Gaussian filter with
s¼ 8;

�
 random distortion field magnified by the factor of a¼ 45;

�
 rotation within the range of 7201;

�
 shearing with the ratio between 7tan 201;

�
 morphological dilation or erosion of 1 or 2 pixels.

Using the above parameters and a user-sketched symbol of
‘‘actuated valve’’, we generate 99 synthetic samples, as shown in
Fig. 4. Most of the resulting synthetic symbols appear valid and
exhibit a broad range of shape variations perceptually similar to
what human users would produce. A small portion (less than 10%)
of the resulting patterns are obviously too distorted and lose too
much distinguishing features to be recognized as an ‘‘actuated
valve’’, mainly due to the random morphological erosion that
. 4. From one user-sketched symbol of actuated valve (top-left corner, in the

d bounding box), 99 synthetic samples (the rest) are automatically generated

ugh random transformations. Most of the synthetic samples are realistic-

ing and feature rich shape variations. Those in the dotted bounding boxes are

rly distorted due to the random erosion applied to the pixels, but not removed

the synthetic training set.
erases the top part of the valve. However, such overly distorted
samples are not discarded from the synthetic training set. They
are just treated as unlabeled ones. In Section 4.3, the results from
benchmark tests indicate that the excessively deformed samples
often cause higher error rates on average, if they are used with the
incorrect labels in supervised training. And it is shown that the
proposed approach, using those samples as unlabeled ones, produces
lower error rates.

3.2. Unsupervised pre-training of DBN

In this step, a DBN model is pre-trained in an unsupervised
fashion with the unlabeled training set ~X [ ~Z previously synthe-
sized. The learning objective for the DBN is to model the probability
of the input images using multiple layers of non-linearities. This
objective guides the DBN to learn a generative model of the training
set and, in doing so, discover the regularities underlying the training
data. The principles and learning algorithm of DBN have been
provided in [22,41]. Interested readers are referred to those papers
for details. Only a brief overview of DBN is provided below.

A DBN consists of several layers called the Restricted Boltzmann
Machines (RBM). Each RBM is a bipartite graphical model of one
layer of visible binary nodes v, usually set to the pixels intensities
of an input pattern, and one layer of hidden binary nodes h, usually
corresponding to the activation of feature detectors. Weighted
bi-directional connections exist between both layers, but not within
a layer.

Given an input image reshaped as a vector, namely, given the
values of the visible layer v, the values of the hidden nodes are
computed stochastically by

Pðhj ¼ 19vÞ ¼ s bjþ
X

i

viwij

 !
, ð1Þ

where hj is the j-th element of h, vi is the i-th element of v, wij is
the weight between visible node vi and hidden node hj, bj is the
bias term for hidden node hj, and sðzÞ ¼ 1=ð1þexpð�zÞÞ is the
sigmoid non-linearity. The set of weights w�j from all visible
nodes in v to a single hidden node hj has the same dimensionality
as the input image v. Given the element-wise multiplications
between w�j and v, w�j actually serves as a global feature detector
or a template for the input image patch.

Given the states of the hidden nodes, the input, namely the
states of the visible nodes vi, can be reconstructed after comput-
ing the stochastic states of the visible nodes by

Pðvi ¼ 19hÞ ¼ s biþ
X

j

hjwij

0
@

1
A, ð2Þ

where bi is the bias term for visible node vi,
With the visible nodes clamped to those reconstructions, the

states of the hidden layer can be computed again using Eq. (1).
The RBM can be trained to increase the likelihood of recon-

structing the input by one-step Contractive Divergence [42]. The
weight update equation is

Dwij ¼ eð/vihjSdata�/vihjSreconÞ, ð3Þ

where /vihjSdata is the probability of the visible node vi and the
hidden node hj both taking the value of 1 when the visible units
are clamped to the input image from the training data set,
/vihjSrecon is the probability of visible node vi and hidden node
hj both taking the value of 1 when the visible nodes are clamped
to the reconstructions, and e is the learning rate. A similar update
equation can be derived for the bias terms.

The unsupervised pre-training of an entire DBN is actually the
layer-wise training of each constituent RBM from bottom to top
using Contrastive Divergence, followed by the composition of all



Fig. 5. By merging the shared layers between the three pre-trained RBMs and

retaining the trained weights, a three-layer pre-trained DBN is obtained.

Fig. 6. By adding a soft-max layer on top of the pre-trained three-layer DBN and

performing back-propagation fine-tuning, a neural net classifier is obtained.

Table 1
Data sets used for evaluation.

Name Number of

contributing

users

Number of

symbol

classes

Number of

training

samples

Number of

testing

samples

HHreco 19 13 650 7141

ThermoFluid12 10 12 120 720

Sym24 19 24 1200 3000

MNIST Approximately

250

10 60,000 10,000

NicIcon 35 14 9234 10,769

Fig. 7. Sketched shapes from the HHreco data set. Top row: ellipse, heart,

trapezoid, pentagon, arch, hexagon, square. Bottom row: triangle, parallelogram,

moon, call-out, cube, cylinder.
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RBMs into a single DBN, as illustrated in Fig. 5. The RBM 1 clamped
to the input image on the lowest layer of the entire DBN is trained
first. Then the states of the hidden nodes in RBM 1 are taken as
the inputs or visible units of the next layer RBM 2. For this to
happen, the visible layer of RBM 2 should have the same number
of units as the hidden layer of RBM 1. The same process repeats until
all three RBMs are individually trained and composed together.

The pre-training performed in this step is entirely unsuper-
vised. Ground truth labels of the input patches are not used for
training.

3.3. Fine-tuning

At the beginning of the fine-tuning step, a randomly initia-
lized, soft-max output layer with n units is superimposed on the
pre-trained DBN to form an extended DBN. Here n equals the
number of classes in the recognition task. Each node of the soft-max
layer is fully connected to the penultimate layer of the extended
DBN (previously the topmost layer of the pre-trained DBN). The
activation of each node of the soft-max layer encodes the detection
of a pattern class and the outputs are normalized with regard to
their sum, thus mimicking probability values.

Then, the DBN is fine-tuned with the training set of labeled
seed samples XL. The learning objective for this step is to
minimize the DBN’s classification error of the labeled training
data set. The optimization is performed through back-propaga-
tion, a standard algorithm to train neural networks for supervised
tasks and extensively detailed in [10]. To accelerate training,
stochastic conjugate gradient is used for parameter updates in
lieu of batch gradient descent. Fig. 6 illustrates the process.

After fine-tuning, the DBN can be used for classification and it
functions equivalent to a multi-layer, feed-forward neural network.
The recognition pipeline involves a series of vector-based operations
such as dot-products and vector sums, and it is faster compared to
alternative probabilistic inference models that require expensive
likelihood maximization or nearest neighbor queries.
Working examples of DBNs for image classification are docu-
mented in [19,22,43]. A detailed practical guide to train the DBN
is provided in [44].
4. Experiments

4.1. Data sets

To provide with a comprehensive benchmark suite, we have
chosen to evaluate the proposed training protocol with the data sets
summarized in Table 1 and detailed below. Each of the chosen data
set contains a large number of test cases generated by different
users. And together they cover a broad range of pen-based symbols,
varying from uni-stroke numerals to multi-stroke engineering
symbols. Among them, the MNIST and HHreco data sets are well-
known benchmark cases frequently used in the computer vision and
the sketch recognition literature.



Fig. 8. Various sketches from the Sym24 data set, showing PID control systems, RLC circuits and diode-transistor logic circuits.

Fig. 9. Sketched symbols from the ThermoFluid12 data set, showing three

examples per class. From left to right, top to bottom: heat exchanger, condenser,

motor, motor-driven turbine, pump, fluid-level indicator, mixer, axial fan, flow

meter, manual valve, actuated valve, turbine.
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4.1.1. HHreco

The HHreco data set of sketched symbols [45] includes 7791
PowerPoint shapes in 13 classes including boxes, ellipses, cylinders,
call-outs, etc., as shown in Fig. 7. The symbols were collected from
19 different users. Originally the data was recorded as time series of
pen tip motions. Here they are rendered as gray-scale ink the on a
28�28 black canvas. The HHreco data set is not originally parti-
tioned into training and testing subsets. In this paper, 7141 symbols
are picked as testing samples and the remaining 650 are used for
training. Here the partition of testing and training subsets is
performed to maximize user-independence, such that all but one
user’s contribution would appear in only one of the subsets. The top
performance on HHreco is an error rate of 1.8% reported in [11],
where a convolutional neural network classifier was trained with
training data from 18 users and tested on one user, a partition
significantly different from ours.

4.1.2. ThermoFluid12

The ThermoFluid12 data set3 is a data set of hand-sketched
engineering symbols in the domain of thermofluid systems. It
contains 840 symbols in 12 categories contributed by 10 users.
The stroke data of each symbol are rendered as gray-scale ink on a
32�32 black canvas. Seven hundred and twenty symbols are
selected as testing set and the rest 120 are set aside for training.
Exemplary symbols and their labels from this data set are shown
in Fig. 9. Users contributing those symbols were instructed to
copy individual symbols several times on a pressure-sensitive
tablet PCs. This paper is the first to report the performance
benchmarks on this new data set.

4.1.3. Sym24

The Sym24 data set4 is a data set of hand-sketched engineering
symbols that we collected to benchmark sketch recognition
systems. It contains 4200 symbols in 24 categories contributed
by 19 users. The symbols are rendered as gray-scale ink on a
28�28 black canvas. Three thousand symbols are selected as
testing set and the rest 1200 are set aside for training. Exemplary
symbols and their labels from this data set are shown in Fig. 10.
The symbols are collected on pressure-sensitive tablet PCs. At
first, users contributing those symbols were instructed to copy
individual symbols several times to memorize the shapes. Then,
they were shown brief textual descriptions or printed block
diagrams of control systems or analogous circuits, and asked to
create freehand sketches depicting those diagrams. Only data
from the later stage entered into this data set.5 As a result, the
3 Available online at http://www.andrew.cmu.edu/user/luotingf/SketchRecog/

datasets/.
4 Available online at http://www.andrew.cmu.edu/user/luotingf/SketchRecog/

datasets/.
5 This two-stage data collection process was initially motivated by our

hypothesis that the users might exhibit different levels of stylistic variations

while sketching, if (1) their familiarities with the symbols differ (i.e., unfamiliar
users had the freedom to introduce variations such as scale
variations (resulting in different ink widths), over-tracing or
pen-drag (i.e., drawing multiple symbols in one stroke). Fig. 8
shows such sketches from which the symbols of Sym24 are
labeled and extracted as image patches. This paper is the first to
report the performance benchmarks on this new data set.
4.1.4. MNIST

The MNIST data set of handwritten digits [12] is a popular
benchmark data set for machine learning models. It contains
60,000 training samples and 10,000 testing samples of digits 0–9.
All digits are gray-scale, size-normalized and centered images of
28�28 pixels. Representative samples are randomly drawn from
the testing set and shown in Fig. 11. The state-of-the-art
(footnote continued)

versus familiar) and (2) the sketching tasks differ (e.g., creating a facsimile of

existing sketch versus open-ended synthesis, or externalizing ideas by way of a

sketch). We further hypothesized that the difference in the levels of stylistic

variations could affect the effectiveness of the training: low-variation data may

not lead to highly accurate classifier. The test of this hypothesis is beyond the

scope of this work. Alternatively we would like to point to the recent discovery of

[46], where the authors report no significant difference in the testing accuracy,

when the training data was collected through different tasks.

http://www.andrew.cmu.edu/user/luotingf/SketchRecog/datasets/
http://www.andrew.cmu.edu/user/luotingf/SketchRecog/datasets/
http://www.andrew.cmu.edu/user/luotingf/SketchRecog/datasets/
http://www.andrew.cmu.edu/user/luotingf/SketchRecog/datasets/


Fig. 10. Sketched symbols from the Sym24 data set, showing three examples per

class. From left to right, top to bottom: scope, gain, mux, constant, sum, transfer

function, clock, sine wave, step, derivative, integration, sign function, Columbus

friction, random number, AC source, V source, capacitor, resistor, inductor, diode,

transistor, ground.

Fig. 11. Digits from the MNIST data set.

Fig. 12. Sketched symbols from the NicIcon data set, showing four examples per

class. From left to right, top to bottom: accident, bomb, car, casualty, electricity,

fire, fire brigade, flood, gas, injury, paramedics, person, police, road block.
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performance trained on full MNIST is an overall error rate of 0.32%
reported in [40]. Top performing MNIST classifier trained with
only a subset of the 60,000 training samples was reported in [47].
Their results are shown in the last column of Table 7.
4.1.5. NicIcon

The NicIcon data set of sketched symbols [48] contains 26,163
examples belonging to 14 classes, each representing a specific
object or event in the context of crisis management. Representa-
tive examples from this data set are shown in Fig. 12. This data set
is partitioned into the training set, the validation set and the
testing set, each containing approximately 36% (9234), 24%
(6169) and 40% (10,769) of the samples. The original data set
was recorded in the online format as streams of the pen-tip
trajectories and the corresponding time stamp and normal pres-
sure value at each sample point. Here we have rendered the ink as
48�48 gray-scale images. To our knowledge, no prior result has
been reported regarding the offline, image-based recognition
performance on this data set.

4.2. Procedure

4.2.1. Model and hyper-parameters

A four-layer neural nets, namely a DBN composed of three
RBMs and one soft-max layer, is used in all test cases. The input of
the DBN is clamped to the pixels of the input image. Each layer of
the DBN has 500, 500, 2000, nclass units, respectively, where nclass

is the number of classes in the data set. The hyper-parameters
used with all data sets are summarized in Table 2.
4.2.2. Tested approaches and abbreviations

The proposed approach is compared against several baseline
approaches shown in Table 3. All the approaches are tagged using
an abbreviation system that highlights the key differences from
the proposed approach.

The proposed training approach is tagged as ‘‘SynHdHo -

UnPre - TuneSeed’’, to represent the following three key steps.
�
 SynHdHo: generating a large number of synthetic samples
which exhibit high deformation and therefore possibly high
percentage of overly distorted outliers.

�
 UnPre: performing unsupervised DBN pre-training.

�
 TuneSeed: supervised fine-tuning using only the seed samples.

Comparable baseline approaches are enumerated by varying
the three steps of the above approach. For the first step
(‘‘SynHdHo’’), a valid alternative is to avoid generating synthetic
data, but only resort to the seed samples in the subsequent neural
network training. This amounts to simply supervised training
with a limited amount of seed samples. For this condition, we
note that a neural network classifier is not expected to perform
well, given the small number of training samples. We therefore
augment the results by reporting the better accuracy of the neural
network classifier and a nearest-neighbor classifier trained on the
seed data. This condition is tagged as ‘‘NoSyn’’.

If alternatively ‘‘Syn’’ is chosen, further variations are obtained
by departing from ‘‘HdHo’’, resulting in an alternative such as
‘‘HdLo’’. ‘‘HdLo’’ represents the ‘‘ideal’’, well-engineered synthesi-
zer that introduces high deformation while keeping the outliers
low, which is non-trivial to obtain in practice. Here we emulate
the ideal ‘‘HdLo’’ synthesizer by selecting more user-generated,
labeled samples from the large data sets such as MNIST and
NicIcon. In other words, we utilize the abundant extra samples in
those data sets to simulate the existence of an ideal synthesizer
that can generate the ‘‘HdLo’’ samples. It will be shown later that



Table 2
Hyper-parameters that control the training process.

Hyper-parameter Value

Pre-training Fine-tuning

Number of iterations 50 per layer 100

Batch size Minimum of 100 or all samples Minimum of 500 or all samples

Learning rate 0.01 Automatic

Weight decay 0.002 None

Table 3
Abbreviations and details of the tested approaches.

Abbreviation Generate synthetic

training samples?

How much deformation/outliers

during synthesis?

Unsupervised DBN

pre-training?

Fine-tuning with synthetic data,

or with seed samples only?

NoSyn No – – –

SynHdHo - UnPre - TuneSyn Yes High deformation, high outliers Yes Synthetic samples

SynHdLo - UnPre - TuneSeed Yes High deformation, low outliers Yes Seed samples

SynHdHo - UnPre - TuneSeed

(Proposed approach)

Yes High deformation, high outliers Yes Seed samples

Table 4
The error rates (%) with HHreco test set. Results are obtained on

7141 test symbols belonging to 13 classes.

Number of labeled

samples per class

NoSyn SynHdHo - UnPre

- TuneSeed

1 13.7675.26 8.1572.83

10 10.6374.47 6.9072.78

50 7.6271.31 5.7572.44

Table 5
The error rates (%) with the ThermoFluid12 test set. Results are

obtained on 720 test symbols belonging to 12 classes.

Number of labeled

samples per class

NoSyn SynHdHo - UnPre

- TuneSeed

1 26.1374.18 18.7174.22

10 16.5172.39 10.3473.47

Table 6
The error rates (%) with the Sym24 test set. Results are obtained on

3000 test symbols belonging to 24 classes.

Number of

labeled samples

per class

NoSyn SynHdHo -

UnPre -

TuneSyn

SynHdHo -

UnPre -

TuneSeed

1 52.9174.82 47.8277.80 37.1975.72

10 40.0275.33 31.4775.82 24.6274.51

50 20.5775.29 15.5876.19 13.9674.24
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‘‘HdLo’’ produces on average lower error rates than the proposed
‘‘HdHo’’, but the majority of the differences are not significant.

Another alternative ‘‘LdHo’’, however, is not included, because
it is naturally counter-productive to have low deformation yield-
ing high percentage of outliers in the training data. The last
possible alternative ‘‘LdLo’’, indicating a conservative sample
synthesizer that introduces low deformation and low outliers, is
not included either, because empirical evidence suggests the need
for high deformations to achieve high accuracy [28,40].

For the second step, namely pre-training, we choose to keep
‘‘UnPre’’ (Unsupervised DBN Pre-training), rather than skipping it,
because literature has shown the performance improvement
brought by unsupervised pre-training [19,23,35,36,21]. We also
note that DBN pre-training is unsupervised by nature, as
described in Section 3.

In the final step of fine-tuning, ‘‘TuneSeed’’ is switched to
‘‘TuneSyn’’, in which supervised fine-tuning is performed using all
the synthetic samples, with the assumption that they all inherit
the labels of their ancestral seed samples during synthesis, and
without removing the overly distorted outliers.

To sum up, the baseline approaches, shown in Table 3, are
selected to be compared with the proposed approach. They all
correspond to valid options dealing with limited training samples.
For example, ‘‘SynHdHo - UnPre - TuneSyn’’ describes a
process in which the user starts from a limited amount of seed
samples, generates a large number of synthetic samples using
high magnitude of deformations, treat all synthetic samples as
labeled (thus possibly polluting the synthetic data set with
resulting outliers in the process), and use all synthetic data for
the unsupervised pre-training and supervised training of the DBN
classifier.

While comparing the above approaches, we have also com-
pared the number of labeled, seed samples initially available in
each test condition, varying among 1, 10 and 50 per class, if the
data size permits. The seed samples are randomly selected from
the training subsets of each data set.

The target number of synthetic samples are approximately
30,000. The exact number varies for each data set, such that the
total number of training samples, including the initially available
seed samples and the subsequently synthesized samples, sums up
to 30,000, which is an artificially set threshold larger than the
dimensionality of the input image patch, yet bounded so that the
time required for training remains acceptable.
Repeated trials and random initial weights are used to rule out
the biases from chance factors such as luckily initializing one of
the tested approaches with random weights close to a good local
optimal, or picking a highly variable and representative subset of
the training data for some approaches.

4.3. Results and discussion

The error rates with the test data sets are summarized in
Tables 4–8, and plotted in Fig. 13. In each cell of the tables, we
report the average performance of 10 repeated trials on the large



Table 7
The error rates (%) on the MNIST test set. Results are obtained on 10,000 test digits

belonging to 10 classes.

Number of

labeled

samples

per class

NoSyn SynHdHo -

UnPre -

TuneSyn

SynHdLo -

UnPre -

TuneSeed

SynHdHo -

UnPre -

TuneSeed

Best of

reported

results

from [47]

1 63.4675.27 49.8374.23 43.6175.23 47.0874.65 –

10 29.2672.40 15.7175.69 14.8972.01 17.3572.59 6.5

50 15.7471.79 7.9873.78 7.1374.25 7.8472.13 2.46

Table 8
The error rates (%) with NicIcon test set. Results are obtained on 10,769 test

symbols belonging to 14 classes.

Number of

labeled

samples per

class

NoSyn SynHdHo -

UnPre -

TuneSyn

SynHdLo -

UnPre -

TuneSeed

SynHdHo -

UnPre -

TuneSeed

1 57.1278.46 48.3977.82 44.8279.96 47.1176.83

10 41.83712.05 32.8776.99 22.1575.06 27.4977.38

50 25.36711.48 23.5277.56 21.4377.72 22.7074.71
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Fig. 13. The error rates (%) obtained with the different test sets. NoSyn: purely supervis

with high deformation and low/high percentage of outliers; UnPre: unsupervised DBN p

supervised fine-tuning using seed examples plus synthetic samples. Error bars represen
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data set of MNIST and up to 5 repeated trials on the other
data sets.
4.3.1. The synthetic training samples

In the ‘‘Syn-’’ conditions, synthetic samples are generated by
global and local deformations. With our approach, the magnitude
of those deformations are roughly tuned such that the majority of
the synthetic samples exhibit high magnitude of visual variations.
A number of the synthetic symbols are severely deformed into
non-symbol outliers, but are tolerated and retained. This corre-
sponds to the ‘‘HdHo’’ cases as shown in the Tables 4–8.

It can be seen from the results that approaches with synthetic
samples (‘‘Syn-’’) systematically outperform the approaches with
only supervised training with the small seed data sets ‘‘NoSyn’’.
Compared with the emulated ‘‘HdLo’’ cases, the error rates of the
‘‘HdHo’’ are not significantly lower, although the mean error rates
appear lower. This is not unexpected, given that the ‘‘HdLo’’ cases
are simulated by selecting more user-generated, correctly labeled
samples from the large data sets.

The practical implication here is that our training protocol can
tolerate outlier symbols that are outside the subspace of valid
training samples. Users deploying the proposed training protocol
for their application do not have to carefully tune the parametric
deformations to ensure that all the synthetic samples belong to the
10 1 10 50
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50

1 10 50
0

10

20

30

40

50

60

ed training, without using synthetic data; SynHdLo/SynHdHo: using synthetic data

re-training; TuneSeed: supervised fine-tuning using seed examples only; TuneSyn:

t standard error. (a) HHreco. (b) ThermoFluid12. (c) Sym24. (d) MNIST. (e) NicIcon.
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classes of interest. Nor do they have to sift through the synthetic
training data set and remove excessively deformed samples. Upon a
visual inspection of a subset of the synthesized samples, users can
quickly determine a rough range of the deformation parameters by
bracketing and use them for the subsequent training. That being
said, there is nothing to stop the user from looping through all
synthetic samples and manually picking out the severely deformed
ones that are not recognizable as valid symbols. The visual inspec-
tion of samples and the removal of invalid shapes equates to
labeling pre-segmented image patches and can be conveniently
completed by a few users with a well-designed human-computer
interface.

4.3.2. Fine-tuning with only seed samples

When samples are synthesized through deformation, one
might wonder why not simply inherit the labels from the seed
samples and use both seed and synthetic samples during the
supervised fine-tuning. Our results show that this may lead to
worse recognition rates, as reflected in the comparison between
the ‘‘HdHo - TuneSyn’’ and ‘‘HdHo - TuneSeed’’ conditions on
the Sym24, MNIST and NicIcon data set. We hypothesize that the
performance deterioration might be caused by the excessively
distorted outliers. Specifically, we believe that in ‘‘TuneSeed’’, the
small number of samples plays as a regularizer on the decision
boundaries between classes, whereas in ‘‘TuneSyn’’ the distorted
samples affects the decision boundaries and causing over-fitting
to the synthetic deformation, rather than the true distribution of
user-generated symbols. This raises the question: what regular-
ization techniques could be utilized to mitigate the effects of
outliers in this context? The test of the above hypothesis and the
open issue of regularization are to be investigated.

One practical implication of fine-tuning with only seed sam-
ples is that the time for DBN fine-tuning can be shortened,
compared to training with the large number synthetic samples,
because the training algorithm iterates each training sample and
the time needed is proportional to the sample size.

4.3.3. The effect of the deformations

One might wonder, how do the deformations used in example
synthesis affect the recognition accuracy in our approach? There
seems to be two parallel effects and no simple correlation. On
one hand, a larger deformation during synthesis causes higher
percentage of outliers, which we have shown is detrimental for
the performance of the trained recognizer. On the other hand, this
is confounded by the opposing effect that a larger deformation
produces richer in-class variations which is desirable for training.
In the training scenario that we target, there is not an explicit
model for the in-class variations, nor a fine-tuned deformation
generator that produces rich variations and no outlier. As a result,
there is no trivial way to decouple the two effects or control them
individually.

4.3.4. Relations to existing approaches and results

The observed improvements with synthetic data and unsu-
pervised pre-training complement previous findings such as
[23–25]. In this paper, the improvement of classification accuracy
is observed when labeled samples are scarce, whereas the
reported improvements of semi-supervised learning over super-
vised learning are observed in a different performance regime
where training samples are already available in large quantities.
Altogether, they empirically show the consistent advantage of
unsupervised pre-training over conventional supervised learning
regardless of the availability of labeled samples.

We note that our main goal here is not to obtain the record-
breaking classifier on the tested data sets, but to study the effects
of synthetic samples and unsupervised pre-training against com-
parable baselines when labeled data is scarce. Techniques known
to facilitate visual recognition, such as convolution-like weight
sharing [12] or kernel methods, are not incorporated here. There-
fore, our error rates reported on those data sets are not expected
to be on par with the state-of-the-art and we believe that there is
room for future improvement.

To the best knowledge of the authors, the top results on MNIST
subsets, shown in the last column of Table 7, was obtained by the
Patchwork of Parts (POP) model [47] which is a well engineered,
specialized visual learning model enhanced by the prior human
knowledge that visual objects can be described by deformable
models of binary oriented edges. However, the POP model has
made the simplifying assumption that parts can only be trans-
lated, not rotated. Therefore, it is not robust against large global
rotations (7151, [47]) which can be prominent in freehand
sketched symbols. In contrast, techniques have been developed
incorporate large rotation invariance into the neural network
classifiers [49].

The best result on HHreco, an error rate of 1.8% reported by
[11], was obtained using a convolutional neural network model
trained on a majority fraction of the whole data set (i.e., samples
contributed by all but one user) and cannot be compared with our
results which is by contrast trained with only a small portion of
the data set.
5. Conclusion

We present a training protocol for neural network-based
symbol recognizers. The proposed protocol consists of three-
steps: the synthesis of supplemental, unlabeled training samples,
the unsupervised pre-training of a DBN and the supervised back-
propagation fine-tuning that turns the pre-trained DBN into a
neural network classifier. Systematic improvements over purely
supervised training are observed, suggesting that the proposed
protocol is able to exploit the unlabeled samples synthesized
from a few labeled samples, and alleviates the dependence on a
large, labeled training set.

With our approach, the training and deployment of the symbol
recognizers could proceed after collecting only 10–50 training
samples from a small group of the users, shortening the devel-
opment cycle. This is particularly useful when introducing the
recognizer for a new domain where existing, labeled training
symbol data set is scarce.

It remains open to ascertain the dependency of this approach
on Deep Belief Networks and the possibility of extending to
learning models of simpler parametric structure, such as logistic
regression and Support Vector Machines, or models of non-
parametric nature, such as the nearest neighbor classifier.
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