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Abstract—We propose a new sketch parsing and beautification method that converts digitally created design sketches into beautified

line drawings. Our system uses a trainable, sequential bottom-up and top-down stroke clustering method that learns how to parse input

pen strokes into groups of strokes each representing a single curve, followed by point-cloud ordering that facilitates curve fitting and

smoothing. This approach enables greater conceptual freedom during visual ideation activities by allowing designers to develop their

sketches using multiple, casually drawn strokes without requiring them to indicate the separation between different stroke groups. With

the proposed method, raw sketches are seamlessly converted into vectorized geometric models, thus, facilitating downstream

assessment and editing activities.

Index Terms—Sketch-based design, conceptual design, sketch parsing, sketch beautification, supervised stroke clustering, Laplacian

Eigenmaps, curve fitting.
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1 INTRODUCTION

EARLY design ideation and product styling activities often
require intensive visual exploration, assessment, and

iteration through which the product form eventually
evolves [1]. During these activities, designers typically
externalize and communicate their ideas by generating a
multitude of conceptual sketches, which has been recog-
nized as a critically important stage for product design and
development [2], [3]. In support of these early activities,
recent technological advances have led to a variety of pen-
based digital design tools, which are becoming increasingly
more accessible. However, a key issue that hinders a wide
adoption of such tools for computer-aided design and
modeling is the difficulty in transforming input pen strokes
into geometric content that accurately represents designers’
intentions. Due to this challenge, the majority of the current
sketch-based design interfaces either leave the raw sketches
unprocessed (thus, simply serving as digital drawing tools)
or otherwise require users’ obtrusive intervention to trans-
form input strokes into usable geometric forms. The latter
often forces designers to abandon their natural drawing
styles and attend to peripheral details, which severely
inhibits their conceptual freedom.

In this study, we describe a new computational method

that automatically transforms conceptual design sketches

into vectorized drawings using a trainable stroke clustering,

point ordering, and curve fitting algorithms. From an input

sketch containing an arbitrary number of strokes drawn in

arbitrary directions and order, our method identifies the

salient stroke groups and beautifies each into a single

geometric curve. This transformation allows raw design
sketches to be seamlessly converted into drawings consist-
ing of parametric curves, thus, facilitating downstream
computer-aided modeling operations. Although this task is
rather trivial for humans, it is often not the case for
computational systems due to the presence of many strokes
exhibiting large variations in their intrinsic and extrinsic
attributes such as curvature, angular orientation, intersec-
tions, and spatial proximity. The key advantage of the
proposed approach is that it can learn how to group the
strokes in a given sketch by studying a previously created
sketch (or sketches). Hence, the system can be readily
adapted for different designers and drawing styles without
requiring external calibration or retuning.

At the heart of our method is a set of stroke-level
geometric features that encodes and exploits the relation-
ships between input strokes. From a manually clustered
training sketch, our system trains a neural network that
encodes a discriminative mapping between the features
extracted from a pair of strokes, and a decision regarding
whether those strokes should be grouped together. This
process results in a set of raw stroke groups each of which
may contain a single geometric curve, or a set of curves that
forms locally difficult-to-detect bifurcations. These bifurca-
tions are then detected using a set of global attributes of
each group, resulting in distilled clusters each representing
a single salient curve. Next, the focus shifts from the strokes
to the coordinate points comprising those strokes. From the
aggregate set of unorganized points extracted from each
stroke cluster, our system computes a spatial ordering of
those points using a spectral dimensionality reduction
method. It then uses this point ordering to either generate
a natural parameterization for curve fitting, or to directly
synthesize a geometric curve. To enhance robustness
against noninformative, exploratory strokes, our system
additionally exploits the variations in pen pressure during
digital sketching, thereby, generating curve fits that are
most commensurate with the designer’s intentions.

With the proposed approach, drawings with sketchy,
overlapping strokes forming open curves, closed curves,
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intersecting and self-intersecting curves, and curves ex-
hibiting subtle bifurcations can be beautified into singular
geometric curves. In this work, we limit our approach to
sketches that contain the primary drawing strokes forming
the shape communicated in the scene. Hence, input
sketches are assumed to be devoid of auxiliary strokes
such as scaffolding lines, shading strokes, or crosshatches
which are common in many professional design sketches.
When desirable, however, such set of strokes can be
suitably separated into different sets using the digital
layering capabilities of existing drawing software.

2 RELATED WORK

Advances in sketch-based design interfaces have led to a
variety of novel technologies for 2D and 3D geometric
modeling. However, techniques necessary for transforming
input pen strokes into forms suitable for digital modeling
operations have not been well developed. Igarashi et al. [4]
introduced beautification in which each input stroke is
converted into straight line segments using a number of
visual attributes such as connections to existing segments,
parallelism, perpendicularity, and other similar geometric
constraints. This approach has been designed to produce
purely straight line segments, thus, restricting its use to
rectilinear designs. This pioneering work has coined the term
beautification of strokes, which has since become the de facto
term for converting pen strokes into usable geometric entities.

Studies [5], [6], [7], [8] proposed starting with an initial
stroke and progressively improving it using modifier
strokes. Baudel [5] suggested a stroke-based spline editing
method, which can take as input multiple strokes to modify
a single curve. Avro and Novins [6] proposed an active
sketch assistance system to “classify the sketch as one of
several predefined basic shapes” and to gradually morph
the strokes to the identified basic shape on the fly. Bae et al.
[7] suggested developing curves by converting each stroke
into a cubic Bézier curve and averaging all while favoring
recently drawn strokes over previously drawn ones. Kara et
al. [8] used active contours to update existing curves under
elastic forces exerted by the modifier strokes. Although
these methods are useful in curve modification, the
immediate beautification of the strokes requires users’
guidance and confirmation of the results, which can disrupt
the natural flow of sketching.

In studies [9], [10], researchers suggested using multiple
strokes to define a single smooth curve via curve fitting.
Schmidt et al. [9] used variational curves to convert the
input strokes into geometric curves via curve fairing, gap
filling, and smoothing operations. Kara and Shimada [10]
utilized Principal Component Analysis (PCA) to determine
a spatial ordering for points comprising the input strokes to
facilitate B-spline curve fitting. However, similar to the
previous methods, these approaches require untimely
attention to curve beautification, thus disrupting fluidity
during sketching.

2.1 Techniques for Drawing Simplification

Studies [11], [12], [13], [14], [15] propose extracting geometric
curves from completed sketches. Saund [11] describes a
drawing simplification algorithm to extract arcs in a drawing

at different scales using curve element tokens. The method is
concerned with identifying the curvilinear structures within
drawings at various scales controlled by the user. Our work,
on the other hand, aims to simplify hand-drawn sketches
into free-form curves. Shesh and Chen [12] describe a sketch
simplification method that replaces strokes sharing similar
slopes and proximate end points, with an average straight
line. This approach is designed for sketches composed
exclusively of straight line segments. Pusch et al. [14]
describe a sketch beautification method that produces the
desired curve elements by first subdividing the sketch into
rectangular regions until individual strokes are attained, and
later using this information to construct intended curves. The
subdivision-based approach makes the method more suita-
ble for nonintersecting curves. Shesh and Chen [15] propose
a drawing simplification method, which uses efficient
proximity calculations to facilitate stroke grouping. The
amount of simplification is determined through parameters
that control stroke proximity and overlap. This approach is
concerned with reducing the number of geometric elements
to be processed during dynamic rendering at a local level,
and thus, is not designed to identify the underlying
geometric structures in a drawing. Similarly, Barla et al.
[13] propose a geometric clustering and simplification
method that sequentially merges curves representable by a
single curve at a prescribed scale. The merging decision is
based on an "-line that has a user-specified width enveloping
the candidate curves. As their method uses a greedy
clustering and simplification approach, the resulting draw-
ing is usually one of many admissible solutions. Moreover,
the "-line approach favors mergers that exhibit sharp
corners, which, in fact, may be cues for different geometric
structures. Likewise, it fails to identify curves that may be
self-intersecting as often times such curves do not lie within
an "-line. Our approach is designed to alleviate these
difficulties through a trainable stroke clustering algorithm
that learns the rules for stroke grouping from the users’
sketches. Additionally, our approach is designed to handle
self-intersecting and bifurcating curves that are often
difficult to distinguish using a purely local analysis.

2.2 Techniques for Curve Fitting to Point Sets

There exist a number of model-based methods for curve
fitting to unorganized point sets [16], [17], [18]. Wang et al.
[16] describe a curvature-based squared distance minimiza-
tion method to fit nonself-intersecting, open/closed curves
to unorganized point sets. The performance of their method
is sensitive to the initialization of the model curve.
Additionally, the user has to specify whether an open or
closed curve is to be fit. The method proposed by Yang et al.
[17] can fit self-intersecting closed curves to unorganized
point sets. However, their work is tailored toward closed
curves, which facilitate the use of encircling curves as the
initial curve model. Both methods require a sufficiently
reasonable starting curve to make them computationally
affordable. Moving least squares (MLS) [19], [20] have also
been used for curve and surface fitting to unorganized point
sets. Although MLS methods can represent a wide variety of
shapes, they are limited to manifold geometries devoid of
self-intersections. In addition to curve fitting methods,
methods based on direct point set parameterization have
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also been proposed. Goshtasby [21] proposes an image-

based method to parameterize point sets while automatically

determining whether the resulting geometry should repre-

sent an open or closed curve. However, it is not suitable for

self-intersecting curves. In this paper, we propose a new

parametrization and curve fitting method tailored toward

sketch-based applications. Our approach does not require an

initial curve model and automatically determines whether

the final curve should be open or closed. It determines the

parametrization on the point set prior to curve fitting, and

uses classical fitting and smoothing methods designed for

organized point sets. We also describe a method that exploits

pen pressure to produce final curves that are aligned well

with the users’ intentions.

3 USER INTERACTION AND OVERVIEW

In this work, we propose a new sketch parsing and

beautification method that converts digitally created con-

ceptual design sketches into sketches consisting of beau-

tified curve elements. Our system is designed to operate on

a complete sketch rather than requiring the user to explicitly
demarcate the separation between different curves during
construction. We use a pressure-sensitive graphics tablet for
recording the stylus position and tip pressure as a function
of time. While the temporal order of the strokes is readily
available using this setup, by design, our system does not
rely on this information. This enables strokes to be drawn in
an arbitrary order and allows the user to readily return to a
previously developed portion of a sketch to add new
strokes. Our method consists of three main steps: 1) stroke
clustering, 2) point reordering, and 3) curve fitting and
smoothing, and is illustrated in Fig. 1.

4 TRAINABLE STROKE CLUSTERING

In the first step, our system uses a trainable clustering
method to group input strokes into clusters each forming a
single, unique curve. At the heart of our approach is a
bottom-up stroke fusion method followed by a top-down
curve fission. In the initial bottom-up phase, our approach
uses a trainable, neural network method that takes as input
a set of geometric features extracted from each stroke pair
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and decides whether the two strokes should reside in the
same group. Once pairwise decisions are made, our system
consolidates the connected stroke pairs using a greedy
linking algorithm to synthesize compound stroke groups. A
compound stroke group may contain perceptually domi-
nant stroke branches that require a global analysis beyond
the pairwise decisions. Such distinct branches are often the
cumulative result of small and gradual bifurcations along
the raw strokes, and thus, are undetectable using a purely
local analysis. For each initial compound group, the
subsequent top-down analysis temporarily reverts to a
point-based representation and uses a spanning tree
analysis to split the group at candidate bifurcation points.
A key advance in this work is the ability to detect such
bifurcations, which are identified as the nodes that split the
tree into similarly weighted branches. Finally, the branches
identified in the point-based representation are transformed
back to the stroke-based representation, thereby resulting in
stroke clusters each corresponding to a branch-free, unique
curve that can be subsequently beautified.

4.1 Preprocessing Input Strokes

Strokes to our system are collected through a digitizing
tablet, which provides a series of data points sampled
along the trajectory of the stylus. Stylus slippage on the
drawing surface often results in unintended hooks at the
beginning of the strokes. To alleviate the difficulties in
feature extraction caused by this phenomenon, our system
initially converts each incoming stroke into a cubic Bézier
curve similar to [7]. A fixed number of points are then
extracted along the Bézier curve to produce a densely
spaced set of coordinate points approximating the original
stroke. This intermediate transformation, however, is only
used to expedite feature extraction in stroke clustering as
described in the next section. In the subsequent curve
beautification stage, our system reverts back to the original
points sampled along the stylus in order to produce final
curves that accurately match the designer’s raw strokes. For
scale independence, our system normalizes incoming
sketches to a unit box while preserving their aspect ratios.

4.2 Feature Extraction

We define three geometric features to inform stroke cluster-
ing. The first feature, remoteness, is a measure of spatial
distance between a pair of strokes. The second feature,
misalignment, is a measure of angular distance revealing how
well two strokes are aligned with one another. The third
feature, discontinuity, measures the likelihood of one stroke
forming a natural continuation of another stroke. While we
have found these features to be sufficiently informative for
stroke clustering, our system can be readily expanded to
incorporate other geometric features if desired.

4.2.1 Remoteness

We define remoteness as the shortest distance between two
strokes:

dAB ¼ kxi � xjk; ð1Þ

where xi and xj are the position vectors of the points
resulting in the shortest distance between strokes A and B.
Here, k � k is the euclidean norm operator. Fig. 2a illustrates
this measure. Note that since incoming sketches are
normalized to the unit box, this distance will always lie

between ½0; 1�. For a given pair of strokes, the remoteness
will be expectedly large if this distance is large relative to
the size of the scene. However, the same distance will
appear smaller if the constituent strokes are made longer
relative to their gap, or the sketch contains other strokes that
enlarge the size of the active scene. This phenomenon is
desirably commensurate with human vision, as our
perception of proximity between two geometric entities
will vary relative to the size of the observed scene.

4.2.2 Misalignment

Remoteness, while central to clustering, is not a sufficient
measure of grouping alone as illustrated in Fig. 2b. Here,
while remoteness vanishes, a significant angular misalign-
ment suggests a separation between the strokes. Our
examination of a large set of sketches and user reactions
have revealed that humans tend to view two strokes to belong
to the same group if the strokes are well aligned at their
nearest points. Fig. 2c illustrates such a case. We quantify this
observation as the misalignment between two strokes, which
we formulate as the angular difference between the two
strokes’ tangent vectors at the points of minimum distance
(Fig. 2d):

aAB ¼
jffðnA;nBÞj

�=2
; ð2Þ

where nA and nB are the unit tangent vectors on strokes A

and B, respectively, and ffð�; �Þ maps the angle between two

vectors to ½��=2;þ�=2�.
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4.2.3 Discontinuity

Small values of this feature indicate the likelihood of one
stroke naturally continuing another one. Figs. 2e and 2f
exhibit cases of strong continuity and weak continuity,
respectively. Note that in both cases, the strokes are well
aligned, with small misalignment feature values. We define
discontinuity in relation to the unit tangent vectors nA and
nB at the end points, and the distance vector s between the
end points:

cAB ¼
kðnA � nBÞk þ kðnA � nsÞk þ kðnB � nsÞk

3
jsj; ð3Þ

where ns is the normalized unit vector along distance vector
s. The cross-product operator � results in vectors perpen-
dicular to the drawing plane. When all three vectors nA, nB,
and ns are aligned with one another, this measure will
attain a small value indicating strong continuity. Disconti-
nuity will increase with higher misalignment between any
two of the constituent vectors.

4.3 Supervised Bottom-Up Stroke Fusion

4.3.1 Training

From a manually clustered training sketch, a neural network
is trained that predicts the pairwise stroke groupings. For an
arbitrary pair of strokes marked to be in the same group
during training, the neural network must take as input the
distances produced by the three geometric features de-
scribed above. As shown in Fig. 3, however, spatially
separated strokes may indeed be perceptually proximate in
the presence of neighboring strokes that bridge the two
strokes. To reliably identify the distance between two
arbitrary strokes, we thus take into account the circuitry that
exists between the strokes in the form of a principal distance.
For each of the three features, we define this distance as
the total distance traveled along the shortest path connecting
the two strokes (i.e., the geodesic distance between the
strokes) averaged by the number of strokes visited. This
distance is calculated for all three features separately.
Mathematically, the training distance between the ith and
jth strokes in the kth feature thus becomes:

dfkði; jÞ ¼
dkGði; jÞ
nkGði; jÞ

if i; j are in same group;

dkði; jÞ; otherwise;

8<
: ð4Þ

where dkGði; jÞ is the geodesic distance, nkGði; jÞ is the number
of strokes traveled along the shortest path, dfkði; jÞ is the
training distance in kth feature, and dkði; jÞ is the actual
distance. We calculate the geodesic distance using the
Dijkstra’s algorithm. Note that with this formulation, feature
distances between the strokes belonging to the same cluster
are attenuated, while features for the strokes in different
clusters remain unchanged. Once calculated, the training
distances in each feature are collected into a single vector as

dfði; jÞ ¼ ½df1ði; jÞ df2ði; jÞ df3ði; jÞ�T ; ð5Þ

where dfði; jÞ is a feature vector composed of the training
distances in features, dfkði; jÞs. Each feature vector is then
associated with a binary class decision as

cði; jÞ ¼ 1; if i; j are in same group;
0; otherwise:

�
ð6Þ

This adjustment of the pairwise stroke similarities
through average geodesic distances is analogous to the
average with-in cluster point distances presented in [22], which
exploit the bridge points to adjust the nominal distances
between point pairs.

During training, the neural network takes as input the
three training distances corresponding to each of the three
features described above. All stroke pairs in the sketch
are utilized as training samples, thus, providing both
positive and negative samples. We use a feed-forward
network with a single hidden layer with 15 units. We have
designed the activation functions at the hidden and output
layers of the network to be hyperbolic tangent and sigmoid
functions, respectively. The network is trained using a batch
steepest gradient descent algorithm. The training continues
until the absolute training error is reduced to less than 0.1
percent, or a prescribed number of iterations are reached.
Note that for a sketch with n strokes, the number of unique
training pairs is Oðn2Þ.1 Hence, a large set of training data
can often be obtained from a single sketch. If desired,
multiple sketches can be used for training, thus, resulting in
a large corpus of training data.

The decision boundary obtained from the NN depends on
the training sketch and the users’ style. As shown in Fig. 4, the
decision regions can be linearly separable or inseparable. To
accommodate such variations in the user style and training
sketches, the NN described above is used as opposed to
alternatives such as logistic regression or support vector
machines. Although these classifiers can be designed to
produce nonlinear decision boundaries with proper kernels,
such kernels must often times be manually respecified based
on the boundary, thus, requiring user intervention.

4.3.2 Stroke Group Identification

Given an unclustered input sketch, our system first
calculates the feature vectors with actual distances instead,
and then uses the trained neural network to determine the
pairwise groupings between all stroke pairs. Example plots
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Fig. 3. (a) Six strokes belonging to the same cluster. A direct
computation of the training features between distant strokes such as 1
and 6 may give rise to large feature distances. (b) Shortest path
geodesic distances help adjust the original feature distances. For a
given stroke pair, the geodesic path is computed separately for each
type of feature.

1. nðnþ 1Þ=2 to be exact.



of the computed features and the stroke connectivities are
given in Fig. 5. Given the pairwise groupings, our system
uses a greedy chaining algorithm to progressively merge
the strokes into the final compound stroke groups.

4.4 Top-Down Stroke Group Fission

At times, the strokes in an identified group may exhibit
bifurcating branches that form more than one unique curve
(e.g., Y-junctions). Such situations are often difficult to
detect at a local level, and thus, necessitate a global
postanalysis of each cluster. For this, our approach
temporarily switches to a point-based representation of
the strokes. Processing each cluster as a point cloud, our
approach identifies the candidate bifurcation points and
associated branches, thereby producing distilled subclus-
ters each corresponding to a single curve.

4.4.1 Branch Splitting

This step aims to detect and split such bifurcations,
resulting in the final stroke clusters each corresponding to
a unique curve. We sample a fixed number of equally
spaced representative points from each stroke in a stroke
group.2 This representation breaks the strokes into an
unorganized point set, which facilitates a graph-theoretic
analysis within the group. Specifically, we compute the
minimum spanning tree (MST) [23], [24] of the point set that

helps reveal the bifurcations and associated branches of the
set. Note that any candidate bifurcation point must have at
least three neighboring points. Additionally, bifurcations
are characterized by the significance of the branches they
carry relative to the rest of the MST. To reliably detect such
points, we encode the forward and backward cumulative
path lengths on each edge of the MST. Fig. 6 illustrates the
idea. Note that for points connecting four or more edges, it
suffices to have only three significant branches.

Salient bifurcation points are identified as those having a
BLmin
BLmax

> ", where BLmin and BLmax are the minimum and
maximum cumulative branch lengths emanating from the
point. For points that join more than three branches, the
above ratio is computed among the largest three branches. "
is derived from an analysis of a large corpus of training
sketches that contain both branching and nonbranching
stroke groups. The threshold, which is 0.05 in our
implementation, is determined as the lowest possible of
the above fraction that does not result in an undesired
splitting of nonbranching groups. Once the bifurcation
points are identified, the remaining points in the MST are
grouped into distinct point groups. For n bifurcation points,
this results in 1þ 2n such groups.

4.4.2 Selective Branch Merging

In this step, we revert to the stroke representation by
assigning each of the original strokes to one of the newly
identified point groups. Note that each point group may
contain points belonging to different strokes. For each point
group, we first identify the stroke that contributes the most
number of points to that group (or multiple strokes in the
case of ties). This process may leave a number of strokes
that are not assigned to any particular point group. This
step typically helps reveal the core of each branch far from
the bifurcation points in the form of seed curves. These
curves are encoded in the form of cubic Bézier curves, fit to
the underlying strokes (dashed curves in Fig. 6c).

Next, the strokes forming the seed curves are further
processed to identify the natural skeleton associated with
each bifurcation point. For a bifurcation, there are two such
skeletons, each formed by the trunk of the Y-junction,
attached to one of the remaining two branches. Our method
uses the seed curves’ end point tangents to determine the
natural continuations among the branches to identify the
trunk, and subsequently, the two skeletons for each
bifurcation point as shown in Fig. 6c.

Finally, the newly formed skeletons are used to facilitate
the assignment of the remaining strokes, resulting in the final
stroke clusters. To facilitate this assignment, we measure the
maximum deviation of the end points of an unassigned stroke
from a skeleton. Fig. 6d illustrates an example. For a given
stroke, this deviation is calculated with respect to each of the
two skeletons. The stroke is assigned to the skeleton that
minimizes this deviation. Finally, the skeleton that possesses
the most number of strokes is chosen as the salient skeleton,
and the associated strokes are grouped into a single cluster.
Note that, as branch merging decisions are based solely on the
number of strokes in each candidate skeleton, the final
dominant branch suggested by our system may not always be
aligned with the user’s perceived dominant branch. Likewise,
the remaining strokes of the second skeleton are grouped into
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a separate cluster, thereby, forming the perceived branching
group. The same method is applied to all such bifurcation
points (Fig. 6e). In the end, fornnumber of bifurcation points,
1þ n final stroke clusters are generated.

Fig. 4 shows example training sketches and associated NN
decision boundaries. To facilitate the stroke-pair labeling
necessary for preparing the training sketches (i.e., to
demarcate whether two strokes belong to the same or
different groups), the user presses a key button when
transitioning from one group to another. After training the
system with the sketch in Fig. 4a, a testing sketch was grouped
into the initial compound stroke groups through the bottom-
up stroke grouping step as shown in Fig. 7a. Note that some of
the stroke groups exhibit branching behavior. Next, these
stroke groups are further processed during the top-down
stroke group fission step forming the final stroke clusters as
illustrated in Fig. 7b.

5 POINT REORDERING

At the end of clustering, the sketch is parsed into unique
clusters of strokes each representing a single curve. In its
initial form, each cluster is merely a set of unorganized
coordinate points originating from the unorganized set of
strokes. The next challenge is thus to prepare each cluster
for curve fitting by spatially ordering the strokes’ constitu-
ent points. At this point, the focus shifts to the coordinate
points making up the strokes rather than the strokes
themselves, as a spatial ordering of the strokes only is not
sufficient to facilitate curve fitting.

Point ordering is not trivial due to a variety of challenges
such as the presence of closed or folding curves, resulting in
a loss of unique projection axes. Prior attempts at this
problem such as Principal Component Analysis [10], active
contours [25] are either limited by the complexity of the
curves or are computationally demanding. In this study,
we propose the use of Laplacian Eigenmaps [26] as a way to
unfold input clusters in the spectral domain, and use this to
inform the ordering in the canvas coordinates. Laplacian
Eigenmaps is a spectral-based dimensionality reduction
method used for mapping high-dimensional data onto
lower dimensions similar to other dimensionality reduction
methods ([27], [28]). Our approach exploits the unfolding
capability of this method, without the need for any
dimensionality reduction.

Before we explain the technical derivation of point
ordering via Laplacian Eigenmaps, we will first draw an
analogy to mechanical systems to explain the intuition
behind its use. In this context, Laplacian Eigenmaps
formulation is analogous to a modal vibration analysis in
which the input points correspond to unit masses. Each point
is connected to all other points with springs whose stiffness is
inversely proportional to the distance between the point
pairs. When the rigid body motion of this point set is
removed, the mode shapes of the system reveal the motions
of the points relative to one another at different natural
frequencies. The fundamental mode, i.e., the mode with the
lowest natural frequency, corresponds to the primary flexing
motion similar to the way a simply loaded cantilever beam
would deform. Thus, the monotonically increasing beam
deflection helps establish the spatial ordering of the points
along the beam, which is originally unknown. In our case,
this idea readily applies to point sets representing a
nonintersecting open curve. By considering the second mode
shape, we also extend this approach to nonintersecting
closed curves. Additionally, by introducing a cosine simi-
larity factor into the pairwise affinity calculations between
points, our approach resolves the ambiguity arising from
self-intersecting open or closed curves as described below.

Our reordering approach is based on an affinity

calculation between each point pair in the cluster. To this

end, our system begins by encoding the euclidean distances

between each point pair in the cluster:

dij ¼ kxi � xjk; ð7Þ

where xi and xj are the position vectors of the ith and jth

points, and dij is the distance between the two. It then

computes an estimated tangent vector (Fig. 8a) at each point

using the temporal order of points within their respective

strokes. Next, to help resolve self-intersecting curves, it

calculates a cosine similarity factor for each point pair as:

�ij ¼ jti � tjj; ð8Þ

where ti and tj are the normalized tangents drawn at the

ith and jth points, respectively. Finally, it constructs an

affinity matrix by transforming the raw distances through a

Gaussian kernel, and adjusting the result by the cosine

similarity factor as
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Fig. 5. Feature distances and the resulting connectivity information for a clustered sketch. (a), (b), and (c) The rows and columns correspond to
stroke indexes forming square feature matrices. Color-coded matrix entries indicate distances between stroke pairs. Brighter colors in these matrices
correspond to higher feature distances. (d) Resulting pairwise connectivity decisions. Brighter pixels correspond to the network outputs closer to 1,
thus, revealing strokes to be grouped together. The banded nature of the final map suggests that in this particular example, proximate strokes were
drawn mostly consecutively. (a) Remoteness feature. (b) Misalignment feature. (c) Discontinuity feature. (d) Connectivity.



Aij ¼ exp �
d2
ij

��

 !
ð1� �Þ þ ��ij
� ��

; ð9Þ

where Aij is the affinity between the ith and jth points, � is
the standard deviation of all the distances computed for
the point set, � is a scaling factor, and � and � are the
parameters that control the amount of modification on the
affinity values. We experimentally determined � ¼ 0:5 to
result in a robust ordering for a large variety of curve
shapes. This kernel helps strengthen the bonds among
proximate and aligned (i.e., sharing similar tangent vectors)
points while weakening those among spatially distant, or
tangentially unaligned points. Fig. 8 demonstrates an
example of self-intersecting curve along with the initial
affinities, cosine factors, and adjusted final affinities.

Next, the affinity values under a threshold are cut off
resulting in the final affinity matrix W:

Wij ¼
Aij; if Aij > 0:75;
0; otherwise:

�
ð10Þ

Here, the cutoff value is also experimentally chosen to be
0.75. This final affinity matrix sets up the stage for the
following eigenvalue problem:
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(a)

(b)

Fig. 7. (a) Stroke fusion initially generates 14 stroke groups. The sketch
shown in Fig. 4a is used for training. Groups forming Y-junctions are
depicted in red. (b) The final stroke clusters computed after stroke group
fission. (a) A simple test case. The bottom-up step initially forms groups.
These groups may exhibit branching behavior. (b) The top-down step
identifies branches and splits the stroke group if needed.

Fig. 6. (a) Strokes forming Y-junctions at two separate locations. (b) The
MST identifies the candidate split points by calculating tree weights
around high valence points. The point set is then split at those points.
(c) The strokes that contribute most to each point branch are converted
into seed curves (dashed lines). The seed curves are used to form the
skeletons. (d) The remaining strokes are distributed to skeletons from
which they deviate the least (i.e., purple stroke to the purple skeleton.
(e) Final stroke clusters.



Lf ¼ �Df; ð11Þ

where D is a diagonal matrix whose diagonal elements are
Dii ¼

P
j wij, and L ¼ D�W. The resulting eigenpairs, �ks

and fks, are sorted using the eigenvalues in increasing
order, where the first eigenpair corresponds to the pair with
the smallest eigenvalue. The coordinates of the ith point in
this new spectral domain become

xi ¼ ðf2ðiÞ f3ðiÞ . . . fNþ1ðiÞÞ; ð12Þ

where N is the dimension of the spectral domain. Note that
the first eigenvector f1 corresponding to the rigid body
motion has been omitted. For dimensionality reduction, N
is chosen to be less than the dimensions of the original
space. In our case, we keep N ¼ 2 to be able to handle
nonintersecting closed loops.

One straightforward approach to organize a point set is
to project all points in a point cloud onto a single dimension

in the spectral domain and to order them along this new
dimension. With this approach, point sets representing
open curves (first row of Fig. 9) can be successfully ordered
along a single dimension (the horizontal axis in Fig. 9e).
However, the same strategy fails when ordering point sets
representing closed curves (second row of Fig. 9). In such
situations, what remains informative in the spectral
domain, however, are the unique polar angles of the points
making up the closed curve. We exploit this property to
reliably sort the point cloud, and later transform this
information to the canvas coordinates.

Point sets that form self-intersecting curves require
different amounts of modification on the affinity values,
while point sets that define nonself-intersecting curves can
be readily ordered without modification. The amount of
required modification for self-intersecting curves is strongly
influenced by the intersection angles between overlapping
branches. To achieve a proper separation between inter-
secting branches, a limited range of different � and � values
are used to order a point set. For each pair of � and � values,
the resulting ordering is analyzed and a measure of
disparity in chord lengths between the consecutive points
is calculated as �chord=medianchord. Here, �chord is the
standard deviation and medianchord is the median of chord
lengths between consecutive points. The set of parameters
that minimizes the disparity is picked to be the set that
results in the final ordering. Fig. 9 shows the final point
ordering of open and closed self-intersecting curves both
drawn with multiple strokes.

In cases where low sampling rate input devices are used,
significantly large gaps between consecutively sampled
points can make the spatial ordering appear ambiguous
even to the human eye. As illustrated in Figs. 10a and 10b,
the original point set is not sufficient to reveal whether the
curve is u shaped or gamma shaped. However, as shown in
Fig. 10a, the strokes leading to the point set help our
perception by resolving the ambiguity. To mimic a similar
visual cue, we artificially upsample input strokes (using a
linear operator) to a level where the gaps between
consecutive data points are below a certain range. As the
gaps between consecutive points decrease, the system
becomes increasingly more accurate in its ordering of the
original points as the newly introduced points serve as
connecting bridges. To this end, our system first introduces
the artificial points that eliminate large gaps, then orders the
cumulative set of points in the spectral domain, and finally,
dismisses the artificially introduced points.

6 CURVE BEAUTIFICATION

In the last step, the reordered point sets are beautified by
curve fitting and smoothing. In curve fitting, our system
uses the previously determined parameterization to replace
the point set with a B-spline curve that minimizes the sum
of squared distance errors. Unlike conventional curve fitting
methods, our system additionally monitors the differences
in pen pressure along the strokes to improve the computed
curve fits. This information helps enhance robustness to
noninformative strokes, thereby producing results com-
mensurate with the users’ expectations. Once generated, the
user can further improve the resulting curves using Fourier
Transform smoothing [29] or Savitzky-Golay smoothing
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Fig. 8. (a) The constituent points of strokes forming a self-intersecting
manifold. The red lines show the tangents calculated at each point using
the temporal information of the host strokes. (b) The affinities using the
raw euclidean distances. (c) The cosine factors. (d) The final affinities
that have weaker bonds between points on intersecting branches. Note
that the values demarcated with the red circles are less than the values
on the initial affinities. (e) Once the bonds between intersecting
branches are weaker, Laplacian Eigenmaps yields the expected point
ordering.



[30]. Alternatively, both types of smoothing operations can

be used directly on the set of ordered points to generate the

final curves, without the need for parametric curve fitting.
To this end, our system first uses a technique similar to

moving least squares [31] to correct any ordering defects and
to determine a natural parameterization to be used for curve
fitting. Starting from one end of the point set, a locally
quadratic curve is fit to a fixed number of points as shown in
Fig. 11a. Each original point ðxp; ypÞ is then projected
vertically onto the curve along the local coordinate frame
resulting in ðxp; P ðxpÞÞ. Next, the projection point is slid along
the local tangent until the distance to the original point is
minimized resulting ðxe; yeÞ. This provides a first order
estimation of the normal projection of ðxp; ypÞ onto the
quadratic curve. Finally, a parameterization is calculated
from the distances between the projected points as shown in
Fig. 11b. The point set is rectified if the new parameterization
suggests a point ordering different from the original one. The
same process is repeated multiple times over the unprocessed
coordinate points until the end of the point set is reached.

Given the above parameterization, the user may subse-
quently elect to fit a cubic B-spline to the entire point set
when desired. The number of spline control points can be
chosen by the user. For B-spline fitting, a commonly used
approach is to minimize an error function defined between
the original points and the curve points:

E ¼ 1

2

XK
k¼1

kPðukÞ �Xkk2; ð13Þ

where Xk is the original position vector of the kth point and

PðukÞ is the position vector of the corresponding point on
the curve with parameter uk.

We have found that a direct application of this approach
often produces fits that are insensitive to the user’s drawing
mechanics. Specifically, we have identified that the stylus
pressure is strongly correlated to the regions of high
emphasis, and thus, needs to be accounted for during curve
fitting. To this end, we employ a modified error function
that explicitly incorporates the stylus pressure:

E ¼ 1

2

XK
k¼1

pkkPðukÞ �Xkk2; ð14Þ

where pk is the pen pressure of kth point. In the above error
expression, high pressure points have a greater influence on
the cumulative error. Fig. 12 illustrates the idea. Fig. 12a
shows the input strokes and the resulting point ordering
obtained from Laplacian Eigenmaps. Consecutive points are
linked by line segments. Fig. 12b shows the initial cubic B-
spline fitting that uses the trivial chord length parameteriza-
tion [32]. Fig. 12c shows a similar fit when the initial ordering
and the subsequent parameterization is updated using the
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Fig. 9. Point reordering in stroke clusters. Rows illustrate (1) nonself-intersecting open, (2) nonself-intersecting closed, (3) self-intersecting open, and
(4) self-intersecting closed stroke groups. (a) Original strokes. (b) Constituent points forming an unorganized point set. (c) Affinity matrices.
(d) Laplacian Eigenmaps transforms the points into spectral domain. (e) Points in the spectral domain are reordered using their unique polar angles.
(f) The resulting ordering is then used to order the original coordinate points. (g) Note that the resulting ordering produces a banded structure on the
affinity matrices. Examples on rows 1, 2, 3, and 4 have 7, 10, 19, and 21 strokes, respectively.

(a) (b) (c) (d)

Fig. 10. (a) Resampling strokes in case of strokes with low sampling
rate. (b) The sampled points are highly sparse resulting in ambiguous
point ordering. (c) The upsampled point set. (d) Resulting ordering
depicted in the form a polyline.



local quadratic curve fitting and point projection algorithm
described in the previous section. Note that while the fit has
improved, it remains too sensitive to overstroking and
divergent stroke extensions. Fig. 12d shows the final fit
when the curve fit is informed by the pen pressure.

Alternatively, the user may elect to retain the ordered set
of points in each stroke cluster as a connected polyline
similar to the way it appears in Fig. 12a. In such situations,
the user may enhance the originally jagged curves using

Fourier Transform smoothing [29] or Savitzky-Golay
smoothing [30].

7 COMPLEXITY ANALYSIS

The computational cost of our approach is primarily dictated
by the following two steps: Let ns ¼ total number of strokes
in the sketch, np ¼ maximum number of original sampled
points for each stroke, and nr ¼ number of resampled points
along the cubic Bézier curve fitted to each stroke.

7.1 Stroke Clustering

The geometric feature extraction between each stroke pair
requires Oðn2

rÞ distance calculations applied to a total of
Oðn2

sÞ stroke pairs. Once pairwise features are determined,
the neural network takes as input a total of Oðn2

sÞ feature
vectors to identify the binary stroke connectivity decisions.
Note that depending on the size of the sketch, either ns or nr
may dominate these computations. Other auxiliary opera-
tions in this step such as stroke resampling ðOðns � ðnr þ
npÞÞÞ and stroke linking (OðnsÞ logic operations) cost
significantly less.

The top-down stroke group fission step solves the MST
problem over a reduced number of points. The computa-
tional complexity of the MST problem is OðmÞ, where m is
the number of edges. Since we extract a reduced number of
points from each stroke, with a fully connected tree (i.e., for
ns number of strokes in a group, the number of edges is
m ¼ n2

s), the computational complexity is Oðn2
sÞ.

7.2 Point Set Ordering

Once unique stroke clusters are obtained, we determine a
point ordering within each cluster to facilitate curve fitting.
For point reordering, we define nc ¼ total number of
identified clusters, and nv ¼ number of points within each
cluster. Note that nv will be such that ns � np � nc � nv, where
each side represents the total number of sampled points in
the sketch.

For each cluster, Oðn2
vÞ computations are performed to

construct the affinity matrixA. Next, the eigenvalue problem
is solved that requires an additional Oðn2

vÞ operations.
Finally, a worst-case Oðn2

vÞ logic operations are required
for point sorting. This results in a total point ordering cost of
Oðnc � n2

vÞ. In cases involving self-intersecting curves, the
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(a)

(b)

Fig. 11. Quadratic curve fitting for order correction and chord length
estimation. (a) An original point xp; yp is projected parallel to the y-axis of
the local coordinate frame. The new updated point location xe; ye is
found by projecting the original point xp; yp vertically onto the tangent
direction defined by the initial projection. (b) Curve parameterization is
computed after the point placements. This often leads to a better
parameterization than the original chord length parameterization applied
to the original point set.

(a) (b) (c) (d)

Fig. 12. Curve fitting examples. (a) The original strokes and the initial ordering. (b) The result of B-spline fitting with chord length parameterization.
Note that the jagged regions cause a weak curve fit. (c) The rectified parameterization suppresses the influence of the jagged regions but the curve is
insensitive to pressure variations. (d) The pressure-based weighted error expression results in improved curve fits.



computational cost increases to a constant multiple of the
previous cost.

Note that the worst-case scenario for point set ordering
occurs when the sketch consists of a single stroke cluster. In
such situations, while nc becomes unity, nv attains its
maximum, thus, significantly impacting the cost. The next
section presents typical runtimes on example sketches.

8 EXAMPLES AND DISCUSSIONS

In this section, we first demonstrate the key capabilities of
our approach through several exemplar sketches. Second,
we discuss the effect of the variability in the sketching style
(as learned by the training algorithm) on the performance of
the method. Finally, the overall performance of the method
is evaluated using several design sketches.

The following examples are best viewed and studied
electronically using appropriate magnification functions of
the document viewers.

8.1 Clustering and Beautification

Fig. 13 shows successfully clustered and beautified
sketches, each emphasizing a key aspect of our approach.
In all examples, the sketch shown in Fig. 1 is used for
training. Fig. 13a shows the identification of salient curves

in the presence of numerous overlapping strokes exhibiting
Y-junctions. Fig. 13b illustrates sketch beautification in the
presence of self-intersecting and overlapping curves.
Fig. 13c illustrates the beautification of a sketch containing
moderately disjoint and sketchy strokes. Finally, Fig. 13d
shows the clustering and beautification of highly wiggly
strokes. Note that since the final beautified curves are fit to
the original stroke points following point ordering, the
resulting curves are not undesirably influenced by the
temporary Bézier curve fits to the individual strokes during
the early stages of stroke clustering.

Fig. 14a demonstrates the Y-junction identifications using
the configuration presented in Section 4.4. The sketches on
the left exhibit a gradually more prominent branching. The
first two sketches are deemed to form singular curves,
whereas bifurcations are detected for the latter two.

Figs. 14b and 14c illustrate the spatial and angular
separation bounds of our clustering algorithm using
synthetically generated line segments sampled at 25 points.
The red lines show the strokes clustered together. Since the
separations increase monotonically, the widest gaps in
the clustered strokes correspond to the largest admissible
separation for the with-in cluster strokes. Note that these
bounds implicitly emerge during training.

8.2 User Style Variability

The nature of the training sketch has a direct influence on
the resulting clustering decisions. This allows our ap-
proach to be customizable to individual users or particular
drawing styles. Figs. 15a and 15b show training sketches
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(a)

(b)

(c)

(d)

Fig. 13. Sketches illustrating the key capabilities of our approach. (a) Y-
junctions and overlapping strokes. Fifty-seven strokes in 11 clusters.
(b) Self-intersecting curves. Eighty-seven strokes in four clusters.
(c) Overlapping and parallel strokes. Forty-seven strokes in five clusters.
(d) Wiggly input strokes. Forty-four strokes in eight clusters.

(a)

(b) (c)

Fig. 14. Illustration of the clustering decisions for (a) Y-junctions,
(b) parallel configurations with varying spatial distances, (c) coaxial
configurations with varying angular distances. In all cases, the sketch
shown in Fig. 1 is used for training.



drawn by two different users. The first user has a sketchier
and more casual drawing style, while the second user’s
strokes are cleaner and drawn more carefully. The NNs
trained with these sketches are used to cluster the sketches
drawn by the two users shown in Fig. 16. Erroneous
clusterings are demarcated in red circles. As shown, most
errors occur when the training and test sketches belong to
different users. While some errors produce acceptable final
results, certain errors significantly impact the resulting
beautification. The same figure shows the clustering
performance of our approach on each test sketch, mea-
sured in terms of the percentage of all misclustered strokes
within the sketch. The ground truth clustering has been
determined by the authors. Misclusterings are identified in
relation to the ground truth data, and consist of the strokes
in all the erroneous splits and mergers.

Note that the first user’s training sketch results in larger
admissible gaps among the strokes within a cluster, thus,
resulting in a more aggressive clustering. The second user’s
training sketch enables a finer separation between different
clusters, thus, allowing various details to be successfully
beautified. Our observations suggest that while sketchier
training examples help accommodate a wider variety of
drawing styles, it may nonetheless fail to capture the details
in carefully drawn sketches. Regardless of the drawing
style, however, the overall performance of our approach
expectedly increases when the training sketches contain a
sufficiently rich set of stroke configurations that are also
observed in the test sketches.

Our analysis of the individual processes that produce the
results in Fig. 16 has shown that the errors are primarily
due to either 1) the bottom-up feature distance calculations
erroneously grouping strokes that were not supposed to be
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(a)

(b)

Fig. 15. Training sketches drawn by two different users. (a) Training
sketch drawn by User 1. Fifty-one strokes in 11 clusters. (b) Training
sketch drawn by User 2. Two hundred twenty-five strokes in 47 clusters.

Fig. 16. Clustering (colored) and beautification (black and white) results of the test sketches drawn by the two users. The sketches in the first and third
columns and the sketches in the second and fourth columns are clustered using the training sketches from User 1 and User 2, respectively (sketches
shown in Figs. 15a and 15b). Upper and lower rows are sketches drawn by User 1 and User 2, respectively. Stroke-based clustering performance is
also shown for each test sketch. Erroneous splits and mergers are counted as misclusterings, which are demarcated in dashed red circles.



grouped or 2) the top-down fission process splitting
originally valid stroke groups. The first type of error occurs
when the feature distances between a pair of strokes remain
below the decision boundary learned by our Neural
Network classifier. Such errors expectedly diminish as the
stroke styles in the test sketches match closer to those in the
training sketches. In the latter case, superfluous bifurcations
typically result in such splitting. We have found this issue
to be more prominent with stroke groups that are smaller in
size (and consist of shorter strokes) relative to the rest of the
sketches, as the otherwise discernible bifurcations in such
groups are suppressed by their absolute sizes.

8.3 Case Studies

Figs. 17a, 17b, 17c, 17d, and 17e show various design
sketches. For all sketches, the sketch shown in Fig. 1 is used
for training. The number of strokes, the number of clusters,
and the computational performance statistics are listed in
Table 1. In all cases, a 2.5 GHz computer with 3 GB of RAM
is used. The major components of our system are deployed
in Matlab, which is integrated with a sketch-based interface
written in C++ and OpenGL that facilitate user interaction
and stylus input.

9 CONCLUSION

We describe a new computational method to convert
digitally created conceptual sketches into vector drawings

consisting of beautified curve segments. We propose a
supervised stroke clustering algorithm that learns mean-
ingful stroke clusters by studying the geometric relation-
ships between the strokes of a training sketch. Our
approach uses a bottom-up stroke fusion combined with a
top-down stroke fission method to reliably identify the
intended unique curves. A key advantage of the proposed
system is its ability to adapt to different drawing styles, as
well as its ability to beautify Y-junctions, closed loops, and
self-intersections. This work also introduces a new point set
ordering algorithm based on Laplacian Eigenmaps that is
applicable to both self-intersecting, as well as open or closed
curves. Finally, we describe a pressure-sensitive curve
fitting method capable of suppressing the exploratory pen
strokes and stroke artifacts on the final curve fits. Our tests
have shown the validity of the proposed approach on a
variety of design sketches. Currently, our approach aims to
isolate and beautify the individual stroke clusters, while
remaining oblivious to higher level geometric relationships
that may exist among these clusters. Our future goals
include a more comprehensive analysis of these clusters
that will leverage a richer set of modeling operations such
as automated trimming, constraint identification, curve
blending, and curve modification.
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