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a b s t r a c t

We present a new point set surfacing method based on a data-driven mapping between the parametric
and geometric spaces. Our approach takes as input an unstructured and possibly noisy point set
representing a two-manifold in R3. To facilitate parameterization, the set is first embedded in R2

using neighborhood-preserving locally linear embedding. A learning algorithm is then trained to learn
a mapping between the embedded two-dimensional (2D) coordinates and the corresponding three-
dimensional (3D) space coordinates. The trained learner is then used to generate a tessellation spanning
the parametric space, thereby producing a surface in the geometric space. This approach enables the
surfacing of noisy and non-uniformly distributed point sets. We discuss the advantages of the proposed
method in relation to existing methods, and show its utility on a number of test models, as well as its
applications to modeling in virtual reality environments.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we present a new surface design method that
can take as input three-dimensional (3D) point sets, and can
generate free-form open surfaces through a neural network-based
regression algorithm. In this work, point sets of interest can be
sparse, unstructured, and unevenly distributed, and devoid of
normal vector information. Such point sets frequently arise with
the use of new-generation input devices such as 3D optical or
magnetic trackers in virtual reality (VR) environments (Fig. 1),
where the points are sampled from trackers attached to the users’
hands or any part of their bodies. Such point sets are considerably
different in nature than the widely studied class of range data,
where dense point sets are sampled directly from the surface they
represent. In surface design from point tracking, however, one
rarely obtains a full and dense coverage of the intended surface.
Moreover, point sampling may exhibit significant non-uniformity
based on the users’ motion speed and their focus on particular
regions of the design. The long-term goal of the proposed work
is thus to provide industrial surface design algorithms that can
operate on tracking data to produce surfaces with controllable
aesthetic qualities and associated mechanisms enabling further
detailed refinement on the initial data.

As one step toward this goal, we present a neural network-
based surface regression method that takes as input open or
closed point sets in R3, and generates free-form surfaces through
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a parametric embedding and tessellation in R2. The parametric
embedding is achieved through a local neighborhood-preserving
method. Once a parameterization of the input point set is
computed, amapping between the parametric coordinates of input
points in R2 and their corresponding 3D design space coordinates
is trained on a multilayer, feed-forward, back-propagation neural
network. A tessellation created in the parametric domain is then
fed to the trained network, which results in the synthesis of
a two-manifold surface in the design space. A key advance in
the proposed work is that the surface complexity is dictated by
the network topology that iteratively minimizes the underfit and
overfit to the available data. We focus on the creation of surface
patches that capture the underlying geometry intended by the
designer in such cases, yet without compromising the surface
quality. This approach is in contrast to methods that require
the designer to study the underlying point set to decide the
degree or functional form of the fitted surfaces. We demonstrate
that the proposed approach can be used for creating free-form
surfaces from arbitrary point sets, as well as from point sets
arising from tracking data. We also present a surface stitching
method to enable the creation of watertight and possibly non-
manifold shapes in the VR environment, where our patch-based
surface creation technique is utilized. We also demonstrate
our method’s applicability to hole filling on polygonal surfaces.
Specifically, our contribution lies in a flexible neural network-
based surface creation method from unorganized point sets. This
approach utilizes a nonlinear parametric embedding [1] that
enables our algorithm to learn a generative mapping from the
parametric space to the geometric space. Moreover, the proposed
stitching algorithmenables the different surfaces created using our
approach to be unified into watertight models.
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Fig. 1. Applications of our surfacing method. (a–b) Patch-based point set surface regression. (c–d) Hole filling.
2. Related work

In this section, we review the previouswork in surface creation,
fitting, and approximation of point sets based on the surface
representations used, parametric, mesh based and implicit; this is
followed by a review of the use of neural networks in this field.

Parametric surfaces: Parametric surfaces are one of the most
widely used representations as they enable compact descrip-
tion, and straightforward tessellation with arbitrary resolutions.
Gregorski et al. [2] introduced a B-spline surface reconstruction
method for point sets. Their approach utilizes a quad-tree-like data
structure to decompose the point set into multiple smaller point
sets. Least-squares quadratic fitting of each subpoint set is then
followed by the degree elevation to B-spline surfaces and blend-
ing. Bae [3], focusing primarily on laser-range scanned data, in-
troduced orthogonal coordinate transformations for non-uniform
rational basis spline (NURBS) surface fitting. The point set is first
transformed into an orthogonal coordinate system, followed by B-
spline fitting which is finally converted to NURBS surfaces. Adap-
tive fitting techniques introduced by Pottmann et al. [4,5] utilize an
active contour model which gradually approximates the targeted
model shape. This iterative approximation minimizes a quadratic
functional composed of an internal surface energy for smoothness
and an approximation error for fitting. Lin [6]introduced an itera-
tive NURBS curve and surface fitting methodology to a given point
set which is able to interpolate the point set. The major restriction
of their approach is that the point set has to be preordered. Follow-
ing a similar approach, boundary-condition-satisfying NURBS sur-
face fitting is also achieved [7]. The neural network in our method
is similar to parametric surface definitions in the sense that it en-
ables arbitrary-resolution tessellation straightforwardly and has a
compact definition. However, the proposed method differs from
parametric fitting in that the functional form of the surface is dic-
tated by the optimized network topology rather than requiring the
user to decide the parameters of the fit. As shown in the follow-
ing examples, the proposedmethod can be readily modified to fit a
prescribed functional form such as a parametric surface of a given
order, when desired.

Mesh-based surfaces: Mesh-based or polygonal surfaces enable
a straightforward encoding and rendition of surfaces. In particular,
they have been used extensively for surfacing point sets arising
from range scanners. In an early work, Hoppe et al. [8] used local
linear approximations of the point set to create a mesh-based
surface that approximates the point set. The first provably correct
mesh-based surface fitting algorithm is presented by Amenta
et al. [9,10]. Given a sufficiently dense point sampling from the
original surface, the approach guarantees the resulting surface to
be topologically correct while interpolating the input samples.
Gopi et al. [11] introduced a sampling criterion such that the fitted
surface is guaranteed to be topologically correct and also provided
algorithms that create mesh-based representations of such point
sets [12]. Based onDelaunay tetrahedralization of a given point set,
Attene and Spagnuolo [13] introduced a method for closed genus-
n triangulation fitting provided that the points are sampled from
a real object. In 2005, Kuo and Yau [14] approached the surface
fitting problem with a region-growing algorithm that gradually
adds new triangles to an initial triangulation starting from a seed
region of the point set. Dey and Goswami [15] presented a mesh-
based surface fitting method applicable to noisy point sets as long
as the noise level is within a specified threshold. Many mesh-
based surface fitting algorithms typically require a smoothness or
fairness criterion to beminimized,whichmay require considerable
post-processing after the initial surface fit [16].

Implicit surfaces: Implicit representations enable compact
mathematical descriptions and rapid set operations. However, the
tessellation and rendering of such representations is a significant
obstacle, requiring specialized algorithms for visualization. Juttler
and Felis [17]introduced an approach which results in implicit
least-squares reconstruction of spline surfaces tailored toward re-
verse engineering. A widely used family of implicit surfaces is that
of radial basis functions (RBFs). Kojekine et al. [18] used an octree
structure to reduce the computational time associated with RBF
spline-based volume reconstruction. Ohtake et al. [19] used im-
plicit surfaces as a way to facilitate intersection checks on mesh-
based geometries. They also employed a similar approach together
with compactly supported RBFs for range scanner point cloud sur-
face fitting. Wu et al. [20] introduced a combined approach in
which they use multiple RBFs, where individual RBFs construct
seed regions that are coalesced into larger regions through a parti-
tion of unity functional. A key drawback of the implicit approaches
is the need for specialized visualization mechanisms. Nonetheless,
the proposed approach is conceptually similar to RBFs in the way
it takes a purely data-driven approach to surface generation. The
main advantage of the proposed work is in its ability to generate
an arbitrary tessellation directly within the parametric space. This
allows an explicit control of the mesh topology and density, and
lends itself to a straightforward geometry creation and visualiza-
tion in the form of a polygonal model.

Use of neural networks: Barhak and Fischer [21]utilized neural
network self-organizing maps for two-dimensional (2D) grid
parameterization and surface reconstruction from 3D points
sets. The result of the neural network is used to create a 3D
surface iteratively with the help of a gradient descent algorithm.
Similarly, Galvez et al. [22] and He et al. [23] utilized neural
networks for parameterization and point ordering, rather then
surface creation. Khan et al. [24] introduced an approach for
constructing surfaces from boundary curves that are required to be
planar. Their approach addresses the boundary-to-surface learning
problem rather than the point-to-surface learning problem. Krause
et al. [25] implemented a neural gas neural network [26]
for approximating a point set with disconnected triangles.
These triangles do not necessarily span the whole surface, and
additional post-processing is required to ensure connectivity and
watertightness of the final surface. The method presented in this
paper differs from their approach in that the network output in
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Fig. 2. Neural network surface regression of unstructured point sets. First, a neighborhood-preserving embedding is used for parameterization, which is followed by neural
network training. Then the final surface is synthesized by the trained network.
our work is the structured and a topologically valid manifold.
Additionally, rather than deforming the initial triangles to a
given point set similar to mesh-based approaches, the network
presented in this paper serves as a direct tessellation engine from
which a surface can be generated with an arbitrary resolution.
Other relatedworks [21–24] introduced above do not utilize neural
networks for direct surface creation from arbitrary point sets aswe
do, but rather use the network for point ordering or for surfacing
planar boundary curves.

3. Overview

In this paper, we present a data-driven, learning-based surface
creation method for unstructured point sets. Unstructured point
sets of interest may be sparse, unevenly distributed, and noisy.
Our approach consists of four main steps: embedding of the point
set in R2, training of the learner, creation of the tessellation, and
generation of the surface in three dimensions (Fig. 2). Embedding
involves the creation of a unique 2D parameterization of the given
point set. Training is a learning of the one-to-onemapping between
the parametric coordinates and the 3D coordinates. A tessellation
is then created in the parametric space that spans the embedded
points. After the mapping is learned, it is used for synthesis in
which a fully connected two-manifold surface is created in three
dimensions from the tessellation in the parametric space.

4. Parameterization

Our parameterization approach is invariant to translations and
rotations, and can be used for surfaces that fold onto themselves
without creating self-intersections. This capability is achieved
using a local neighborhood-preserving nonlinear transformation
from the 3D space to the 2D parametric space. The resulting
global nonlinear transformation is the outcome of locally linear
transformations. Therefore, the embedding of the 3D coordinates
into the 2D parametric space boils down to the solution to a
sparse linear system as shown by Roweis and Saul [1]. In the
following paragraphs, we explain the parameterization tailored to
our purposes, for unstructured point set parameterization, and for
incomplete mesh parameterization.

4.1. Unstructured point set parameterization

For parameterizing unstructured point sets, the algorithm relies
on the local neighborhood information. Specifically, the following
procedure makes an implicit assumption; every point in the point
Fig. 3. Locally linear embedding for unstructured point set parameterization.

set can be reconstructed by a linear combination of its nearest
neighbors.

1. A neighborhoodNi for a fixed number of neighbors is calculated
for every D⃗i inR3 based on the Euclidian distances. D⃗i represents
the position vector of point i (Fig. 3).

2. A sparse neighborhood weight matrix W is computed by
minimizing Eq. (1), subject to two constraints: rows of (W ) sum
to 1, and Wij corresponding to D⃗j that is not in Ni is equal to
zero.

θ(W ) =


i

D⃗i −


j

WijD⃗j


2

. (1)

3. Using W calculated in step 2, minimizing Eq. (2) results in the
2D parametric embedding P⃗i of the point D⃗i for all points in the
original 3D space.

φ(W ) =


i

P⃗i −
j

WijP⃗j


2

. (2)

The above-described sequential minimization of two different
cost functions is reduced to a single eigenanalysis computation, as
described in the following paragraphs (see Fig. 4).

4.2. Incomplete mesh parameterization

We utilize incomplete mesh parameterization for constructing
hole-filling learners that can fill in the missing parts of a given
mesh by using themesh vertices that surrounds the corresponding
gap. Although the surrounding points can be simply cast as an
unstructured point set, our approach enables the existing edge
information to construct the desired manifold that the mesh
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Fig. 4. Locally linear embedding for mesh parameterization.

contains. To this end, instead of using a fixed number of nearest
neighbors, we use the one-ring neighbors for every vertex while
forming the weight matrix,W , in Eq. (1).

4.3. Deterministic solution of the embedding problem

Theminimization of Eq. (2) with fixed weights results in the 2D
embedding, P⃗i. This optimization has to be constrained in order to
attain a unique solution. The first constraint involves preventing
rigid-body translations by anchoring the centroid of the point set
at the origin:

i

P⃗i = 0⃗. (3)

Also, to avoid degenerate solutions [27], the embedding vectors are
constrained to have unit covariance:

1
n


i

P⃗i ⊗ P⃗i = I2, (4)

where⊗ is the Kronecker product, I2 is the 2 × 2 identity matrix,
and n is the number of points.

Under these constraints, the error function to be minimized in
Eq. (2) can be rewritten as

φ(W ) =

ij

Mij(P⃗i · P⃗j), (5)

whereM is a symmetric matrix, defined as

M = (In −W )T (In −W ), (6)

where In is the n × n identity matrix. The optimum solution to
Eq. (5) is found by the two eigenvectors of Eq. (6) that correspond
to the second and third smallest eigenvalues of M [27], since the
first eigenvector is the free–free mode of the matrix M which has
equal values in all degrees of freedom. That is, for every point, the
parameter space coordinates are

uPi=2 ξi (7)
vPi=3 ξi,

where kξ is the kth eigenvector of M .
With this calculation, the two minimization problems associ-

atedwith Eqs. (1) and (2) are avoided. The calculation ofM from the
weightmatrixW is straightforward. Note thatM is a sparsematrix,
as the number of points in the point set is typically much greater
than the number of nearest neighbors. Moreover, we need to cal-
culate only the smallest three eigenvectors of M , which requires
minimal computational effort. Azariadis [28]also introduced a pa-
rameterization suitable for patch by patch surface fitting. Such a
method requires an iterative fitting of the dynamic parameteriza-
tion, whereaswe accomplish the parameterizationwith a one-step
eigenanalysis, as described. Moreover, our parameterization does
not require the predetermination of the boundary curves, in con-
trast to [28].

To demonstrate our parameterization scheme, an open cylinder
is utilized. Note that these types of point sets are not correctly
embedded using global linear techniques such as principal
component analysis or its variants. Fig. 5 shows the embedding
results on this cylinder. The sampling in the original space becomes
increasingly sparse to the point that the underlying geometry
is no longer discernible (Fig. 5(d)). As shown, the parametric
embedding faithfully captures the intended geometry in the
embedded space when the sampling rate is sufficiently high.
This capability diminishes with increasing sparsity. However, with
increasing sparsity, the underlying surface concurrently becomes
less discernible to the human eye as well. One downside of this
approach, however, is that, if the point set represents a surface
that intersects itself, this approach will fail to compute a correct
parameterization of the surface. To overcome this challenge,
segmentation approaches might be utilized [29].

5. Learning-based surface regression

In this section, we present our learning-based surface regres-
sionmethod for surface creation frompoint sets, and hole filling for
incomplete meshes. A learner in our framework (Fig. 2) represents
a function that can continuously map an R2 space to an R3 space.
This learner can then be trained using the one-to-one relationship
between the parametric coordinates and the 3D coordinates of the
original point set. We utilize feed-forward multilayer neural net-
works as learners in our approach because of a number of desirable
properties they have.
Fig. 5. Parameterization of an open surface with uniformly sampled random points. Open cylinder data points (a–d) and corresponding parameterization (e–h) for 1400,
700, 350, and 70 points respectively.
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Fig. 6. The multilayer feed-forward network.

1. The topology of a neural network, and thus the degrees of
freedom it imposes on the created surface, is not fixed, as
opposed to a predefined functional form such as a polynomial
function.

2. Trained neural networks are good interpolaters [30], which
is a desired property, since the tessellation in the embedded
space corresponds to vertices to be generated from the
parameterizations of the point set. In this context, interpolation
refers to the regression function within the inner range of the
data points.

3. The functional form of each neuron in a given neural network
can be defined to tailor desired properties (such as continuity
and differentiability) in the resulting surface.

Neural networks can be viewed as functions that map an input
space to an output space (Fig. 6). This general idea can be exploited
in a number of ways. For instance, if we use a single layer–single
neuron in the neural network topology given in Fig. 6, with a linear
activation function, a mapping from the embedded space to the 3D
space will result in a planar surface (Fig. 7). Similarly, the network
can be designed to regress any input space to any output space
using a prescribed polynomial or parametric form. However, we
focus on the general form of feed-forward neural networks with
adaptive topology, as shown in Fig. 6, with nonlinear activation
functions. The topology of the network has a significant impact on
the final surface created, since it implicitly dictates the degrees of
freedom of the surface. Our training scheme adaptively selects the
desired topology.

5.1. The learning problem

The general form of the feed-forward neural network learner
weutilize is shown in Fig. 6. Here, P⃗ is the 2Dparametric coordinate
of the 3D input point D⃗ as computedusing the techniques described
in the previous section. Hence, the surface constructing problem
boils down to a learning problem from R2 to R3.

The functional formof a networkwith a single hidden layerwith
n neurons, that maps P⃗ to D⃗, is

{D}k = σ


n

j=1

wkjσ


2

i=1

wji{P}i + wj0


+ wk0


, (8)

where σ is the activation function. The activation function plays an
important role in the characteristics of the created surface and the
fitting error. Since it maps the input of a each neuron to its output,
the propagation of the information in a feed-forward fashion over
these neurons create the surface in 3D coordinates.

Fig. 7 shows the effect of varying activation functions on the
resulting surfaces. In all examples, a two-hidden-layer neural
network is used, with four neurons in each layer. The following
activation functions are used:

Log− Sig : σ(a) =
1

1+ exp(−a)
, (9)

Tan− Sig : σ(a) =
2

1+ exp(−a)
− 1, (10)

Rad− Bas : σ(a) = exp(−a2), (11)

Tri− Bas : σ(a) = 1− |a|, if − 1 ≤ n ≤ 1
0, otherwise. (12)

In Fig. 7, it is seen that the sigmoid activation function results
in zero mean-square error, and captures the ground truth free-
form surface. Moreover, combining Eq. (9) with Eq. (8), the surface
Fig. 7. Activation functions, and their effect on the resulting surface. NMSE is the normalized mean-square error with respect to the bounding box diagonal of the point set.
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Fig. 8. Example sampling prior to learning.

can be shown to be infinitely differentiable. Therefore, a sigmoidal
activation function enables the creation of surface patches that are
C∞ continuous.

5.2. Training

In our approach, the numbers of inputs and outputs are fixed
at 2 and 3, respectively, as dictated by the learning problem.
The number of hidden layers and the number of neurons in each
layer, however, can be controlled freely. Increasing the number of
neurons or the number of hidden layers will result in increased
degrees of freedom and nonlinearity in the surface. This may
cause an undesirable overfit to the data, if no other measures
are taken [30]. In contrast, an insufficient number of neurons
and/or layers will produce a stiff map, which may result in
underfitting [30]. Therefore, the number of neurons and layers
must be chosen judiciously. To this end, we employ an iterative
procedure for selecting these parameters, as follows.

1. Decompose the available input to training (85%), validation
(10%), and test (5%) sets.

2. Initialize a network with a single hidden layer (nL = 1) and a
single neuron (nN = 1) in its hidden layers.
3. Train the network until the validation set performance (PV )
converges, with back-propagation [31].

4. Record the test set performance (PT ) for the current network
configuration.

5. Increase the number of hidden neurons by 1 (nN ← nN + 1).
Iterate steps 3–5 until PT converges.

6. Record nN and PT for the current nL.
7. If nL < nLmax, increase the number of hidden layers by 1 (nL ←

nL + 1). Iterate steps 3–7 until nL = nLmax.
8. Report the network configuration (nL and nN ) with the best

performance PT on the test set.

Previous works have shown that an iterative search for the
network architecture prevents overfitting and underfitting [30,32].
In our case, overfittingwill correspond to poor surface quality with
relatively small fitting error, and underfitting will correspond to a
relatively flat surface with a high fitting error. Our primary focus
is to extract the details of the underlying true manifold as much as
possible, yet without compromising the surface quality.

For the above training scheme,weneed to sample the validation
data set as well as the training data set from the original input
points. To ensure an unbiased coverage of the input space, we
divide the parametric space into a number of subregions and
sample points randomly from a uniform distribution from each
subregion. An example is shown in Fig. 8.

5.3. Tessellation grid generation

Once the embedding of the point set is calculated, these points
in two dimensions are used to generate a tessellation grid (Fig. 9).
We use two different approaches, each serving a different need. For
point sets that span simple regions in the parametric space (not
necessarily in the 3D space), we generate a four-sided quadratic
grid represented as a bilinear Coons patch in the parametric
coordinates. First, far most points (with respect to the origin) in
the four corners of the two largest principle component analysis
(PCA) directions are determined. Then, points that connect these
four anchors are calculated such that the resulting closed polyline
encloses all of the points but with the smallest area. A cubic Beziér
curves is fit to each of these point sets. The curves are then used to
Fig. 9. Tessellation grid generation. Regular quad grid generation (top row), Triangular free-form grid generation (bottom row).
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generate a quadrilateral tessellation grid using the bilinear Coons
patch governed by Eq. (13).

Q (u′, v′) = B(u′, 0)(1− v′)+ B(u′, 1)v′

+ B(v′, 0)(1− u′)+ B(v′, 1)u′

− B(0, 0)(1− u′)(1− v′)− B(0, 1)(1− u′)v′

− B(1, 0)u′(1− v′)− B(1, 1)u′v′. (13)

In Eq. (13), the B are the boundary curves of the patch, Q .
The second approach, targeting relatively more complex

outer boundary point sets in the parametric space, generates a
triangulation. First, the outer loop of the point set is determined,
and uniformly resampled. This outer loop is embedded into
a uniform grid, and the grid points outside the loop are
discarded. The remaining points are triangulated with Delaunay
triangulation, resulting in the tessellation grid.

5.4. Surface synthesis

The vertices of the generated tessellation grid are then fed to
the trained network, producing the surface in R3, while sharing
the tessellation topology established in the parametric space. An
example surface tessellation is shown in Fig. 10.

6. Implementation

We have deployed the proposed method for surface creation in
a virtual reality (VR) design environment for rapid generation of
conceptual shapes, as well as in a sketch-based environment for
hole filling.

In the VR environment shown in Fig. 11, the users interact with
the system through a data glove and a magnetic tracker worn
on the sketching hand, and a 3D mouse operated by the other
hand. A 3D stereo vision enabled head set allows users to situate
themselves in the VR environment. The magnetic tracker enables
six degrees of freedom absolute motion tracking of the hand,
whose 14 joint angles are decoded by the data glove. Tracking
the user’s hand enables the direct dictation of the point set that,
in turn, represents the desired surface geometry. The resulting
point sets are used as the input to our regression method, which
leads to the final free-form surface geometry. A virtual hand in the
VR environment simulates the sketching hand in real time. The
other hand, operating the 3D mouse, helps the user fly in the VR
environment via panning, rolling, and spinning.

In the sketch-based environment, users interactively draw a
region of interest around a hole on ameshmodel by lasso gestures,
and the hole is filled by generating new vertices and the associated
topology. Once the region of interest is selected and mapped
into the parametric space, the users are able to modify the new
tessellation grid uniformly generated inside the hole, in order to
establish any desired patterns.

6.1. Surface stitching

To create watertight models, we use a stitching method based
on Laplacian reconstruction [33]. Our formulation is applicable to
arbitrarymeshes and non-manifold stitching. For instance, an edge
shared by three or more surface patches can be stitched together.
An edge in this section (Fig. 12) refers to a connected open or
closed polyline formed by the edges of simplicies on a meshed
surface. A stitching edge does not necessarily lie on the boundary;
i.e., stitching edges at arbitrary locations of the mesh is possible.
For each surface, s, associated with the stitching operation, the
differential coordinates are calculated as follows:

δ⃗s = [L]sv⃗s, (14)
Fig. 10. Tessellation of a seat back surface.

Fig. 11. User interaction.

Fig. 12. (a) Stitching edges demarcated by the user. (b) Necessary vertex additions
for watertightness. (c) Stitched model.

where v⃗s is the vertex position vector and [L]s is the discrete
Laplacian operator, where row i hasweightswij with


j wij = −1,

for one-ring neighbors j and wii = 1. Calculating the weights
with the cotangent scheme [33] results in the most accurate
representation of the differential coordinates.

Constraining one vertex, and reconstructing v⃗s from the
knowledge of the differential coordinates (deltas) is a linear
problem of the form [A]x⃗ = b⃗, and will yield the exact vertex
positions v⃗s. Since the Laplacian operator is rank deficient (rigid-
body translations not constrained), constraining a single vertex
is necessary, and is sufficient for a unique solution. Therefore,
imposing more than one constraint will result in a least-squares
problem. We exploit this nature of Laplacian reconstruction.
Instead of fixing one point for each free surface in the space, we
add as many constraint equations as there are vertex pairs in
the stitching edges and solve the system of equations for all the
surfaces involved in the stitching operation at once. The constraint
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Fig. 13. Comparison of surface fittingmethods. Each row is the result of reconstruction of the corresponding point set with the given method. Per.: Random uniform perturbation
error percentage in the point set.MSE: Mean-square error of reconstruction. Time: Total processing time of each surface in seconds.
Fig. 14. Automobile side-view mirror back-surface reconstruction. (a) Actual side-view mirror model. (b) Sampled points with 1% uniform error. (c) Neural network
regression. (d) Low-density RBF surface fitting. (e) High-density RBF surface fitting. (f) Direct Delaunay triangulation.
equations are in the form

c⃗a − c⃗b = 0, (15)
where c⃗s are the positions of the vertices lying on the correspond-
ing stitching edge. Necessary vertex additions (Fig. 12) prior to
solution are made to ensure one-to-one correspondence in the
stitching edges.
7. Results

7.1. Comparisonwith implicit function fitting and direct triangulation

Noise-added point sets sampled from an underlying surface,
shown in Fig. 13, are used for a comparison study between our
surface regression method, radial basis function (RBF) surface
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Fig. 15. Conceptual design of a car seat. (a) Complete point set created by the user in a virtual reality environment where the position and orientation of the user’s hand
is tracked. (b) Neural network regressed surfaces. (c) Point sets for the front and left sides of the back rest and the seat section. (d) Corresponding parameterizations.
(e) Corresponding regressions. (f) Regressed front and back surfaces. (g) Surfaces after stitching. The point set size varies between 200 and 500.
fitting [34], and direct Delaunay triangulation [35] of the original
point set.

Radial basis functions can be fit to arbitrary data, ranging from
exact interpolation at the given points to non-interpolating but
smooth fittings for high-density point sets [34,36]. It can be seen
that the low-density RBF surface (Fig. 13) has a similar mean-
square error as the surface fit created by ourmethod, but the patch
created with our method is smoother (Fig. 13). To decrease the
fitting error associatedwith RBF surface fit, its function density can
be increased [34]. However, when the density of the RBF surface
fitting function is increased, its generalization diminishes [34,36],
and the surface quality is poorer, as observed in Fig. 13.

Another widely used point set surfacing method is the direct
triangulation of points in the parametric domain [35]. For direct
triangulation, we triangulate the point set in the parametric space
created with our open-manifold parameterization method, and
then projected the topology back to 3D space (Fig. 13). As expected,
the mean-square error is zero, as the triangulation interpolates
the original points. However, the surface quality is significantly
compromised.

In Fig. 14, a point set sampled from the back surface of an
automobile side-view mirror with 1% uniform error is surfaced
with our method, as well as with the above-described methods.

7.2. Conceptual design in a virtual reality environment

In this section, we demonstrate the capabilities of our surfacing
technique using three examples created in a VR environment. A
car seat cushioning design, an abstract shape, and an asymmetric
mouse are designed within this environment.
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Fig. 16. A mouse designed in the VR environment with our surface regression technique. (a) Point sets. (b) Neural network regression surfaces. (c–d) Finalized watertight
model. The point set size varies between 300 and 600.
Table 1
Network degrees of freedom.

Surface Layers Neurons

Front of the back rest 2 3
Seat section 2 2
Side of the seat section 3 3
Side of the back rest 3 3

Table 2
Time for parametric embedding and topology optimization (on an Intel-i7 1.6 GHz,
4 GB machine).

Point set size Parametric embedding (s) Topology opt. and learning (s)

100 0.2 0.1
1 000 0.8 0.9

10000 10 10

Fig. 15(a) shows the complete point cloud drawn by the
designer representing themultiple surfaces of a car seat. Individual
surfaces are demarcated by different colors, and are separated by
the user with a keypress during construction. Fig. 15(c) shows the
four point sets forming the front and left sides of the back rest
and the seat sections of the seat. Fig. 15(d) is the corresponding
2D locally linear embedding of these point sets. Fig. 15(e) shows
the resulting constructed surfaces. Table 1 shows the number
of network layers and neurons as computed from the iterative
network topology optimization.

Fig. 15(f) shows the neural network regression of the front
and back surfaces of the seat. Note that a neural network is
trained and regressed for each individual point set. Table 2
shows the total network training time for different point sets.
In all cases, once the network is trained, the synthesis is
near instantaneous. The two main computationally expensive
steps in our approach are the parametric embedding and the
network topology optimization/training. Parametric embedding
is bounded by the eigenanalysis involved, which is O(n2) in
our implementation, where n is the number of points in the
point cloud. Neural network topology optimization and training
is bounded with O(mn2), where m is the number of topology
iterations and n is the number of points in the point cloud. Since
n≫ m, the bound to our algorithm is effectively O(n2).

Since point sets are treated independently, the synthesized
surface patches do not form shared boundaries. Currently, we
stitch these surfaces, as explained previously.

Figs. 16 and 17 exemplifies two product shapes designed
with our system: a mouse and an abstract shape. The mouse is
an asymmetric model, with five surfaces defining its ergonomic
shape. The spaceship is an axis-symmetric model, with five
symmetric and three mirror surfaces. The sparsity of various
point sets in Figs. 16–17(a) is handled by our algorithm, and the
regression surfaces are created as shown in Figs. 16–17(b). Final
stitched surfaces that result in thewatertight geometric shapes are
shown in Figs. 16–17(c–d).

7.3. Applications to hole filling

In Figs. 18 and 19, we demonstrate the mesh hole-filling
capabilities of our method. Once the user draws the region
of interest around the hole, these vertices are mapped into
the parametric space, as described previously, by utilizing the
connectivity of the mesh. The holes are then filled, either with
random points exhibiting a desired density (Fig. 18), or the user
can impose tailored patterns in on the newly created vertices
in the parametric domain. For instance, in Fig. 19, the user has
sampled points according to the surrounding pattern to create a
triangulation commensurate with the surrounding mesh.

Once the new vertices are generated inside the holes, the hole
boundary and these new vertices are triangulated by Delaunay
triangulation in the parametric domain. A network, trained only
on the input–output pairs of the surrounding vertices, is then used
to tessellate the newly created vertices. The additional topology
created in the parametric domain is preserved in 3D.

8. Discussions and conclusion

We have presented a neural network regression method for
free-form surface creation on point sets. The point sets of interest
are primarily sparse, unstructured, unevenly distributed and can
bepartially detailed. Our surface regression procedure is composed
of four steps: parameterization, neural network training, grid
generation, and synthesis. We also investigate a surface stitching
method to leverage shape design using our surface regression
technique.

On point set parameterization. We use locally linear embedding
for open two-manifold parameterization. In Fig. 5, it can be ob-
served that the parameterization is accurate for the point sets in
which the underlying geometry is discernable to the human eye,
whereas the parameterization deteriorates as the sampling rate
becomes prohibitively low. Point sets that are unevenly distributed
and/or partially detailed in nature (Figs. 15–17) are also success-
fully parameterized. These parameterizations are independent of
the global position and orientation of the point set, and are also
able to process surfaces that fold onto themselves.



654 M.E. Yumer, L.B. Kara / Computer-Aided Design 44 (2012) 644–656
Fig. 17. An abstract shape designed in the VR environment with our surface regression technique. (a) Point sets. (b) Neural network regression surfaces. (c–d) Finalized
watertight model. The point set size varies between 400 and 1500.
Fig. 18. Cortex mesh hole filling with our algorithm.
On neural network training. Once the point set is parameterized,
a neural network that takes the parameterization and 3D space
coordinates as input–output pairs is trained for surface regression.
This training process is controlled by continuously monitoring
the validation and test sets over different network structures in
order to concurrently minimize both underfitting and overfitting.
Underfitting results in a loss of information in which the regressed
surface will exhibit fewer details compared to the intended one.
Overfitting, on the other hand, will result in a network structure
that has excess degrees of freedom, which typically results in
undulations in the synthesized surfaces. Our approach aims to
curtail such phenomena through an integrated network topology
optimization and learning algorithm.

On grid generation and synthesis. The trained network forms a
bridge between the parameterization domain and the 3D space,
thereby effectively serving as a tessellation mechanism. Through
an automatic or guided grid generation process in the parametric
space, a surface tessellation in three dimensions can be obtained
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Fig. 19. Fan disk mesh hole filling with our algorithm.
with a controllable resolution. One such tessellation is shown in
Fig. 10. Tessellated free-form, free-boundary surface patches can
be connected with our stitching mechanism to create watertight
models in our system.

On surface stitching. We implemented our surface creation
method in a VR environment inwhich the user is enabled to sketch
throughhand gestures in three dimensions. For creatingwatertight
models, a surface stitching algorithm is developed, leveraging a
non-interactive scheme. Our surface stitchingmethod is capable of
connecting an arbitrary number of surfaces intomanifold and non-
manifold mesh representations with G0 continuity at the stitching
edges.

Users who interacted with our system report highly expected
results from the surface patch creation and surface stitching.
We have exploited the interpolation strength intrinsic to neural
networks, and have shown successful hole-filling operations using
our surface regression method.
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