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a b s t r a c t

We present a new 3D surface modeling approach that enables curve-based creation and modification of

smooth surfaces by sketching. The key feature of the proposed methods is a two-way communication

between the user-designed curve networks and the generated surfaces. A user-drawn curve network

serves as a control cage, from which a subdivision surface is generated. The subdivision surface is

updated to match the curve network while minimizing the curvature variation throughout the surface.

Surface fairness is controlled independently to modify the curve network into suitable configurations

that guarantee a smooth underlying surface. This approach enables a concurrent modeling of the curve

network and the underlying surface, thus eliminating the need for a laborious, iterative adjustment of

the curve network for smooth surface creation. We demonstrate our approach with example models,

and evaluate it with a user study.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In product design, a considerable effort is dedicated to explor-
ing new and aesthetic shape ideas. This exploration commonly
involves the creation and evaluation of a variety of shapes and
configurations. This process typically starts with partially or fully
prescribed constraints on shapes, proportions and characteristic
features as indicated by the product type, the brand identity and
similar design requirements. Under these circumstances, the key
challenge is to design patches of smooth surfaces which, when
combined, produce the characteristic feature curves (Fig. 1). To
this end, the designer may try various surface configurations to
form the characteristic features as sharp intersections (creases) or
smooth transitions (bevels) of adjacent patches. The main diffi-
culty in this process is that the intended feature curves are
usually obtained indirectly through the intersections of different
surface patches, rather than being directly specified by the
designer.

An alternative to this involves the creation of a curve network,
from which surfaces can be automatically generated. However,
this approach relies heavily on the creation of a high quality curve
network amenable to smooth surfacing. As such, a stringent set of
requirements such as G2 continuity and patch regularity, must be
established on the curve network prior to surfacing [1]. It is
ll rights reserved.
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challenging for the designer to meet these requirements directly
on a curve network, without having access to the resulting
surfaces. As a result, the designer is required to iteratively modify
the constituent curves, reconstruct or modify the surfaces, and
visually observe the results to inform the next phase of curve
edits and alterations (Fig. 2). In addition, current approaches
typically enable local surface manipulators that similarly involve
iterative modifications to achieve smooth surfaces with desired
overall shapes. This need for iterative user manipulation of curves
and surfaces remains an obstacle to a fluid design process, where
a rapid creation of smooth surfaces defined by user-drawn curves
is paramount.

In this work, we address this issue with a new approach that
enables the design of smooth surfaces through malleable curve
networks. Our approach is based on the observation that mode-
lers are adept at creating the constructive curves and a suitable
network topology for free-form modeling [2–7]. However, it is
difficult for modelers to rapidly design curve geometries that
would lead to smooth transitions across different surface patches.
To overcome this challenge, we enable a two-way communication
between the curve network and the surfaces designed by the user.
The user begins by sketching a 3D curve network which dictates
the topology and the base shape of the surface. On this network,
the user may specify the curves that are required to remain fixed
(together with continuity constraints, if applicable), as well as
those that are free to deform. A surface geometry created on this
network is then globally faired using energy minimization, while
respecting the continuity constraints established on the curve
network. A key in this approach is the presence of both con-
strained and free curves in the network: The constrained curves
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Fig. 1. Characteristic feature curves and surfaces collectively form the final form of the product. The design of such curve/surface configurations is one of the major

challenges in product design.

Fig. 2. Our method based on a two-way communication between curves and surfaces enables a fluid design of smooth surfaces.
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help the key feature lines to be maintained throughout the design,
while the free curves serve as malleable handles that streamline
surface fairing.

This process leads to an improved curve network, consistent
with the new surface geometry (Fig. 2). Throughout the process,
the user may adjust the curves or the surfaces as desired, while
the system maintains the consistency between the two entities.
This approach allows the modeling process to be governed by
3D sketching, while freeing the user from an iterative curve
beautification process. Instead, smooth surfaces with user speci-
fied patch transitions can be quickly produced, which automati-
cally informs curve beautification. To achieve this goal, we
establish the following:
1.
 Sketch-based creation and modification of the network
topology.



crease curves crease curves

Fig. 3. Various results obtained by our approach. Note the feature crease curves and the transitions between smooth and discontinuous regions. The smooth regions far

from crease curves are designed and maintained using our approach.

Fig. 4. Current modeling software presents tools to locally modify surfaces

including (a) modifications using control points and (b) deformation lattices

(Rhinoceros 3D [5]). Recent advances in sketch-based methods utilize modifica-

tions to the curves using (c) pick/drag (Fibermesh [8]) and (d) modifier strokes

(SketchCAD [9]). However, surfaces are still manipulated indirectly through the

curves, preventing a direct control of surface fairness.
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2.
 User-controlled surface fairing of subdivision surfaces in the
presence of creases and geometric constraints.
3.
 Two-way curve/surface communication where curve con-
straints and surface smoothness can control surfaces and
curves, respectively.

Fig. 3 shows two example designs modeled by our approach.
2. Related work

Current commercial modeling packages provide the means for
designing curves and surfaces, and implement geometric opera-
tions with which a wide variety of shapes can be achieved [2–7].
Although effective for surface design, the manipulators for local
and volumetric editing require the user to achieve and preserve
smooth surfaces manually (Fig. 4a, b). A lack of direct control on
the fairness of the surface makes it challenging for the user to
establish the key feature curves, while producing smooth surfaces
from these curves (Fig. 1). As a result, much effort is spent on
surface manipulation to achieve fair surfaces that result in the
desired feature curves, rather than directly prescribing such
curves, from which suitable surfaces can be generated.
Recent studies [10,11] on sketch-based modeling have pro-
posed methods to create and modify smooth surfaces using
sketching. In free-form surface modeling, these systems seek a
fast transformation from 2D to 3D using a simple base surface
instantiation, followed by an iterative modification of the geo-
metry with pen strokes [8,12–15]. Alternatively, a number of
systems have been proposed that involve primitive sketching,
followed by gestural interactions that implement common CAD
operations [10]. A common feature in both approaches is that the
sketched strokes are used either to define an initial starting shape
such as a contour or silhouette, or to iteratively modify an
existing shape. While these approaches can produce smooth
surfaces, the created surfaces are similarly controlled through
the curves (Fig. 4c, d) rather than a direct shape control of the
surfaces. These approaches still require the user to iteratively
search for suitable curve configurations that lead to desirably
smooth surfaces.

Among the sketch-based blob creation and modification
methods that have been proposed recently [8,12,13,16,17], Fiber-
mesh by Nealen et al. [8] is closely related to our work. It
produces a curvature minimizing closed mesh that interpolates
user-drawn contour and feature curves. While our approach
shares a similar goal of producing energy minimizing surfaces
such as those in Fibermesh [18–20], it differs from these
approaches in a number of ways. First, the curvature variation
minimization approach in Fibermesh produces a single, unique
mesh surface from the set of input curves. The user modifies this
surface by modifying the curves. By contrast, our approach
permits greater latitude in surface modeling by allowing the user
to (1) construct a precise surface topology through a curve
network rather than through an iterative curve addition on a
base surface, (2) explore different surface geometries on the same
curve network through the use of free curves and independent
surface fairing. Moreover, during surface modifications, in con-
trast to Fibermesh’s pick/drag based interactions, we utilize
sketched strokes to directly define and modify the shapes of
curves. We also use a subdivision surface representation which allows
the control of the shape through a coarse control mesh but produces
high complexity sampling at low cost. Fibermesh, on the other hand,
uses a mesh representation which requires the coordinates of all
vertices to be calculated for each modification on the curves.

Works of Nasri et al. [21] and Bein et al. [22] also originate
from a similar motivation. Nasri et al. [21] uses polygonal
complexes to create models that have user-defined outer con-
tours, followed by subdivision for surfacing. However, the pro-
duced geometries are limited to flat inflated models. Bein et al.
[22] present sketch-based tools for creating subdivision surfaces
using operators such as extrusion, revolution, and lofting. The
shape is controlled through vertex/edge additions and vertex/face
dragging. Similar to other sketch-based tools, maintaining the
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smoothness of surfaces is required from the user through local
modifications. In this paper, we attempt to alleviate difficulties
related to low level iterative modifications.

Other previous works include methods for free-from surfacing
of curve networks. Levin [23] proposed a combined subdivision
scheme to interpolate networks of curves assuming that no more
than two curves intersect at one point. This constraint limits the
input curve networks to certain topologies that can be interpo-
lated. Schaefer et al. [24] proposed a modified subdivision scheme
for interpolating networks of polylines which converge to cubic
B-splines on the limit surface. Although capable of producing
interpolating, smooth and creased surfaces, the surface patching
is manually initiated by demarcating the loops, and the user has
limited control on the interior regions of the surfaces as the final
surfaces are dictated by surface energy minimization. In a similar
approach, Pusch and Samavati [25] describe a deformation
method that can potentially be used to design interpolating
smooth subdivision surfaces via curvature minimization. Apart
from subdivision-based methods, Das et al. [26] developed a free-
form surfacing method that works from 2D sketches of curve
network. The resulting surface mesh interpolates the estimated
3D curves at discrete locations, however, the produced surfaces
are coarse and typically do not form G2 continuous patch transi-
tions. By contrast, our approach seeks a more fluid design process
where the sketched curve networks and the attached surfaces
enable a rapid construction of surfaces via a two-way curve/
surface interaction, while enabling user-guidance in the final
shapes of the surfaces.

Kara and Shimada’s SketchCAD system [27] uses template
surfaces to project input strokes and instantiate 3D curves. These
curves define loops that lead to surfaces through fairing and
inflation operations. Each surface patch is created independently,
requiring the user to manually establish geometric continuities
higher than G0. By contrast, our approach takes a more user-
guided approach by allowing users to define the curve network
topology and control the shape of the surfaces through constitu-
ent curves. The geometric continuity across neighboring patches
is established automatically through the subdivision surface.
When desired, crease edges can be created, thereby allowing an
alteration of the otherwise smooth surfaces. Additionally, point
sampling on the resulting limit surfaces can be efficiently com-
puted at any resolution using parametric approximations of
subdivision surfaces [28].
3. Overview

Our system consists of two main components: (1) sketch-
based curve creation and modification and (2) surfacing, surface
optimization, and curve network relaxation. These two compo-
nents enable a curve-based design interaction and maintenance
of smooth surfaces in the presence of design features. Our main
contributions lie within the second component.

3.1. Sketch-based curve design

Sketch-based construction and modification of curves enable a
direct control of key shape features, and thereby the resulting
surfaces. This approach allows users to construct the core shape
of their designs, similar to the way modelers explore product
ideas with pencil and paper sketches [29]. This component
involves a set of existing curve creation and modification algo-
rithms such as symmetric epipolar sketching used in [30], and
sketching on template surfaces [27]. The details are presented in
Section 5.1. However, when desired, this module can also be
implemented using other sketch-based curve creation methods
such as [31], as long as a fully connected curve network can be
constructed and edited.

The user-drawn curves form a curve network which is
approximately interpolated by the resulting surfaces. The curves
must form a network consisting of a set of connected curve loops.
These loops form the malleable topology of the final surface
patches. The user has the freedom to arrange and alter the
topology as desired. The individual curves of this network serve
as handles to design shape features, by constraining the attached
surface. We provide different curve types, namely free, fixed, and
crease curves (in subsequent figures, they are demarcated in
black, green and blue, respectively). These curves constrain the
surface fairing process in the next step. Free curves establish the
initial starting surface geometry, while fixed and crease curves
serve as positional constraints that are preserved throughout
surface fairing. Crease curves enable G0 continuous sharp inter-
sections between surface patches, while fixed curves enable G2

continuity across surface patches.
3.2. Surfacing, surface optimization, and curve network relaxation

The second component enables an automatic patching of the
curve network, optimization of the resulting surface for an
approximate interpolation of the curve network, and surface
fairing. As mentioned previously, we use subdivision surfaces
due to their versatility including compact representation, fast
creation and rendering, smoothness of the limit surfaces, and
their ability to represent a wide variety of shapes. The curve
network drawn by the user initially serves as the coarsest level
control mesh of the subdivision surface. However, the limit
surface typically lies far away from the coarsest level control
mesh. We thus deform the initial control mesh using an iterative
scheme until the limit surface matches the curve network drawn
by the user. This process results in locally smooth limit surfaces
that closely approximate the curve network. However, resulting
geometries often exhibit large scale undulations and undesirable
surface artifacts, primarily due to the original curve network’s
inability to represent fair surfaces (Fig. 11). This phenomenon is
particularly prevalent along curve intersections and transitions,
where two or more interacting curves form acute configurations
inconducive to fair surfacing. To alleviate such high energy sur-
face regions, we employ a modified V-spring method [20],
designed to minimize the variation of surface curvature. Our
modified V-spring method enables the user to easily control and
manipulate the final surface geometry, while automating the
fairing process.

The surface fairing step may force the resulting surface to
depart from the original curve network. This indeed signals a
desirable improvement to the curve network. Specifically, we
allow the network to conform to the underlying surface, thereby
freeing the user from the laborious process of establishing a curve
network amenable to smooth surfacing. This process takes into
account the constraints prescribed on the curve network. Fixed
and crease curves apply positional constraints, and differ by the
geometric continuity they enforce. Free curves, on the other hand,
are subject to unconstrained modifications during the fairing
process. A key utility of the free curves is that they impact the
initial surface geometry created on the curve network, thus
affecting the initial conditions for the iterative fairing scheme.
This flexibility is particularly important, as the final faired
surfaces are dependent on the initial surface geometries. Users
can thus take advantage of this phenomenon to design a variety of
different surface models all sharing similar positional constraints
(i.e., fixed/crease curves), by simply manipulating the free curves.
Details of this process are presented in Section 4.3.
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4. Technical details

In this section, we describe the algorithms that are designed
for (1) surface fairing of subdivision surfaces with constraints and
(2) two-way interaction of the curve network and subdivision
surfaces. The input to these algorithms is a connected set of
curves that define a network topology. We first describe the
automatic instantiation of the subdivision control mesh on the
input curve networks.
Fig. 6. (a) The control points of a bicubic Coons patch computed from the curve

network. (b) An initial control mesh for subdivision is computed by sampling

points from the Coons patch. Note that the control mesh initially interpolates the

curve network.

Fig. 7. N-sided loops are patched with parametric surfaces and points are sampled

to form all-quad patterns as the control mesh of the subdivision surface.
4.1. Automatic surface initiation

We compute the individual surface patches from the curve
network similar to [32]. To facilitate an efficient search for
candidate loops, the curve connectivity stored in the joint data
structure is used to encode the curve network as an undirected
graph. A graph matching algorithm is then used to automatically
identify all candidate curve loops that may form a surface patch.
The curve loops that invalidate the 2-manifold structure are
iteratively eliminated until no such loops exist. The remaining
loops are then used to construct the surface patches which pave
the way for subdivision. When compared to methods such as [33],
our approach does not consider the geometric plausibility of the
resulting loops. In cases where only one of two topological
solutions is geometrically meaningful (i.e., no patches passing
through each other), our approach will arbitrarily pick one of the
solutions. However, with the types of fully connected curve
networks we consider and especially with increasing network
complexity, the probability of such cases is rather low. Instead,
our approach is geared toward computational simplicity where
loop finding is achieved at interactive speeds for all the models
shown in this paper.

In the graph representation, we encode both the curves, and
the joints formed by these curves as nodes. With this representa-
tion, the joints that are connected to one another through multi-
ple curves can be properly distinguished, which would not be
possible with conventional encoding schemes (e.g. where nodes
and edges denote joints and curves, respectively). An example is
shown in Fig. 5b where the joints and curve nodes are shown with
hollow and solid circles, respectively.

We consider loop finding as a subgraph isomorphism problem
where we identify the salient n-sided curve loops. We create
small graph representing an n-sided topological loop, which is
queried into the network graph. This query yields all candidate
loops including duplicates of the same loop due to the rotational
symmetry of curve loops. For instance, for the curve loop A–B–C–D,
loops B–C–D–A and D–C–B–A also appear as valid matches; we
remove such duplicate solutions.
Fig. 5. (a) The curve network converted into (b) a graph structure where hollow and

identified using graph matching. (c) The number of adjacent loops is used to elimin

references to color in this figure caption, the reader is referred to the web version of t
Frequently, there exists a number of curve loops that result in
non-manifold surfaces. Eliminating these loops requires an ana-
lysis of the possible edges where the 2-manifold structure is
violated. Our system identifies such edges by counting the
number of loops that share the same edge. An example is shown
in Fig. 5c. Starting from the loop that has the highest number of
non-manifold edges, our system iteratively filters out the initial
set of candidates until no such loops exist in the set.

The resulting n-sided curve loops are then converted into
subdivision surface patches. We begin by fitting bicubic Coons
patches [34] to four sided loops, and NURBS patches to general
n-sided [35] loops. As will be revealed in the next section, using
Coons patches is critical in that they provide initial surface
geometries that are close to potential stable points attained by
our smoothing scheme. The main reason is that Coons patches
minimize the twist vectors at the patch corners, which are
similarly minimized by our smoothing scheme.

After calculating the patches, we sample points on the para-
metric surface and initiate the control vertices for the coarsest level
subdivision patch (Fig. 6). The sides of each patch are divided into a
user specified number of edges. Fig. 7 shows example patches and
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Fig. 10. The initial configurations of the free curves affect the final position after

fairing. Note that the boundary curves are identical in both configurations. The

differences in the free curves (the interior region) result in different final surfaces.
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the sample points. Note that, for general n-sided patches, there must
be an even number of segments per boundary curve in order to
guarantee a control mesh with quad elements everywhere.

4.2. Fairing subdivision surfaces with creases and constraints

Our fairing scheme is based on the V-spring fairing method [20].
Unlike thin-plate energy minimization approaches (as used in [36]),
and curvature minimization approaches (as used in [25]), the V-
spring scheme rather minimizes the variation of curvature. It uses
both the position and normal vector information of the surface
vertices to iteratively move each vertex along its current normal
direction. In our approach, we modify this technique to make it
applicable to subdivision surfaces. At the heart of our modification
lies the decoupling between the subdivision surface’s control mesh
versus its limit surface. While the results of the fairing process are
assessed from the limit surfaces, the modification is applied to the
original control mesh vertices. In particular, for each control mesh
vertex q

!
ctrl, the corresponding limit surface point q

!
lim and the limit

surface normal n
!

lim (as shown in Fig. 8) are calculated using the
formulation given in Appendix A. Using these positions and normals
of the limit surface, the necessary vertex displacements are com-
puted for V-spring fairing:

D q
!i,Vsp

ctrl ¼
1

n

Xn

j ¼ 1

1

J q
!j

lim� q
!i

limJ

ð q
!j

lim� q
!i

limÞ � ð n
!j

limþ n
!i

limÞ

1þð n
!j

lim � n
!i

limÞ

2
4

3
5 n
!j

lim

þ½D q
!i,Laplc

lim �ðD q
!i,Laplc

lim � n
!i

limÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
regularization

ð1Þ

where n
!i

lim and n
!j

lim are the unit normal vectors of limit surface

vertices q
!i

lim and q
!j

lim respectively. The regularization term aims to

distribute the vertices uniformly across the local tangent plane
through small lateral displacements. The regularization term is a

function of the discrete Laplacian (D q
!i,Laplc

lim ) which is defined as the

vector from the vertex to its neighbors’ barycenter. We apply the

computed update vector D q
!i,Vsp

ctrl to the corresponding control mesh

vertex q
!i

ctrl. This process works well to fair the limit surface,

primarily because the limit surface positions are linear functions
of the control mesh vertices (Appendix A).

The above fairing rule produces globally smooth surfaces.
However, we allow the user to select patches that requires local
smoothing. To enable discontinuous crease edges, vertices on
n j
lim

q j
lim

Limit position

Limit normal

n i
lim

q i
lim

Fig. 8. Limit positions and normals around the one-ring neighborhood of vertex i

as used in the V-spring formulation.
creases are assigned multiple normals (Fig. 9). For each vertex on
a crease edge, we consider an infinitesimal disk around the vertex
and divide it into regions using the crease edges as separators.
The vertex attains multiple normals, each obtained from one of
the regions. At a vertex adjacent to a crease edge, the above
update uses the normal vector of the vertex associated with the
region to be faired.

When applied to multiple regions concurrently, this scheme
results in smooth transitions across the regular edges, while produ-
cing the intended discontinuities across the crease edges. Using
independent region normals is critical in that they set the normal
constraints on crease boundaries ‘‘free,’’ which allows each patch to
independently reach a lower energy state. This causes desirably
drastic angle differences to appear across crease boundaries.

To enable further control on the fairing process, we allow three
types of curves, namely free, fixed and crease curves. Every curve
is considered to be a free curve by default and allows the surface
to depart from it without exerting any constraints. These curves
define the initial shape of the surface prior to fairing, and affect
the final positions after fairing. Fig. 10 shows two different
outcomes with identical boundary curves. Fixed curves, on the
other hand, lock the incident vertices in space. Similarly, crease
curves do not allow the associated vertices to move, and addi-
tionally introduce surface discontinuities as described above. The
effects of the free, fixed and crease curves are shown in Fig. 11.
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surface lies at a distance. (b) The result of the iterative update of the control mesh.
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The separation between free, fixed, and crease curves is advanta-
geous, as it allows designers to establish a rough form quickly,
and subsequently beautify it via iterative fairing. This enables key
feature lines to be decoupled from the design of the surfaces.
Using the same set of feature lines, many different surfaces can be
generated with the help of free curves.

4.3. Two-way interaction between the curve network and

subdivision surfaces

In this section we describe our two-way communication
approach between the user-designed curve networks and the
generated surfaces (Fig. 12). In one direction, the subdivision
surface is updated to match the curve network while minimizing
the curvature variation throughout of the surface. In the other
direction, after the fairness of the surface is also controlled
independently, the curve network is updated into more suitable
configurations that produce smoother surfaces.
4.3.1. Matching subdivision surfaces to the curve network

As shown in Figs. 13 and 14a, the vertices of the control mesh
corresponding to the curve network initially lie precisely on the
network (since Coons patches interpolate their edges). The limit
surface, however, is typically farther away from the control mesh.
In this step, we iteratively move vertices of the subdivision surface
control mesh such that its limit surface interpolates the user
drawn curve network. For an initial control mesh consisting of
N edges per sketched curve (the user can control this number),
vertex n (n¼ 0,1 . . .N) of the control mesh is linked with the
position on the sketched curve corresponding to the parametric
coordinate of un ¼ n=N. For every control mesh vertex, the corre-
sponding limit surface position is also known from the Catmull–
Clark masks described in Appendix A. The difference between the
limit positions and the curve network can be iteratively mini-
mized by updating the control polygon vertices as follows:

q
!tþ1

ctrl ¼ q
!t

ctrlþlð q
!

crv� q
!t

limÞ ð2Þ

where q
!tþ1

ctrl is the updated position of the control vertex, q
!

crv is
the position on the curve at the corresponding parameteric
coordinate, and q

!t

lim is the limit position of the control vertex
q
!t

ctrl (Fig. 13). l is a damping factor used during iterative updating.
In our implementations, we use 0.5 for l.

The interior vertices are excluded from the above update. To
preserve the initial shape of the surface, we propagate the
boundary vertex modifications toward the interior vertices. For
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this, we apply the Laplacian reconstruction technique [37] to the
control mesh of the surface. We first calculate the Laplacian at
each control mesh vertex using the discrete Laplacian operator as
a linear system of equations:

d¼ Lx ð3Þ

where d are the Laplacian coordinates, L is the discrete Laplacian
operator in matrix form, and x is the coordinate matrix of the
vertices. We then calculate the new positions for the interior
vertices such that the Laplacian coordinates are preserved in
response to the modification of the boundary vertices. This
enables the updated surface to exhibit curvature properties that
are similar to those prior to the update. Laplacian reconstruction
is chosen to operate in conjunction with our smoothing scheme.
V-spring smoothing gradually minimizes the variation of curva-
ture across the surface. In each iteration, the vertices are modified
to improve the interpolation of the curve network. During this
process, we preserve the curvature newly dictated by the
V-spring smoothing using Laplacian reconstruction, which pre-
serves the curvature vectors under varying boundary conditions
in a least squares sense.

The two control mesh update rules (curve network matching
and V-spring fairing) are applied concurrently. Fig. 14 shows the
resulting control mesh and limit surface after iterative modifica-
tion. Note that the limit surface interpolates the curve network at
points determined by the initial resolution of the control mesh.
For curve network matching, the least squares formulation
proposed by [36] could also be used. However, that method
requires all control mesh vertices to have corresponding limit
surface points specified as constraints to prevent an under-
determined system of equations. With our approach, only the
Fig. 15. (a) The initial curve network drawn by the user does not result in a smooth surf

curves. (c) With the fixed and crease curves in place, the surface is faired to make it smoo

match this updated surface. (For interpretation of the references to color in this figure

Fig. 16. Usage of our system. Curve network construction followed by surfacing, curve t

interpretation of the references to color in this figure legend, the reader is referred to
boundary vertices have to be prescribed. Our approach then
iteratively computes the interior and boundary vertex positions
through Laplacian reconstruction (as an initial position for the
interior vertices), followed by V-spring surface fairing applied to
all vertices to produce the final smooth surfaces.

4.3.2. Curve network updating via smooth surfaces

As discussed earlier, establishing a curve network configuration
that produces a smooth surface is challenging. In such situations,
the user produces a smooth surface constrained by the fixed and
crease curves. This enables the user to preserve the feature curves,
as well as to anchor the surface at various locations. At this point,
the user can choose forcing the surface to match the remaining
free curves, or smooth/alter the surface independently of the free
curves and adjust the free curves to match this surface. For the
latter, the user establishes the surface geometry, and the free
curves are recalculated to match the surface using the limit
vertices on the surface as the driver for cubic curve fitting. At this
point, the user can choose both the areas to smooth and the curves
that needs to conform to the updated surface. An example is
shown Fig. 15. As shown, the updated configuration of the curve
network is more amenable to a globally smooth surface that
interpolates the intended feature curves.
5. Implementation details and results

5.1. User interaction and system interface

Fig. 16 shows a typical usage of our system. The user starts by
drawing a 3D curve network using the single view symmetric
ace. (b) The user focuses on the fixed and crease curves to establish the key feature

ther. The remaining free curves of the curve network are automatically adjusted to

legend, the reader is referred to the web version of this article.)

opology modification, surface fairing, curve editing, and final surface creation. (For

the web version of this article.)



Fig. 17. (a) The user draws symmetric curve pairs. A least squares solution situates the two curves in space. (b,c) The created curves from different viewpoints.

Fig. 18. (a) Similar to curve creation, the user sketches a modifying curve. At the instance shown, the red curve is the original curve selected for modification. (b,c) The

modified curve from different viewpoints. In this example, the user chooses not to preserve the symmetry during modification. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

creases

curves
creases

Creases to smooth
transitions

creasescurves

Fig. 19. Example designs modeled by our system. The level of surface quality on the helmet example is illustrated with reflection lines. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 20. The user can adjust the rendered sharpness of crease features. The

percentage denotes the crease sharpness from fully smooth to perfectly sharp

crease.
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epipolar sketching method [30]. Each 2D stroke pair is converted
into a pair of 3D symmetric cubic Bézier curves. The user marks
the curve joints by selectively merging the ends of nearby curves.
Our system then automatically identifies the closed loops of
curves, each defining a surface patch. The curve loops are used
to fit subdivision surface patches that approximate the underlying
curve network. The user labels the fixed, crease, and free curves
by selecting and marking such curves. When needed, the user
manipulates the curve network by modifying the individual or
group of curves using techniques described in [30]. Such curve
modifications automatically alter the attached surfaces. These
surfaces are then faired as necessary, and the curve network
beautified by projecting the curves onto the updated surfaces. The
user continues this process until obtaining the final shape.

During this process, the user makes use of the following tools:
Symmetric sketching: This tool allows the user to quickly create

symmetric pairs of curves in 3D about a prescribed symmetry
plane. In practice, the curves and patches created by this tool form
the initial geometry of the object. For symmetric designs, the
majority of the curves required by the design can be created solely
by this tool. Unless the user indicates otherwise, the symmetric
curves preserve this relationship in all subsequent steps.

As described earlier, previous studies have introduced a
number of 3D curve creation techniques using pen input. The
work by Bae et al. [30] incorporates a number of methods in ‘‘I
Love Sketch’’ and demonstrates the fluidity of the curve design
process. In our system, we use a subset of these methods to
instantiate and modify the curve networks. Specifically, our
system uses the single-view symmetric epipolar sketching
method to create the initial curves. Once created, each curve
can be individually modified in space by over-sketching.

The interface of our system shows a horizontal plane and a small
vertical plane that represents the symmetry plane. The user
sketches a pair of curves that will be symmetrically oriented across
this symmetry plane (Fig. 17). The 3D positions of the curves are
then calculated using the symmetric epipolar method [38].

Sketch on surface: With this tool, users can draw curves directly
on existing surfaces. The stroke drawn on the viewing plane is
projected on to the existing surfaces using the depth buffer. This
tool is particularly useful for creating different curve configura-
tions (thus, curve topologies) that result in surfaces with similar
geometries. One common use of modifying the curve configura-
tions is adding characteristic feature curves that will later be used
to control how surface patches transition from one to another.

Trimming: This tool is essential for constructing closed loops of
curves. The user simply circles curve ends that are to be joined.
These joints form closed loops of curves that form the candidate
patch boundaries. These loops are then automatically detected
and processed by our algorithms as described previously. The
joints defined by this tool are preserved throughout the design
process. If one curve at a joint is modified, the others are also
modified minimally to preserve the joint structure.

Curve modification: This tool allows modifications to be made
on 3D curves using 2D strokes. The user simply draws a modified
version of a curve or a series of connected curves from a user-
defined viewpoint. The curves are then modified in 3D space by
deforming minimally using techniques similar to those in [30].
Fig. 18 shows an example modification. This tool is the most
frequently used tool during shape exploration, as users iteratively
try different configurations and final surfaces with this process.

Extend curves: This tool enables quick extensions to be made to
a curve or a series of curves. From a given viewpoint, the user
draws the final positions of the curves similar to curve modifica-
tion. A new curve is created (as a proxy modification of the
original curve to be extended) and is connected with the original
curve to define a four sided patch. This tool is particularly useful
for quickly extending the curve network where symmetric
sketching is not desirable, and there exists no previously defined
surfaces to draw on.

Remove and impose symmetry, create symmetric counterpart: This
tool helps the user maintain the symmetric property of curves. The
users can easily enable/disable symmetry constraints between
pairs. In addition, this tool enables a quick replication of asymme-
trically extended curves on the other side of the symmetry plane.

5.2. Implementation details

We implemented our approach in Cþþ using the Qt develop-
ment environment for the user interface, and OpenGL for acceler-
ated graphics. A Wacom Intuos tablet is used for recording input
strokes. For efficient rendering of subdivision surfaces, we use the
Approximate Catmull–Clark (ACC) formulation by Loop and
Schaefer [28]. We also allow semi-sharp creases on demand, and
revert to a less efficient rendering algorithm to visualize such
features. On a dual core laptop computer with 3 GB of RAM and
NVidia Quattro graphics card, all operations are at interactive speeds.

5.3. Results

Fig. 19 shows example models created using our system.
Fig. 20 shows the mouse design with varying crease strengths.
During preparation of the examples, the two-way communication
and geometric updating between the curves and the surfaces
proved to be critical in producing high quality surface geometries
and curve networks.
6. Evaluation

We conducted a user study with experienced designers and senior
modelers. We designed the study in order to evaluate the usability of
curve-based interactions, the ease of designing and maintaining
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smooth surfaces, and to assess the utility of the two-way commu-
nication between the curve network and the underlying surface.
6.1. Participants

Seven participants were chosen for our user study. All parti-
cipants were proficient in at least one commercial geometric
modeling package, including CAD software (SolidWorks, ProEngi-
neer, Catia, etc.), industrial design software (Rhinoceros 3D, Alias,
etc.), 3D modeling and animation software (Maya, 3dsMax, Light-
wave 3D), and 3D sculpting software (ZBrush and MudBox). Fig. 21
shows the distribution of participants’ expertise with various
modeling packages. Four subjects were mechanical engineers,
including a senior design manager working at an engineering studio.
A
ut

od
es

k 
3D

S 
M

ax

A
ut

od
es

k 
A

lia
s

B
le

nd
er

C
at

ia

C
in

em
a 

4D

H
ou

di
ni

A
ut

od
es

k 
In

ve
nt

or

N
ew

te
k 

L
ig

ht
w

av
e 

3D

A
ut

od
es

k 
M

ay
a

M
od

o

A
ut

od
es

k 
M

ud
B

ox

Pr
oE

ng
in

ee
r

R
hi

no
ce

ro
s 

3D

G
oo

gl
e 

Sk
et

ch
U

p

A
ut

od
es

k 
So

ft
im

ag
e

So
lid

 E
dg

e

So
lid

w
or

ks

Z
B

ru
sh

Master

Adept

Intermediate

Novice

Never used

Fig. 21. The expertise levels of our participants in widely used commercial

packages. White denotes no entry, as darker tones denote more entries.

Fig. 22. In the first task, we ask the participants to replicate this geometry with

the illustrated curve network topology.

Fig. 23. Example models designed by three participants. In the top row, a novice user cr

creates a simpler topology to construct the surface model. The second row shows a s

composed of geometrically disconnected components. On the row, the senior modeler
One subject was a 3D senior modeler at a major commercial gaming
studio, who also had 8þ years of experience with special effect
graphics in the movie industry.

Four subjects were called in for the study, while three subjects
completed the study from remote locations using their own hard-
ware. Prior to the study, all participants were presented a tutorial
document and a video that demonstrated the functions of our system.
They were then asked to complete a number of modeling tasks. After
each session, each user was asked to complete a questionnaire. The
in-house studies were visually observed, while the remote studies
were not.

6.2. Tasks

After the tutorial, each user was asked to complete three
different tasks. These tasks were designed to assess different
aspects of our system. The first task involved curve and surface
modeling using a simple model rendered and presented to the
subjects on paper from different views (Fig. 22). The presented
model was designed to exhibit planar curve loops, so as to have
the participants exercise precise curve creation and modification.
This task was designed for subjects to test out basic curve and
surface design functions, and the associated user interface ele-
ments, without requiring them to design a suitable curve network
topology.

In the second part, we let the users design the curve network
topology given the visuals of a target object. For this, all users
were assigned the same task of modeling a helmet similar to that
shown in the blowout of Fig. 23. Two photos of the helmet from
two different viewpoints were provided to help users visualize
the geometry. With this task, we aim to assess the utility and ease
of designing the curve network topology. We also assess how easy
it is to achieve a smooth curved surface as seen in the helmet in
question.

In the third part, each participant is asked to design an object
in a domain familiar to them. No restriction is placed on the
object or the curve network topology. We aim to assess the
overall utility of our approach for open-ended modeling tasks,
each chosen by the individual participant. The second and third
rows of Fig. 23 show examples created by the participants during
this task.

6.3. Observations

In the first task, participants focused mainly on the sketch-
based interactions with the system rather than other aspects of
eates a network topology for the second task, which he later discards. The user then

hip model created by an experienced user. The user defines a multi-body model

develops an organic model as a part of an animation character.
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surface design. Participants initially found it hard to recall the
requirements for symmetric sketches. They used viewpoints that
made the symmetric epipolar calculations computationally ill-
conditioned, which lead in unexpected outcomes. However, the
participants quickly became adept at identifying the most suita-
ble viewpoints to create the desirable curve pairs. Similarly, all
participants went through a short learning curve and quickly
became fluid in the sketch-based creation and modification of the
curve network (Fig. 24).

During the second task, participants who were not familiar
with subdivision modeling initially found it hard to get the curve
network topology right. Similarly, participants prematurely chose
to focus on each individual curve’s shape to get it right, rather
than establishing a working curve network. This behavior sub-
sided in time, and participants started to focus on establishing a
topology that led to curve loops they had envisioned for smooth
surfacing. On the other hand, participants familiar with subdivi-
sion modeling, found it very natural to create the curve network.

In general, participants found the system enjoyable to use.
However, particular tasks were found to be difficult to perform.
For instance, we observed that merging curve ends to form a
closed network topology was at times too tedious. Three partici-
pants thought that only supporting end-to-end, but not end-to-
middle curve connections to be limiting. On the other hand, rapid
creation of symmetric counterparts for asymmetric curves was
considered to be a useful functionality. One experienced user
found sketch-based curve modification to be a ‘‘great function-
ality’’ and frequently used it. Our observations also indicate that
in cases where precise control is necessary to obtain smooth
surfaces, participants liked the idea of quickly constructing a
working topology and an associated surface, altering the surface
via curve modification and surface fairing, and automatically
Fig. 24. Examples from two participants for the first task.

Table 1
Survey results. The bars indicate minimum and maximum scores, where the squar
updating the curve network by back projecting it onto the
designed surface.

6.4. Study results

We asked each user to complete post-study questionnaire to
measure perceived ease of use, usefulness, and performance.
Table 1 shows the survey questions and the participants’
responses. Overall, the results indicate that participants found
their experience with the system pleasing. Specifically, the
participants found symmetric curve creation, curve end trimming,
and sketch-based curve modifications to be easy. The participants
were generally satisfied with the smoothness of the resulting
surfaces. Tools like extending a series of curves, surface fairing,
and curve projection back on to the surfaces were found to be
useful. The ability to create crease and fixed curves was also
considered to be useful, while crease curves creation was per-
ceived to be more useful than fixed curve creation.

On the other hand, some tasks were found difficult to perform.
Precise control of the curve geometries through sketch-based
interactions was found to be difficult to achieve. This result points
out that users are good at configuring a curve network rather
quickly, but struggle in precise control of the geometry. The
participants found the use of surface fairing and curve projection
to be useful for this purpose, and used them frequently. The
participants thought that establishing a network topology for the
shapes they envision can be challenging at times. Those experi-
enced in subdivision modeling (e.g. Lightwave 3D, Maya) found
this task to be slightly easier compared to inexperienced users.
Participants pointed out a lack of peripheral functionality, such as
undo/redo, automatic creation of symmetric pairs for extended
curves, automatic merging of curve ends, T-joint creation in the
curve network, hidden or ghost rendering of occluded curves, and
curve cutting. We believe while currently an inconvenience, these
issues are not detrimental to validating the core technical features
of the proposed work.
7. Discussions and conclusions

We describe a sketch-based geometric modeling approach
using malleable curve networks. At the heart of our approach is
a two-way communication between a curve network and its
es indicate the mean scores.
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associated subdivision surface. This communication helps users
achieve and maintain smooth surfaces and suitable curve net-
works easily. Our studies have shown that the proposed work is
suitable for geometries commonly encountered in various appli-
cations. We evaluated our approach in terms of usability, perfor-
mance, and usefulness with experienced designers and senior
modelers.

The user study results indicate that our malleable curve net-
work approach is considered to be useful. Specifically, the
participants found surface fairing and curve network conformity
to be a supportive functionality. However, the participants have
raised issues regarding precise control of the curves via sketch-
based modifications. As much as they liked the overall sketch-
based interaction, making precise modifications on existing
curves was found to be a challenging task. One major reason
behind this difficulty is that users apply 2D modifications via
over-sketching, while the curve undergoes 3D shape changes.
Following a modification, the users are expectedly inclined to
study the resulting 3D changes from a different view, and repeat
similar modifications until they are satisfied. However, we
observed that users naturally formed and focused on a set of
‘‘preferred’’ curves that they deemed critical to the overall shapes
they wanted to convey. Hence, most users focused on perfecting a
small set of features curves (consisting of fixed and crease curves)
using the above technique, while remaining less concerned about
the free curves. Specifically, for the regions in the vicinity of the
free curves, the users seemed to prefer to control the surface
geometry through smoothing and fairing operations, which sub-
sequently shape the free curves deliberately unattended by the
users. We believe this preferential curve modeling enhances
purely curve-controlled surface modeling approaches, by allow-
ing surface fairness automatically control the quality of curves
ignored by the user.

Currently, our approach requires a closed curve network
topologically suitable for subdivision surfaces. Although our
system allows the users to use the curves of the network as
surface manipulators, the need to form closed loops can be
tedious and requires decisions regarding the network structure
to be made early on. Our future work will focus on this challenge.
We plan to devise automatic subdivision control mesh generation
methods which work from curve soups that do not form clean
topological structures.
Appendix A. Subdivision limit surface analysis

Catmull–Clark subdivision surfaces are generalizations of
bicubic B-spline surfaces to arbitrary topologies, thus have similar
properties. Although they produce smooth, G2 continuous (G1 at
extraordinary vertices1) surfaces, they do not necessarily inter-
polate the vertices of their control meshes. Halstead et al. [36]
presented a detailed analysis on the geometric properties of
Catmull–Clark limit surfaces. They also presented vertex weight
masks to be used for calculating limit surface positions and
tangents at locations corresponding to the control mesh vertices
at the coarsest level. Fig. A1 shows these weight masks for
computing the limit position at a vertex, and the limit tangent
in the vicinity of a vertex along an edge. a and b used for limit
tangent calculation are defined as follows:

ai ¼ cos
2pi

n
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ðA:1Þ
1 The vertices where the quad mesh is not regular, that is, number of incident

edges is not equal to 4.
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where n is the valence of the vertex in question. For the limit
position mask to yield the correct position, its weights should be
normalized to sum up to 1. These numbers define the weighting
scheme in the one-ring neighborhood of a vertex. For instance,
the limit position of a vertex is calculated as the weighted average
of the positions of that vertex and the vertices in its one-ring
neighborhood. Likewise, the limit tangent mask is oriented and
applied to the one-ring neighbors.

Similar to the interior vertices, the boundary edges and
vertices are also governed by similar masks. For the actual masks
see [28]. For the rendering and limit analysis of creases, we treat
the edges as boundary edges. In case of more than two crease
edges meeting at a point, this treatment requires a prior analysis
of the separated regions each of which can be treated as an
independent boundary.
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[18] Moreton H, Séquin C. Functional optimization for fair surface design. In:
Proceedings of the 19th annual conference on computer graphics and
interactive techniques. ACM, ISBN 897914791; 1992. p. 167–76.

[19] Welch W, Witkin A. Free-form shape design using triangulated surfaces. In:
Proceedings of the 21st annual conference on computer graphics and
interactive techniques. ACM, ISBN 0897916670; 1994. p. 247–56.

[20] Yamada A, Shimada K, Furuhata T, Hou K. A discrete spring model for
generating fair curves and surfaces. In: Proceedings of the seventh Pacific
conference on computer graphics and applications, 1999. IEEE; 1999. p. 270–9.

[21] Nasri A, Karam W, Samavati F. Sketch-based subdivision models. In: Proceed-
ings of the 6th eurographics symposium on sketch-based interfaces and
modeling. ACM; 2009. p. 53–60.

[22] Bein M, Havemann S, Stork A, Fellner D. Sketching subdivision surfaces. In:
Proceedings of the 6th eurographics symposium on sketch-based interfaces
and modeling. ACM; 2009. p. 61–8.

[23] Levin A. Interpolating nets of curves by smooth subdivision surfaces. In:
Proceedings of the 26th annual conference on computer graphics and
interactive techniques, SIGGRAPH’99. New York, NY, USA: ACM Press/
Addison-Wesley Publishing Co., ISBN 0-201-48560-5; 1999. p. 57–64.

[24] Schaefer S, Warren J, Zorin D. Lofting curve networks using subdivision
surfaces. In: Proceedings of the 2004 eurographics/ACM SIGGRAPH sympo-
sium on geometry processing, ACM; 2004. p. 103–14.
[25] Pusch R, Samavati F. Local constraint-based general surface deformation. In:
Shape modeling international conference (SMI), 2010. IEEE; 2010. p. 256–60.

[26] Das K, Diaz-Gutierrez P, Gopi M. Sketching free-form surfaces using network
of curves. In: Proceedings of EUROGRAPHICS workshop on sketch-based
interfaces and modeling, SBIM 2005; 2005.

[27] Kara LB, Shimada K. Sketch-based 3D-shape creation for industrial styling
design. IEEE Comput Graphics Appl 2007;27(1):60–71.

[28] Loop C, Schaefer S. Approximating Catmull–Clark subdivision surfaces with
bicubic patches. ACM Trans Graphics 2008;27(1) [ISSN 0730-0301].

[29] Eissen K, Steur R. Sketching: drawing techniques for product designersBIS
Publishers; 2009.

[30] Bae S, Balakrishnan R, Singh K. ILoveSketch: as-natural-as-possible sketching
system for creating 3d curve models. In: Proceedings of the 21st annual
symposium on user interface software and technology. New York, USA: ACM;
2008. p. 151–60.

[31] Schmidt R, Khan A, Singh K, Kurtenbach G. Analytic drawing of 3D scaffolds.
In: ACM SIGGRAPH Asia 2009 papers. ACM; 2009. p. 1–10.

[32] Shpitalni M, Lipson H. Identification of faces in a 2D line drawing projection
of a wireframe object. IEEE Trans Pattern Anal Mach Intell 1996;18(10):
1000–12.

[33] Abbasinejad F, Joshi P, Amenta N. Surface patches from unorganized space
curves, 30(5); 2011. p. 1379–87.

[34] Coons S. Surfaces for computer-aided design of space forms. Technical
Report, Massachusetts Institute of Technology Cambridge, MA; 1967.

[35] Piegl LA, Tiller W. Filling n-sided regions with NURBS patches. Visual Comput
1999;15:77–89.

[36] Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull–
Clark surfaces. In: Proceedings of the 20th annual conference on computer
graphics and interactive techniques. ACM, ISBN 0897916018; 1993. p. 35–44.

[37] Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rossi C, Seidel H. Differential
coordinates for interactive mesh editing. In: Proceedings of the shape
modeling applications, 2004. IEEE; 2004. p. 181–90.

[38] Franc-ois A, Medioni G, Waupotitsch R. Mirror symmetry2-view stereo
geometry. Image Vision Comput 2003;21(2):137–43.


	Sketch-based surface design using malleable curve networks
	Introduction
	Related work
	Overview
	Sketch-based curve design
	Surfacing, surface optimization, and curve network relaxation

	Technical details
	Automatic surface initiation
	Fairing subdivision surfaces with creases and constraints
	Two-way interaction between the curve network and subdivision surfaces
	Matching subdivision surfaces to the curve network
	Curve network updating via smooth surfaces


	Implementation details and results
	User interaction and system interface
	Implementation details
	Results

	Evaluation
	Participants
	Tasks
	Observations
	Study results

	Discussions and conclusions
	Subdivision limit surface analysis
	References




