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In product design, designers often create a multitude of con-
cept sketches as part of the ideation and exploration process.
Transforming such sketches to 3D digital models requires
special expertise due to a lack of intuitive Computer Aided
Design (CAD) tools suitable for rapid modeling. Recent ad-
vances in sketch-based user interfaces and immersive envi-
ronments have introduced novel curve design methods that
facilitate the transformation of such sketches into 3D digi-
tal models. However, rapid surfacing of such data remains
an open challenge. Based on the observation that a sparse
network of curves is reasonably sufficient to convey the in-
tended geometric shape, we propose a new method for creat-
ing approximate surfaces on curve clouds automatically. A
notable property of our method is that it relieves many topo-
logical and geometric restrictions of 3D conventional net-
works such as the curves do not need to be connected to one
another or gently drawn. Our method calculates a 3D guid-
ance vector field in the space that the curve cloud appears.
This guidance vector field helps drive a deformable closed
surface onto the curves. During this deformation, surface
smoothness is controlled through a set of surface smoothing
and subdivision operations. The resulting surface can be fur-
ther beautified by the user manually using selective surface
modification and fairing operations. We demonstrate the ef-
fectiveness of our approach on several case examples. Our
studies have shown that the proposed technique can be par-
ticularly useful for rapid visualization.

1 INTRODUCTION

Advances in 3D form design have resulted in a multitude

of software tools for a wide range of geometric modeling ap-

∗ Address all correspondence to this author.

plications. However, many of these tools require substantial

experience and specialization in the underlying representa-

tions and associated geometric operations. As a result, many

designers revert to conventional media for idea generation

and exploration, and commence 3D computer modeling only

after the ideas have sufficiently matured. Thus, only a small

subset of the generated ideas may be considered early in de-

sign process while many promising ones are abandoned pre-

maturely.

To alleviate these difficulties, recent studies have devel-

oped techniques that enable the rapid design of 3D surfaces

using stylus based interfaces [1–4], and Virtual Reality (VR)

environments [5,6]. These studies postulate that a set of char-

acteristic curves may be sufficient to capture the intended

geometric shape with sufficient accuracy [7, 8]. Most stud-

ies combining sketching with surface creation first instanti-

ate a deformable blob, and then ask the designer to create the

final shape through modifications of the initial shape using

sketched strokes. The user’s strokes at this stage strongly in-

fluence the final shape, thus precluding exploratory stroking

behavior (many short strokes or a few long strokes). More-

over, the designers typically need to use curves drawn on
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such surfaces as handles to achieve a desirable surface defor-

mation, which is difficult to control.

In this work, we propose an automatic surfacing method

that takes as input a set of roughly sketched 3D curves cre-

ated using stylus-based tablets or VR environments, and

produces a closed polygonal surface that matches the in-

put curves with user controlled surface smoothness. Further

user-guided manual surface operations aid in this process by

enabling local beautification and fairing of the resulting sur-

faces. The key advance put forth in this work is the surfacing

of the initial curve clouds in cases where the curves do not

form a clean, connected network topology. Hence, with our

proposed technique, the designer can focus on the creation

of the shape through exploratory curve sketching, rather than

shape design through blob modification.

The proposed approach makes the following specific

contributions:

1. Generating closed polygonal surfaces on a set of curve

clouds with arbitrary topology and geometry

2. Determining a suite of techniques that enable skinning

operations on such curve clouds in cases where no ge-

ometric information exists to reconstruct approximate

surfaces

3. Preserving local surface smoothness while generating

approximate closed polygonal surfaces induced by the

sparse set of curve clouds

4. Enabling early and rapid visualization of the approxi-

mate surfaces on the sparse input curve clouds at early

design stages

5. Facilitating the design process by providing a means to

automatically transform designers’ raw, unrefined shape

ideas into geometric data suitable for further beautifica-

tion and refinement using conventional CAD tools

1.1 Overview and User Interaction

In a typical scenario, our method takes as input a set

of 3D curves (Fig. 1.a shown in red) designed by the user

through a 2D sketching interface (Section 4.1), where the

user drawn curve network is stored as a collection of 3D

point positions constituting these 3D curves. Once the 3D

curve cloud is generated, a guidance vector field is calculated

by quantizing the curve set into a 3D binary voxel image

and by diffusing the gradient vector field of this discretized

domain into the entire image space. In Figure 1.b, a cross

section of the calculated 3D guidance vector field and the

corresponding discretized voxel image are illustrated. This

guidance vector field helps gradually deform a triangulated

genus 0 spherical surface instantiated in the domain, until

it automatically captures the shape suggested by the curve

cloud. Figure 1.c demonstrates the gradual deformation of

the initial sphere under the control of the guidance vector

field. Once the initial surface is obtained, the user can fur-

ther refine this surface through conventional mesh operations

such as subdivision as desired. To beautify the surface, the

designer can utilize a set of sketch-based tools (e.g. lasso

selection, rubbing) to selectively apply surface modification

operations such as fairing (Fig. 1.d).

2 Related Work

CAD tools for surface creation in conceptual design

stages have been an active area of research and these tools

can be roughly classified into two main groups. The first

group consists of professional surface modeling packages

[9,10] that utilize parametric patches or subdivision schemes

for surface creation. The user has to carefully plan the ini-

tialization of coarsest level surface patches and modification

of their control points in order to reach intended product

design. However, the exploration process can be challeng-

ing for users without sufficient skill in control point modi-
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Fig. 1: A breakdown of our approach: (a) a curve cloud is input to the system, (b)the discretized 3D voxel image of the sketch
and the guidance vector field is calculated within the domain, (c) the initial surface is deformed toward the input curves, (d)
the final surface is achieved after surface smoothing and subdivision operations

fication to reach intended shape. The second group of sur-

face modeling tools focuses on eliminating these difficulties

by providing sketch-based interfaces for intended geometry

creation [1, 11–14]. Usually in these studies, the underly-

ing mathematics of surface modeling operations and surface

definitions are hidden from the user. It is argued that these

techniques are more suitable for inexperienced users due to

the simplicity of the interactions [2]. User-guided sketch-

based surface modeling methods generally require each con-

structed curve to be closely approximated by the fitted sur-

faces, thus making the design of each curve a delicate and

binding process. The user-guided sketch-based methods can

be further categorized in two subgroups.

The tools developed in the first subgroup require, de-

signers to progressively create and modify an intended ge-

ometry. Nealen et al. [2] presented such a system called

Fibermesh for creating free form surfaces. The user first

draws a simple closed stroke in 2D and the system auto-

matically generates a shape whose contour matches the user

drawn 2D closed curve via inflation. Various operators such

as sketching, pulling and pushing allow the designer to mod-

ify the initial surface. Earlier works of Igarashi, such as

Teddy [1], and Karpenko’s system [13] are similar in spirit.

The main advantage of these methods is that they enable both

initial surface creation and its modification through sketch-

based mesh editing operations to reach the intended geome-

try. In other words, these studies enable both the creation of

a surface and its modification from scratch.

The second subgroup of surface generation techniques

consists of automatic methods that produce free form sur-

faces from user drawn curve clouds in one step. These

studies are based on different concepts such as energy min-

imization [2, 15, 16], partial differential equations (PDE)

[17–19], potential field information [4, 20, 21]. While cre-

ating high quality surfaces, these approaches may require

users to understand some of the underlying mathematical op-

erations. For example, surfaces modeled using PDE methods

are generated through solving a PDE subject to user provided

boundary conditions. Determining necessary boundary con-

ditions for intended geometry might be overwhelming for in-

experienced users. Moreover, for energy minimization based

techniques, it is a challenge for the users to choose appropri-

ate energy functionals for surface deformations since each

energy functional will result in different surface models and
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properties. Thus, although these methods provide high con-

trol over surface properties such as continuity and curvatures,

they do not provide a high level control structure for surface

generation and deformation. Moreover, expecting the user

to define boundaries or objective functions, however, is typi-

cally central in the detailed design stages and may be a hin-

drance in the early stages of the design.

Similarly, Xu et al. [22] proposed an automatic surfac-

ing approach for the segmentation of medical images. The

algorithm is based on the calculation of a vector field which

is solved as the minimum of an energy functional that drives

initialized contours toward object boundaries. We adopt the

same idea of creating a vector field for deforming an elas-

tic object (a seed surface). However, the main difficulty in

our targeted scenario, namely, 3D conceptual shape design,

is that the input geometric data representing an object is of-

ten defined only partially and approximatelyby its bound-

aries, while no other information exists to reconstruct the

surfaces spanning these boundaries, whereas in the case of

Xu et al. [22], the object boundaries are completely and ex-

actly represented by the pixels. Our approach aims to over-

come this difficulty by delegating the internal energy of the

elastic deformable surface to shape the missing pieces of the

geometry in a way that satisfies designers’ expectations.

The notion of using a complete curve network set to gen-

erate an interpolating 3D surface which closely approximates

these curves has been employed by traditional CAD tools for

a long time [23] [24] [10]. Our aim in this paper is pro-

viding a modeling experience more commensurate with in-

dustrial modeling that allows the designer to lay out a rough

wireframe model that can be surfaced when desired, without

prematurely exposing the user to a surface model that needs

to be successively modified like using parametric or subdi-

vision surfaces in current CAD tools. The main advantage

of our proposed algorithm is that it relieves many topolog-

ical and geometric restrictions of a conventional curve net-

work which allows us to handle a broad spectrum of curve

networks. Moreover, our algorithm with select and modify

tools combines surface generation tasks with sketch-based

surface fairing operations which provide local differential

surface control too.

3 TECHNICAL DETAILS

Our approach takes as input 3D curve clouds and gen-

erates a genus 0 surface suggested by the constituent curves,

while minimizing a combination of prescribed smoothness

and energy criteria. Our approach involves two main steps:

(1) guidance vector field calculation, (2) deformable seed

surface initialization and its deformation.

In the first step, we calculate a discrete vector field from

the curves forming the input curve set and adopt the name

’guidance vector field’ to describe this vector field. To do so,

we use the Gradient Vector Flow (GVF) field [22] which is

a method primarily used for segmenting medical images. To

begin, our proposed approach discretizes the domain and ini-

tiates a gradient vector field using the discretized input curve

clouds, followed by a calculation of the flow field through the

diffusion of the calculated gradient field into entire domain.

This guidance vector field carries the skinning information

suggested by the input curve clouds. In the second step, we

initialize a triangulated genus 0 surface (i.e. a closed surface

without through-holes) which initially embodies the curves,

and deform it under the forces emanating from the guidance

vector field vectors and the smoothness preserving criterion.

3.1 Surface Creation

3.1.1 Requirements of the Guidance Vector Field

In the first step of our approach, we aim to compute a

guidance vector field which will deform an elastic seed sur-

face toward the input curves. In order to determine such a
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vector field, we identify three requirements that our guidance

vector field should satisfy.

The first requirement is the existence of the guidance

vector field everywhere in the input domain (i.e. the magni-

tude of every vector must be nonzero) . This feature ensures

that instantiated seed surface will be appropriately driven to-

ward the cloud at any point in the domain, even if our de-

formable model is far away from the cloud. Conventional

techniques using gradient information only [25, 26] fail to

satisfy this requirement as image gradients quickly dimin-

ish away from the object. Thus, using gradient information

does not guarantee that our initiated seed surface (active con-

tour) will be pushed toward the input curve cloud. Figure 2.b

presents calculated 2D gradient vector field of a binary im-

age shown in Figure 2.a. Figure 2.c demonstrates the final

behavior of a deformable contour (shown as thin red line)

in 2D under the control of a guidance vector field with pure

gradient information where the deformable contour can not

penetrate into concave region of the U shape.

(b)

(d)

(c)

(e)

(a)

Fig. 2: (a) Input image, (b) The comparison of a gradient vec-
tor field to (d) the Diffused gradient vector field. (c) The ac-
tive contours cannot penetrate into the concave regions with
the simple gradient field (e) whereas it can with the diffused
gradient vector field.

The second requirement is that our vector field should

generate vectors that can spear through concave regions

without diminishing at the entry of the concavity on the in-

put set of curves. Figure 2.b represents 2D vector field which

is diffused version of the 2D gradient vector field in Figures

2.b into whole image space.Figures 2.e and 2.c illustrate the

difference in the behavior of a deformable contour in 2D un-

der the influence of two different guidance vector fields. The

result in Figure 2.e is in sharp contrast with the result shown

in Figure 2.c, since the deformable model completely cap-

tures the boundary in the concave region, due to the fact that

the vector field in Figure 2.d is nonzero in the concave re-

gion. Finally, our third requirement is that the vectors in

the vicinity of the 3D input curves must point toward those

curves, much like gradients. Although the last requirement is

straightforward via gradient calculations only, it is not trivial

to establish a vector field that simultaneously satisfies all the

three requirements. The following sections details the dis-

cretization of the input 3D curve cloud and calculation of a

vector field which satisfies all the 3 necessary requirements.

intended object. The middle of the surfaces, however,

are generally devoid of such curves unless the user dictates

details in those regions. As a result, unlike the case in seg-

mentation of medical images [22], our approach requires a

careful negotiation between the internal energy of the de-

formable surface and the external force field that aims to de-

form it. This balance is necessary to generate surfaces that

capture large regions of surfaces while maintaining triangle

regularization and smoothness, when there is no data to sup-

port their particular configurations. On the other hand, this

challenge turns out to be an advantage for our algorithm. As

the designer creates input sketches, our system does not force

him to create a complete 3D wireframe model such that he

can only draw a couple of curves and leave other regions

unattended. The following sections detail these effects and

describe our GVF-based deformation procedure taking into

account this phenomena.
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3.1.2 Discretization of the Continuous Domain and

Guidance Vector Field Calculation

The curves in the curve network are represented as poly-

lines in space. Each curve is recorded as a 3D polyline

formed by the points sampled along the user’s stroke. The

curves are created and treated independent of one another,

and the collection of these curves forms the curve cloud. To

begin, we first transform the 3D domain by embedding the

curve cloud into a unit cube, and then uniformly expand this

cube by 30% in all directions. This expansion allows the

vector field to persist beyond the immediate boundaries of

the object. The domain is then discretized into an N×N×N

grid (we use N = 90 in our current implementation, deter-

mined empirically). Next, the curve cloud is quantized as a

binary 3D voxel image in the grid. Figure 3 illustrates the

idea.

(a) (b)

Fig. 3: The space containing the input curves in (a) are dis-
cretized into the binary voxel images in (b).

Once the user drawn curves are discretized, we employ

the gradient vector flow field (GVF) as our guidance vector

field. Such GVFs are commonly used for 3D segmentation of

medical images [22]. The key observation underlying GVF

is that all the three necessary requirements can be achieved

by diffusing the initial gradient vector field extracted from

the raw image. By doing so, the information from raw geo-

metric data is transferred to the entire domain such that every

vector in our guidance vector field points toward the source

voxels corresponding to the discretized curves.

A GVF is the continuous 3D vector field ~V (x,y,z) =

[u(x,y,z),v(x,y,z),k(x,y,z)] that minimizes the following en-

ergy functional [22]:

ε =
y

µ(u2
x +u2

y +u2
z + v2

x + v2
y + v2

z + k2
x + k2

y + k2
z )︸ ︷︷ ︸

Smoothness

+ ‖O f‖2‖~V −O f‖2︸ ︷︷ ︸
Pointing to curve clouds

dxdydz
(1)

where ~f (x,y,z) is a 3D voxel image, O is the gradient oper-

ator in Cartesian coordinates,~u(x,y,z),~v(x,y,z) and~k(x,y,z)

are the x, y and z components of the vector field at the point

(x,y,z), and the subscripts denote partial derivatives. µ is a

coefficient which controls the magnitude of diffusion. In this

functional, the first term aims to preserve the smoothness

of the vector field by minimizing the squares of the partial

derivative magnitudes of our guidance vector field vectors in

every direction. The second term aims to make the vector

field equal to the image gradient when the solution is near

the curve cloud. In the vicinity of the curve cloud, the sec-

ond term dominates as the gradient vector’s magnitude will

be large compared to the other terms. Hence, the vector field

will aim to match the gradient vector to minimize the func-

tional. As distance from the curve cloud increases, however,

gradient vectors will diminish, thus making the first term in

the functional dominating. This, in turn, is minimized by

minimizing the variation in the vector field.

The solution field~V (x,y,z) minimizing this energy func-

tional can be calculated using calculus of variation on three
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decoupled Euler equations [22]:

µO2~u− (~u− fx)( f 2
x + f 2

y + f 2
z ) = 0

µO2~v− (~v− fy)( f 2
x + f 2

y + f 2
z ) = 0

µO2~k− (~k− fz)( f 2
x + f 2

y + f 2
z ) = 0

(2)

The solutions to the Euler equations ~u(x,y,z), ~v(x,y,z),

~k(x,y,z) are the vector field components in x, y, and z di-

rections respectively and can be solved independently. The

diffusion coefficient can be adjusted based on the desired dif-

fusion level. In our approach, it is kept constant at 1. We

solve these equations by discretizing the domain using finite

differences [27] as explained next.

In the discretized domain, the Laplace operator can be

discretized for each cube with indices (m, n, p) in our 3D

voxel image by using second order finite difference formula-

tions [28] as shown in equation [3]:

O2u(x,y,z)
∣∣
(m,n,p) =

um+1,n,p +um−1,n,p−2um,n,p

4x2

+
um,n+1,p +um,n−1,p−2um,n,p

4y2

+
um,n,p+1 +um,n,p−1−2um,n,p

4z2

(3)

The solution to the equations [3] is facilitated by initial-

izing the solution field ~u, ~v and ~k to be the gradient of the

quantized curve cloud. 4x, 4y and 4z are the lengths of

grids in x, y and z directions respectively. The equations are

solved iteratively until the difference between successive it-

erations becomes less than a prescribed threshold. Figure 4

illustrates the quantization of a car model into a 90×90×90

grid and calculated guidance vector field on the specified

cross sections of the input curve network.

Fig. 4: Gradient vector flow field of a car model on the spec-
ified cross sections.

3.1.3 Surface Initialization and Deformation

A triangulated genus 0 sphere that encapsulates the con-

stituent input curves is utilized as our seed surface for de-

formation. While any triangulated genus 0 surface encapsu-

lating the input curve cloud could also be used as the initial

working surface, the sphere serves as a practically reasonable

starting geometry with three principal axes of equal magni-

tude.

The initial surface is deformed iteratively until it

matches the shape suggested of the curve network. In each

iteration, the mesh vertices experience external deformation

forces from the vector field, as well as internal forces that aim

to preserve the smoothness of the mesh during the iterations.

The vertices of this triangular mesh is iteratively deformed

inside the vector field until the surface attains a stable con-

figuration around the curve cloud. This stable configuration

is achieved when the internal energy forces of the deformable

surface geometry is balanced by the external guidance vector

field forces, thus resulting in a zero net force at each vertex.

Each iteration requires the computation of such external

and internal forces at arbitrary positions in the domain. For
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the external field forces, we use a tri-linear interpolation of

the discretized guidance vector field that employs first order

neighborhood information for each grid and helps approxi-

mate the vector field at arbitrary points in the domain. The

internal forces, on the other hand, are computed directly from

the mesh geometry and thus do not require any interpolation

from the discretized grid.

The following paragraphs explain the internal forces ap-

plied to the deformable mesh and Figure 5 illustrates the

overall surface development pipeline where vector field and

laplacian deformations are iteratively performed by the pro-

posed technique and further surface modification operations

can be performed manually as desired.

Deformable
Surface

Initialization

Deformation by 
Internal Forces

Deformation by 
External Forces

Surface Modi�cation
Operations

Final 
Surface

Surface development

+

Fig. 5: The surface deformation cycle of the proposed ap-
proach. The surface is deformed according to the vector field
while the surface smoothness is maintained through surface
fairing and subdivision operations.

Internal forces: During the deformation process, these

forces have enabled us to maintain smoothness and a reg-

ular spacing along the deformable mesh. For each vertex,

these forces are calculated based on its first ring neighbor-

hood information and they are combined with the effect of

the guidance vector field to generate free form surfaces while

maintaining mesh quality on the seed surface.

The first internal force, the Laplacian operator, will min-

imize its surface area for each vertex locally. The physical

analogy for the Laplacian operator is a soap bubble which

tries to minimize its surface area. It is defined on a discrete

mesh as follows:

4~v Laplace
i =

(
1
n

n

∑
j=1

~v j

)
−~vi (4)

where4~v Laplace
i is the Laplacian displacement calculated in

Equation 4, n is the number of vertices in the one-ring neigh-

borhood of vertex i, ~vi is its position vector, and ~v j is the

position vector of the jth neighbor (Fig. 6.a). While a pow-

erful scheme, this force smooths the mesh via local flattening

at the expense of reducing the volume.

The second internal force is based on the Biharmonic

operator as shown in Figure 6.b.The magnitude of this force

represents the variation of curvature at that vertex and the

main idea is similar to Laplacian operator such that it reg-

ularizes the spacing throughout the mesh and tries to main-

tain a uniform mesh distribution during deformation. The

Biharmonic forces acting on a discrete mesh is calculated as

follows:

4~v Biharmonic
i =

(
1
n

n

∑
j=1
4~v Laplace

j

)
−4~v Laplace

i (5)

To sum up, combining these two internal forces with the

guidance vector field forces not only provide smoothness but

also a regularization for mesh distribution at the expense of

volume shrinkage.

Deformation Rule: A primary difficulty in our problem

is that the input curve clouds are usually specified along the

boundaries of the intended object. The middle of the sur-

faces, however, are generally devoid of such curves unless

the user dictates details in those regions. As a result, un-

like the case in segmentation of medical images [22], our

approach requires a careful negotiation between the internal
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Δvi
Laplace

vi

vjvj

vi

(a) (b) 

Δvi
Laplace

Δvj
Laplace

Δvi
Biharmonic

Fig. 6: (a) The Laplacian and (b) the Biharmonic operators.

energy of the deformable surface and the external force field

that aims to deform it. This balance is necessary to generate

surfaces that capture large regions of surfaces while main-

taining triangle regularization and smoothness, when there is

no data to support their particular configurations.To achieve

this balance, following equation sets illustrate our general

deformation rule for each vertex on the elastic genus 0 seed

surface. Discretized form of the deformation of a dynamic

elastic model in time [29] is represented in Equation 6 where

4~v GV F
i is the displacement amount due to the calculated

guidance vector field for the i th vertex.

4~v De f orm
i =4~v GV F

i +α14~v Laplace
i +α24~v Biharmonic

i (6)

The combination of internal forces with the external forces

which is guidance vector field forces is described in Equation

7. In order to enhance local smoothness and distribution, we

determined coefficients α1 and α2 empirically as 0.7 and 0.3

using different sets of input curve clouds.

4~v Total
i = ω De f orm(4~v De f orm

i )+ω Laplace(4~v Laplace
i )

(7)

The internal Laplace and Biharmonic forces work to main-

tain the local smoothness and the regular distribution of the

mesh spacing while the guidance vector field pushes the

mesh vertices toward the 3D curves. However, a simple sum-

mation of the external and internal forces causes the vertices

of the deformable surface to be accumulated along the curves

as the magnitude of the field forces are higher in the vicinity

of the curves. This process causes triangles with high aspect

ratios (i.e. low quality) on the seed surface, which negatively

affects the vertex operations in the subsequent iterations.

To address this issue, we propose the use of a com-

bination weighting scheme such that weights ωDe f orm and

ωLaplace are determined dynamically based on the vertices’

distances to the curves during each iteration. Note that as

shown in Figure 7, ωDe f orm favors GVF forces in the vicinity

of the curves, while ωLaplace favors the internal forces away

from the curves. Such a weighting scheme enables smooth-

ing components to dominate when the seed surface is far

from the curve clouds. On the other hand, when the seed sur-

face is close to the user drawn curve clouds, guidance vector

field vectors are enforced for a better approximation while

deteriorating the effect of smoothing components.

3.2 Surface Modification Operations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 

Normalized distance Normalized distance

(b) 

ω
Laplace

ω
Deform

Fig. 7: A distance map is used to adjust the (a) Laplacian
smoothing displacement and (b) relative weights of vector
field displacement.

In addition to the iterative deformation algorithm, our

free form surface skinning algorithm provides a set of user

controlled surface modification operations for further sur-
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face refinement. These operations can be used in conjunction

with or separately from the main deformation procedure and

include sketch-based mesh alignment, inflation, Laplacian

smoothing, V-spring smoothing, loop subdivision masking

and remeshing. Furthermore, these operations can be per-

formed interactively at any stage of deformation through a

select-and-modify approach which will be explained in Sec-

tion 4.

3.2.1 Sketch-based Mesh alignment

Our first surface fairing operation is sketch-based mesh

alignment which enables the designer to modify the topology

of seed surface mesh according to 3D input curves. Since in

our setting surface deformation and input curve clouds are

independent in terms of topology, we need to adjust mesh ge-

ometry on the seed surface such that the mesh edges will fol-

low user drawn curves closely. To address this issue, we can

apply a large number of subdivision operations to increase

mesh resolution until an edge path closely approximates the

projection of 3D input curve onto this surface. However,

this may require many subdivision levels to properly approx-

imate projected 3D curve with an edge path. Another solu-

tion could be inserting additional edges through mesh cut-

ting operations. However, this solution would increase mesh

complexity and result in a large topology change. To allevi-

ate these challenges, we utilize a mesh alignment algorithm

similar to the technique in [30]. Our algorithm consists of

two main steps: (1) calculation of shortest edge path, and (2)

edge swapping for increasing mesh quality.

Calculation of the shortest edge path

First of all, our algorithm determines meshes that lies

under the projection R = [ri] of 3D input curve S = [ri] which

constitutes our region of interest (Fig. 8.a, Fig. 8.b). In or-

der to obtain shortest edge path V = [v1,v2,v3,v4,v5, .....,vn]

initial and final mesh vertices are determined through find-
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Fig. 8: (a) User drawn 3D curve (b) selection of triangular
meshes lying under the 3D curve and (c)weight calculation
for edge path selection

ing closest mesh vertices to the initial and final points on R.

The remaining mesh vertices for the shortest edge path are

chosen according to a weighting scheme. Starting from the

initial mesh vertex, for each edge path a weight which is sum

of its vertices’ perpendicular distance to R is computed. The

edge with lowest weight is added to the edge path V . Figure

8.c demonstrates the weigh calculation for an example edge

on surface mesh. This procedure is continued until the algo-

(a) (b)

(a) (b)

Fig. 9: Mesh alignment example: (a) User drawn 3D curve
and (b) final aligned mesh edge path

rithm reaches final mesh vertex. However, in order to make

sure our path is traveling in the direction of the R, we find the

closest points K1 and K2 on R from the first and second mesh

vertices of the selected edge path. To guarantee direction

consistency, cord length c2 of K2 on R should be larger than

the chord length c1 of K1. Fig. 8.c illustrates this direction
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check procedure.

In order to align mesh topology with the user drawn

curve S, we have to modify positions of each vertex on the

edge path. The alignment is performed by moving each ver-

tex to its closest point on its projection R. Aligned edge

paths are usually very close to curve R, however this pro-

cedure might result in low quality triangles (i.e. bad aspect

ratios). To address this problem, we applied edge swapping

algorithm to surface meshes with low quality. This opera-

tion changes surface topology locally, but it fixes low quality

triangles as follows.

Edge swapping

Triangle quality for a mesh is defined as the radius ra-

tio, which is the radius of the inscribed circle divided by the

radius of the circumscribed circle [31] (Fig. 10.a). For two

adjacent triangles on deformable model, edge swapping will

improve the mesh quality by swapping their common edge

(Fig. 10.b-c). After the mesh alignment procedure, if the

mesh quality for any triangle is lower than a prespecified

threshold edge swapping is employed by swapping its largest

edge with its adjacent triangle. Figure 9 demonstrates mesh

alignment with edge swapping where the user first selects a

3D curve and our algorithm calculates a shortest edge path.

r

R

v3

v1

T1

v2

T2
T’1

T’2

Q=r/R

Edge swapping

(a) (b) (c)

Fig. 10: (a) Triangle quality calculation and (b-c) edge swap-
ping

3.2.2 Inflation

Another surface modification operation is inflation. It

seeks to inflate a region of interest decided by our lasso se-

lection tool while keeping positions of other mesh vertices

constant. The inflation occurs for each vertex in the direc-

tion of their normals. This operator can be employed to in-

flate flattened regions due to the deformation process or a

smoothing scheme like Laplacian. Following equation illus-

trates update rule for each vertex in ROI.

~vt+1
i =~vt

i +δ~nt
i (8)

where~vi is the vertex position in 3D, δ is the inflation coeffi-

cient and~ni is the unit normal vector of vertex i.

In order to have a smooth transition at the boundary of

region of interest for inflation operator, the vertices close to

this boundary but out of the ROI can also be moved with

a coefficient with a decreasing Gaussian function behavior.

Figure 11 illustrates the effect of inflation operation.

(a) (b) 

Fig. 11: Inflation operation: (a) Region selection and (b) re-
sulting surface after inflation

3.2.3 V-spring smoothing

This operator aims to minimize the variation of the cur-

vature of the deformable mesh [32]. A spring is attached to

each vertex in which the initial spring length represents the

local curvature at that vertex. When set free, the spring set

minimizes its energy by forcing neighboring vertices onto a
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local sphere (Fig 12.a):

4~v V spring
i =

1
n

n

∑
j=1

1
‖~v j−~vi‖

[
(~v j−~vi) · (~n j +~ni)

1+(~n j ·~ni))

]
~n j

+
[
4~v Laplace

i − (4~v Laplace
i ·~ni)

]
︸ ︷︷ ︸

regularization

(9)

where~ni and~n j are the unit normal vectors of vertices i and

j respectively. Figure 12.b illustrates the calculation of this

force from the one-ring neighborhood.

vi
vi

Δv
ivi

n
i

n
i

n
in

j n
j

vj vjvj

(a) (b)

Fig. 12: V-spring smoothing gradually minimizes the varia-
tion of curvature in the surface: (a) Vspring for one vertex
and (b) total Vspring effect

3.2.4 Loop subdivision masking and remeshing

This operator makes use of the Loop subdivision scheme

[33] vertex masks without any subdivisions. The displace-

ment for each vertex is calculated using its one-ring neigh-

borhood as follows:

4~v Loop
i =−β~vi +

1
n

n

∑
j=1

β~v j (10)

where β = 5/8+ (3+2cos(2π/n))2/64.

This scheme is conceptually similar to the Laplacian

forces except it provides closer control over the vertex dis-

placements by making the displacements sensitive to the

number of surrounding neighbors.

In addition to loop subdivision, the user can remesh the

seed surface entirely or partially through region selection.

The time required for remeshing depends on the number of

vertices and mesh complexity, but it operates still at inter-

active rates. It provides regularization and smoothness too,

which can be used especially before reaching the final sur-

face.

4 Implementation

4.1 Curve generation tool

The curve clouds that are taken as input can be gener-

ated through a number of different methods such as 3D input

devices in augmented reality environments [5, 6], or through

existing 3D wireframe modeling approaches that may uti-

lize sketch-based user interfaces [3, 4]. In this work, the

curve clouds we use are generated using a 2D sketching inter-

face capable of calculating 3D locations of symmetric curves

from the projections of the symmetric pair on screen coor-

dinates like in the work ILoveSketch [34]. One reason for

this choice is that sketch-based user interfaces are more ac-

cessible and familiar to use in comparison to virtual reality

systems. However, the proposed method is not limited to the

curve models created using this interface.

In our approach, users sketch pairs of symmetric curves

on the drawing surface. Figure 13 illustrates the idea. Each

curve is first converted to a cubic Bezier curve with four con-

trol points in the image plane. The 3D configuration of the

symmetric curve pairs is found using least squares minimiza-

tion approach. Given the symmetry plane defined by a posi-

tion vector S, and a normal vector N, we first construct two

rays, ~wA and ~wB, emanating from the viewpoint ~C toward the

symmetric pair ~PA and ~PB, respectively. We write the posi-

tion vectors ~PA and ~PB with respect to ~C and the symmetry

plane. Vector algebra enables the calculation of ~PA and ~PB
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through the least squares solution of the following matrix:



wAx −wBx 2Nx

wAy −wBy 2Ny

wAz −wBz 2Nz

~wA ·~N −wBx 0




dA

dB

α

=



0

0

0

2~S ·~N−2~C ·~N


(11)

where dA and dB are the distances on rays ~wA and ~wB re-

spectively between ~C and ~PA, ~PB, and α is the perpendicular

distance from the symmetry plane to ~PA and ~PB. We solve the

above least squares problem for all symmetric control point

pairs to determine the position and orientation of the curve

pairs in 3D.

The user creates as many such symmetric curve pairs as

desired. The output of this process is a curve cloud contain-

ing the raw curves that are not necessarily connected to one

another. As such, this kind of geometric content is not suit-

able for surfacing using conventional methods that require

connected wireframe models [1, 2].

C

w

w

S

A

B

R

P

P

-αN
αN

A

B

(a) (b)

(c)

symmetric

curve

pairs

drawing plane

symmetry plane

Fig. 13: Calculating the 3D positions of point pairs sym-
metric about a symmetry plane from their projections on the
viewing plane.

4.2 Selection tool

In order to apply surface modification operations selec-

tively, we have implemented a lasso selection tool which

seeks to select meshes that lie inside the user drawn lasso.

First of all, our selection tool smoothes the user drawn lasso

and approximates it with a circle. This circle is generated

in screen coordinates and all the mesh vertices with screen

coordinates falling inside this circle are selected. Moreover,

our selection tool also enables the designer to pick a spe-

cific curve in the curve cloud for mesh alignment operations.

The key advantage of this option is that the mesh topology of

the final surface will closely approximate user drawn curves

which might be desirable by users. After the selection oper-

ation, picked triangles will have a different color to be easily

remarkable.

4.3 Rubbing tool

In addition to region selection tool, we also implemented

a rubbing tool such that the designers can assign one of the

surface modification operations as its function. The key ob-

servation of our approach is that designers should be able to

apply surface fairing operations like using a rubber interac-

tively. This tool will provide easy and quick modifications

compared to region selection tool which is suitable for detail

design. Therefore, we have implemented such a tool where

the designer clicks on screen with his mouse and our algo-

rithm creates a circle with a predefined radius around this

screen coordinate. Then, all the meshes falling inside this

circle are modified by the pre-assigned function interactively

without fixing a region of interest. This tool is especially

suitable for smaller regions compared to the lasso selection.

Figure 14 demonstrates this selection tool and generated cir-

cle around mouse pointer on the screen.
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(a) (b) 

Fig. 14: Rubbing tool with Vspring operation: (a) Region
selection and (b)resulting surface after Vspring opeartion

4.4 Constraint labeling

This tool aims to control locally first order geometry in-

formation of a mesh vertex. The user can maintain normal

and position vectors of selected vertices constant during any

surface fairing operations. The labeling is performed through

assigning 1 or 0 to any mesh vertex. If the attribute of a ver-

tex is 1, its position and/or normal vectors are kept constant

or vice versa. This idea can be extended for higher order

geometry information and enables designers to transfer their

design constraints such as safety, manufacturing, etc. or de-

sign decisions onto seed surface.

5 Results and Discussions

We demonstrate the utility of the proposed method on

a series of different curve sets generated in a sketch-based

system using a graphics tablet interface. In all cases, the

4x,4y and 4z are assumed to be 1 in discretization of the

three decoupled Euler equations. As shown in Fig. 15, the

proposed method is capable of generating surfaces on simple

geometries such as a cube and a rectangular prism, although

no dense curve network or tesselation exists to reconstruct

the surfaces spanning these boundaries. Figure 15 demon-

strates that the results obtained using the proposed algorithm

without any manual surface modification operations are con-

sistent with the results a human would expect on such curve

networks.

Figure 18 illustrates the general pipeline of our algo-

rithm where a 3D gamepad sketch is used as input for skin-

ning operation. Firstly, the curve set is quantized into a 3D

binary voxel image (Fig. 18.a). Next, a guidance vector field

is automatically calculated and an elastic genus 0 surface is

instantiated for deformation (Figu 18.b). After this initializa-

tion, this seed surface is driven toward the input curve cloud

under the control of both internal and external forces ex-

plained in section 3.1.3 (Fig. 18.c). Once the initial working

seed surface is obtained, the surface is further manually re-

fined through implemented surface modification operations

as desired (Fig. 18.d-e). In this pipeline (Fig. 18), all the

steps except minor surface modifications are performed au-

tomatically by the proposed technique.

(a) (b) (c)

Fig. 15: Application of the proposed algorithm on simple
geometries: (a) 3D input curve cloud, (b) discretized domain
and (c) resulting surfaces

Product form design examples of surface creation us-

ing sparse curve clouds are illustrated in Fig. 16 and Fig.

17 where each example is created under 60 seconds with

6146 vertices on a 2GHz machine. Especially, in Fig. 16,

the effect of different inputs on the generated final surface

is studied where 5 different 3D curve clouds representing a

small dining table are generated. The main aim of this study
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Fig. 16: Different 3D curve clouds (a)-(e), resulting surfaces and curvature plots

is observing the changes on the resulting surfaces according

to different levels of input information where the common

property of these inputs is that they are well connected but

incomplete in terms of their linkages. Firstly, Figure 16.a

approximates a dining table with 3 circles where each one

of these circles describes intended cross sections along the

table. Our algorithm generates a resulting surface which ap-

proximately satisfies user provided cross sections and pro-

vide smooth surfaces where no geometric information exists

to reconstruct an approximate surface. In Fig. 16.b, a small

ring is added just below the top cross section and the result-

ing surface has taken into account this input change through

generating a thinner table leg compared to 16.a. In Fig. 16.c,

another top cross section is added to the input curve cloud,

which affected the shape of the upper surface part of our ta-

ble (a thicker top surface). The changes observed in resulting

surfaces according to systematic input differences are con-

sistent with user expectations. Figure 16.e illustrates that the

addition of another top ring between the existing two and

a small ring just above the bottom ring heavily affects the

resulting top surfaces and bottom leg. Curvature plot for

each different input information level provides clues about

the smoothness of the surfaces which can be improved fur-

ther using implemented surface modification tools. One of

the key advantages of our technique is that the addition of

each user stroke affects the resulting shape locally which en-

ables intuitive manipulation during product form design that

is, performed changes affect the regions the one expected.

In Figure 17, more complex input curve clouds (space-

ship, sedan car and coffee table) are processed for surface

generation to demonstrate the performance of our algorithm

on incomplete 3D input curves which do not necessarily con-

nect to one another. All the resulting surfaces in Fig. 17

are automatically generated. Only mesh subdivision is ap-

plied to the entire surface once by the user when necessary

through a button press. The main challenge in these models

is generating a closed polygonal surface where no geometric

data exists for surface construction. For example, although

there is no geometric information for the car hood, the result-

ing surface at that region coincides well with the rest of the
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model and our expectations while preserving smoothness.

Compared to the existing models in the literature, these

examples demonstrate our contributions in proposing a sur-

face generation tool using 3D sparse set of curve clouds and

providing a visual feedback for early assessment and evalu-

ation purposes at early design stages. At any moment during

deformation, the designer can add or remove strokes and up-

date the guidance vector field after these operations which is

suitable for quick idea generation.

5.1 Limitations

As shown in Fig. 18.c, one of the important limitations

of the proposed technique is the possible generation of cav-

ities while enforcing the deformable surface toward concave

regions (marked by a red circle) which might be desirable in

some cases. This limitation stems from the lack of geomet-

ric information for surface generation at some regions. For

example, the handles of gamepad in Fig. 18.c have such cav-

ities which are produced due to the lack of geometric infor-

mation which will stop the deformable surface at the center

of the handles. This limitation can be solved either by using

some surface modification tools like inflation or by provid-

ing additional curves for those regions. Moreover, in current

implementation our technique cannot approximate intended

objects with holes. The resulting surface is always a genus

0 surface. This limitation could be overcome by enabling

designer to start deformations with surfaces with different

genus numbers.

6 Conclusion and Future Work

In this paper, we create an innovative method for gener-

ating approximate surfaces to skin 3D curve clouds for con-

ceptual shape design and exploration. The method enables

designers to quickly construct approximate surfaces from

their informal 3D sketches. Our method uses sparse geo-

metric data to generate an approximate surface which can be

induced by this curve cloud. The usage of a guidance vec-

tor field as a way to bridge the gap between raw geometric

input and induced approximate surface enabled us to relieve

required geometrical constraints for skinning.

Our method is composed of two main steps: (1) Cal-

culation of a guidance vector field from a quantized voxel

image, (2) Initialization and deformation of an elastic sur-

face within the vector field. Currently, our approach calcu-

lates a binary voxel image from the input 3D curve clouds.

However, the nature of the sketching process typically en-

ables users to generate strokes maintaining different levels

of importances. This information can be captured from the

pressure intensity of the strokes drawn by the designers. Our

current drawing hardware is capable of sensing pressure in-

formation from curves, which can be used to generate gray

scale voxel images instead of binary ones. This improvement

will allow our guidance vector field and resulting deforma-

tion algorithm to be more selective toward regions defined

by heavily emphasized strokes. Moreover, this will make

our sketching experience closer to the real world.

Our studies have also revealed that in its current form,

the user guided refinement operations described earlier may

be difficult to master for naive users. The main difficulty

arises in strategizing a sequence for which the successive

operations result in the desired outcomes. Nonetheless, we

have observed that users are able to rapidly adapt to the sys-

tem.

Free form surfaces obtained through this technique, es-

pecially the dining table example inspired the idea of using

cross sections for geometric reconstructions. For example,

a possible research direction could be taking an object and

with the help of a pen device and extracting some of its cross

sectional 3D information for reverse engineering purposes.

In other words, using a few cross sections obtained from
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(a)

(b)

(c)

Fig. 17: Different example cases for product form design, (a)spaceship(b) sedan car and (c) coffee table

3D laser scanners might enable us to approximately reverse

engineer products quickly. In addition to this, we plan to

improve both the computational efficiency of the guidance

vector field calculation and the vector field resolution via

adaptive discretization such as octrees. We hope to achieve

a higher resolutions at the vicinity of the curve clouds, al-
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though field studies will be necessary to validate this need.
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(a)3D input curve cloud and its discretization

(c)Resulting surface after deformation of elastic seed surface

Fig. 18: Entire pipeline of our proposed algorithm
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