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Abstract—We present a new non-photorealistic rendering
method to render 3D scenes in the form of pencil-like sketches.
This work is based on the observation that the dynamic feedback
mechanism involving the human visual system and the motor con-
trol of the hand collectively generates the visual characteristics
unique to hand-drawn sketches. At the heart of our approach is
a trajectory planning and tracking algorithm that generates the
sketch using a dynamic pen model. A set of target strokes are
generated from the silhouette lines, edges, and shaded regions
which serve as the target trajectory for a closed-loop dynamic
pen model. The pen model then produces the rendered sketch,
whose characteristics can be adjusted with a set of trajectory
and tracking parameters. We demonstrate our approach with
examples.

I. INTRODUCTION

We describe a pencil-like sketch rendering method of 3D
scenes using a range of styles spanning novice drawers to
trained artists. The proposed method produces the visual fea-
tures unique to sketching through a dynamic modeling of the
drawing process. The perceived style of the resulting sketches
can be manipulated using the parameters of the system.

As suggested in [1], hand-drawn sketches exhibit a variety
of other artifacts such as overtracing, hooks at the stroke
ends, tonal variation in stroke intensities, lifting versus non-
lifting strokes, and layered hatching and cross hatching. These
features typically vary based on the skill level of the sketcher,
the sketcher’s particular precision during sketching, the level
of detail to be included in the sketch, and on the dynamics
of the pen, hand and the arm. Collectively, these phenomena
give rise to a rich set of stylistic variations in sketches, which
have been difficult to represent and reproduce algorithmically.

As one step toward addressing this challenge, we describe
a method to incorporate and control such effects using a two
step process. This involves a stroke field design and dynamic
stroke tracking. At the heart of our approach is the design
of a 3D pen trajectory from render buffers of a 3D scene
through edge detection, region clustering and stroke generation
algorithms. When combined with a dynamic pen model, this
approach helps produce the unique characteristics observed in
pencil sketches. The first step of stroke field design identifies
the silhouette, edge and hatching regions, and establishes the
stroking behaviors to be applied to them. This results in a 3D
target pen trajectory that serves as a reference to be tracked.
The second step involves the tracking of this reference by a
dynamic pen model. This model enables a rich set of artifacts
including a variation in tracking accuracy, stroke skipping,

overshoots, pen pressure, non-lifting strokes, and muscle jitter
through a set of dynamic parameters.

II. RELATED WORK

A. Line Rendering of 3D Objects

1) Silhouette and Edge Rendering: We discuss the prior
work on non-photorealistic rendering of silhouettes and edges
in three subgroups. The first group of techniques aim to
identify the most representative set of silhouettes and edges
that best articulate the shape. DeCarlo et al. [2] described
suggestive contours, Kalogerakis et al. [3] introduced a real-
time rendering method that uses learned curvatures variations,
Zhang et al. [4] utilized the Laplacian of the surface illumi-
nation for contour detection. Inspired by these works, we use
discrete Laplacian kernels on the depth and normal buffers to
identify the silhouettes and sharp edges from input images.

The second group of work focus on rendering identified
silhouettes and edges in prescribed styles. Markosian et al. [5]
described real-time rendering algorithms combined with styl-
ized stroke rendering. Yeh and Ouhyoung [6] developed stroke
rendering algorithms that helps mimic Chinese inking styles.
Hertzmann et al. [7] describe an algorithm to enable curve
analogies by learning a statistical model from an input pattern
and replicate it on another curve. Barla et al. [8] developed
statistical models that can learn and produce a wider range
of patterns. Brunn et al. [9] developed a multi-resolution
framework for encoding and generating curve patterns. While
these studies cover a large variety of stylistic rendering, little
or no emphasis is given to pencil-like renderings. This leaves
the simulation of characteristic features contained in pencil
sketches an open challenge. This work aims to enable the
generation of such features within a wide variety of stylistic
effects.

2) Hatching Rendering: Winkenbach and Salesin [10] de-
veloped stroke textures to render both textures and tone with
line drawings. Salisbury et al. propsed a similar approach
that produces scale-dependent renders on different scales of
sketches. Winkenbach and Salesin [11] later extended their
work to rendering parametric surfaces with lines following
parametric derivatives on the surface. Salisbury et al. [12]
proposed an interactive design system that allows the users
to quickly design directional fields to support line renderings.

Inspired by the works of Winkenbach et al. , a multitude of
methods were developed to render lines by tracing the direc-
tional fields computed from 3D geometries. Hertzmann and
Zorin [13] presented a set of algorithms to calculate hatching



lines that follow directional fields defined on surfaces. Praun
et al. [14] proposed a method for real-time rendering using
tonal maps. Palacios and Zhang [15] described an interactive
method for field design on surfaces using rotational tensor
symmetry. Paiva et al. [16] proposed a physically inspired
directional field design method that calculates fluid-based
hatching strokes. Jodoin et al. [17] also used sample drawing
methods that enables the reproduction of recorded hatching
patterns. Kalnins et al. [18] incorporated similar pattern learn-
ing and reusing techniques in an interactive non-photorealistic
rendering system. Similarly, Kalogerakiset al. [19] target
learning hatching preferences of an artist from a sample sketch
that is drawn over a 3D render.

Most of the prior work in this area is based on the observa-
tion that hatching strokes are commonly drawn in directions
that closely align with the underlying geometry. Although this
observation is valid for in contexts where precise and accurate
3D renderings are desired, it may not apply in other contexts
involving casually drawn pencil sketches. In this work, we
base our hatching patterns on the shape of the shaded regions.

III. RENDERING APPROACH

Our approach consists of two main steps: (1) Reference
trajectory design (2) Trajectory tracking via a dynamic pen
model. Within each step, a number of parameters are noted to
facilitate the discussions in Section IV. These parameters are
highlighted at their point of definition.

A. Reference Trajectory Design

This step takes as input the conventional render, normal and
depth buffers of a 3D scene. From these buffers, it produces
the curves and regions to be rendered with strokes. We use
the depth and normal buffers to identify the silhouettes and
edges, and the render buffer for shading region identification
and tonal control.

From these buffers, our method generates a 2D stroke
pattern that traces the identified curves, and shades the regions.
For each stroke generated during this process, its position,
shape, length, and intensity variation is computed using the
render buffers. Spatial and angular perturbations are then
applied to the strokes to simulate the inaccuracies with the
human motor control system. Finally, this stroke pattern is
transformed into a single, time-dependent 3D space curve. The
x and y components of this resulting curve control the stroke’s
final shape in the image plane, while the z coordinate dictates
whether the stroke leaves a trace on the paper, and if so, the
stroke’s thickness and intensity. The transformation from a
2D pattern to a 3D curve allows the subsequent pen model to
follow a 3D path, thereby allowing a rich set of visual artifacts
to be created on its projection to the image plane.

1) Silhouettes and Edges: To design the stroke trajectory
for the silhouettes and edges of an object, we use conventional
edge detection methods on the depth and normal buffers.
However, other methods such as suggestive contours [2], [3],
[4] could also be used without loss of generality. In our
implementation, we use the Laplacian convolution kernel on
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Fig. 1. The input buffers: Depth, normal, and render buffers. The silhouettes
calculated from the depth buffer and the sharp edges identified from the normal
buffer are combined to identify the silhouettes and edges. The render buffer
is later used for hatching.

the depth and normal buffers to identify the curves at which
the depth and normal vectors vary abruptly. (Fig. 1). When
combined, this results in the extraction of silhouettes and sharp
edges of the model as a set of polylines. From this point
onward, we do not distinguish between a silhouette or an edge
curve, and instead simply refer to them as siledge curves.

While this analysis may produce clean siledges , it may
also produce disconnected islands of such curves. In either
case, we assemble all siledge curves into a single chain using
their spatial proximity. In addition to its spatial configuration,
the siledge path also maintains information regarding the
underlying image intensity from the render buffer, which is
later used to generate the height (z)coordinates.

(a) (b) (c)

Fig. 2. Each siledge is converted into a series of strokes. The stroke
lengths are determined adaptively according to the curvature along the
siledge. The magnitude of overlap between consecutive strokes is determined
probabilistically from a normal distribution. The strokes are altered by random
perturbations in orientation, length, and scale. Strokes are rendered thicker
than normal for demonstration.

The next step involves stroke design on this siledge path.
The local curvature of the path has an influence on the
length of the strokes to be generated. High curvature regions
typically result in shorter strokes, while low curvature sections
can be traced using longer strokes. Once stroke lengths are
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determined, we use a normal distribution to generate variations
in the amount of overlap between consecutive strokes, as a
function of the strokes’ lengths. Figure 2b demonstrates this
idea. We control the average length of the strokes and the
overlap with two parameters, PLmean and Poverlap, respec-
tively. Finally, the stroke orientations, lengths and positions
are randomly perturbed. We do so using a single parameter
Psiledge that concurrently controls the standard deviations of
these attributes, as shown in Figure 2c.

Once the size, shape and position of the strokes are
determined, points are sampled along the stroke to mimic
equal time intervals during traversal. Similar to stroke length
determination, we simulate the effect of the pen slowing
down around high curvature regions using curvature-adaptive
sampling. High curvature regions are thus sampled more
densely compared to low curvature regions. In the following
sections, we discuss the effects of the pen speed on tracking,
and thus the stroke renditions produced by our pen model.

2) Hatching: We use the render buffer to identify the
regions to be hatched for shading. For this, we apply a low
pass Gaussian filter to the render image and use an intensity
cut-off value (Pint−cutoff ) to isolate the shading regions. The
first row of Figure 3 illustrates the idea. This process results
in a set of bounded regions, each treated as a separate area to
be shaded. Within each region, a hatching pattern is designed
that maintains a flow congruent with that region’s geometry.

If the previously computed siledge path crosses through an
identified region, that region is further subdivided into smaller
regions. Since siledges correspond to discontinuities in the
depth and normal maps, this subdivision helps our system
produce distinct hatching patterns within each subregion. This
desirably helps the hatching to preserve such discontinuities.

As shown in the second row of Figure 3, the identified
regions often exhibit complex boundaries. This prevents a
straightforward adoption of a hatching direction, as the re-
sulting hatching behavior would require frequent pen-up/pen-
down motions. Artists typically prefer to shade such regions
by dividing it into multiple smaller groups that can be con-
tinuously hatched with a series of strokes. Inspired by this
observation, we compute the medial axis of the region, which
reduces our analysis to a group of branches. To identify the
salient regions to be distinguished, we seek to merge branches
that are connected with smooth transitions. This is done by
studying the curvature of a compound curve that is formed
by joining the two branches. If the discrete curvature of the
compound curve at the joint is less than a threshold, the
branches are merged (Figure 3f). This process is repeated
until no more mergers are available. Next, short branches are
identified and removed, thereby leaving a small set of skeletal
curves forming the axes of the subregions to be hatched.

We next generate a hatching pattern for each identified
region using each region’s medial axis branch as a reference.
Figure 4 illustrates this process. For a given region, the
hatching strokes are created from arc segments sharing a fixed
radius. This mimics the arc-like strokes caused by the motion
of the fingers and the wrist of the artist about a virtual pivot

(a) (b)

(d) (e) (f )

(c)

Fig. 3. Identification of hatching regions. (a) The render buffer is processed to
determine (b) the hatching regions and shading tones (c) resulting in islands of
regions. (d) For each region, the skeleton is calculated (e) and the branches
are segmented. (f) Continuous branches are merged to produce compound
branches, from which a reduced set of regions are determined.

point. The orientation of the hatching strokes are chosen such
that the generated pattern is a function of the region’s shape.
For slender regions, the strokes are configured such that they
are always offset by a prescribed angle relative to the medial
axis. In such cases, the hatching pattern closely follows the
shape of the medial axis. However, this requirement is relaxed
for wider regions so that the long hatching strokes produced
for wider regions do not form fan-like patterns in an effort
to follow the tight turns of the medial axis. This effect is
formulated by assigning an offset angle along the medial axis,
and smoothing this angle vector in relation to the region’s
width along the medial axis1. After the hatching strokes are
generated, parts of the strokes falling outside the region are
masked out, leaving the hatching only in the region to be
shaded.

Similar to siledges, perturbations are applied to the orien-
tation, position and size of the hatching strokes in order to
simulate the inaccuracies of the human arm. This is controlled
with a single parameter Phatching. Additionally two other

1Note that the medial axis encodes the distance to the closest boundary
points, thereby allowing the thickness of the region to be trivially computed
as the medial axis is traversed.
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parameters in this process control the mean frequency of the
hatching strokes Phtc−freq, and the deviation of the hatching
frequency within the region Phtc−freq−dev. Similar to the
siledge strokes, hatching strokes are lastly sampled to generate
points along their traversal. Since hatches are formed by
constant radius arcs, the curvature-sensitive sampling produces
equally sampled points along these strokes.

(c)(a) (b)

Fig. 4. Hatching stroke generation. A series of arcs are oriented along the
medial axis. The arcs are trimmed with the hatching region, and perturbed in
orientation and scale generating the final hatching strokes.
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Fig. 5. The virtual transition strokes connect consecutive strokes. The strokes
attain z coordinates based on the underlying intensities. The virtual transition
strokes ascend into +z space, though not exceeding zceiling . The follow
through of the transition strokes parallel to the virtual paper is determined by
the underlying stroke’s length.

3) Stroke Connections: At this point, the image intensity
values along the siledge and hatching strokes (obtained from
the render image) are used to create the height (z) coordinates
for each stroke. This is facilitated by considering a virtual pa-
per surface representing the z = 0 plane. All strokes generated
thus far lie below this plane, as this indicates the pen being in
contact with the paper. Darker intensities are transformed into
deeper z coordinates whereas lighter ones are interpreted as
shallow depths. Image intensities in the range [0, 1] are linearly
mapped to the z coordinates [0,Pzbase

], where Pzbase
is the

parameter governing the maximum penetration depth as shown
in Fig. 5.

After stroke heights are computed, successively generated
strokes are attached to each other using virtual transition
strokes. This simulates the pen lifting off the surface after one
stroke ends, and reentering the paper for the next stroke. We
model this effect using cubic Beziér curves as shown in Fig. 5.

The design of these strokes is critical, as they govern segments
of the trajectory that our dynamic pen model will be tracking.
To this end, we introduce a control parameter Pzceiling

that
determines the maximum height the pen is allowed to ascend
during transitions. Additionally, to account for longer strokes
causing higher resistance for the pen to change direction
at the liftoff point, we extend a vector proportional to the
stroke’s length. We use the right triangle formed by the
ceiling, and the extension vector of the stroke to determine
the tangent vectors of the Beziér curve. This allows a natural
follow through for each of the transition strokes, based on the
strokes they connect. Using this formulation, we generate a
single trajectory that the dynamic pen model will next follow.
Figure 6 shows the final 3D trajectory produced in this way.

(a)

(d)

(b)

(c)

virtual paper

Fig. 6. (a) A series of strokes sampled in 2D (b) The resulting rendered
strokes. (c) 2D strokes are transformed into 3D reference trajectory that
intersects the virtual plane at multiple locations. (d) The reference trajectory
(gray) is tracked using a dynamic pen (black), producing the render in (a).

B. Dynamic Pen Model

The calculated reference trajectory is next tracked by a
dynamic pen model which produces the final rendered strokes
(Fig. 7). The model consists of a closed loop control system
representing the visual system and the motor control of the
human. A free point mass represents the lumped pen, hand,
and arm masses. The input to the system is the continuous 3D
reference trajectories computed previously, and the output is
the actual 3D trajectory traced by the point mass. A muscle
model mathematically equivalent to a PID controller is used
for tracking. This formulation is similar to that used in [20].
We enhance this model by adding random muscle jitter to the
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guidance force applied to the point mass. The jitter is modeled
by a first order low pass filter that rejects frequencies above
a cut-off frequency. The equivalent mass is controlled by the
parameter Pmass, while the amount of jitter and the filter cut-
off frequency are linearly controlled by the parameter Pjitter.

+ +
+

-

Hand
Jitter

Jitter
Filter

Muscle
Model

Reference
Trajectory

Tracked
Trajectory

Pen
Inertia

Feedback Loop

Fig. 7. Dynamic pen model is a closed loop control system that guides a
pen/arm mass along a reference trajectory. The force on the pen (i.e. the force
that the muscle model applies to the pen inertia) is perturbed to model the
jitter in the motor control system.

We model the motion in three dimensions as three inde-
pendent systems of equations and use a Runge Kutta solver
to obtain the pen’s motion in space as a function of time.
The dynamic pen properties can be adjusted in the (x, y) and
z directions independent from each other. Figure 6d shows
the reference trajectory (gray) and the resulting pen trajectory
(black) produced using this process. The final rendered strokes
are computed from the intersections of the calculated pen
trajectory with the virtual plane. The segments of the pen
trajectory under the z = 0 plane form the strokes to be
rendered. Furthermore, using the penetration depths of the
trajectory, intensity values are assigned along the strokes
similar to the way they were computed in Section III-A3.

IV. RESULTS AND DISCUSSIONS

A. Performance

Our method is implemented in MATLAB. The hatching
region extraction described in Section III-A2 is currently
the most time consuming step. The computational cost of
other calculations including stroke generation and perturba-
tion, reference trajectory design, reference tracking using the
dynamic pen model and image differencing are negligible
compared to the region extraction step. The time required for
the calculations depend on the resolution of the render buffers,
the number of silhouette edges generated, and the total area of
the regions to be hatched. The overall processing times varies
between 30 seconds to 3 minutes of a Core 2 Dup computer.

B. Examples

Figure 8 presents example renderings produced by our
system. The input renders are obtained from software that
can export such buffers. The blow out windows show various
phenomena generated from our dynamic tracking, including
variations in siledge strokes, continuous versus distinct hatch-
ing strokes, cross hatching strokes, varying pen pressure and
stroke intensities. In these examples, we have manually used
two layers of hatching strokes where hatching directions make
about 60 degrees between each other. Figure 9 shows the

variations in sketch styles that can obtained by varying the
described sketch parameters.

C. Limitations

Our region segmentation analysis is able to produce ac-
curate partitions for smooth boundary regions. However, in
cases where the boundaries exhibit significant waviness, the
algorithm may produce fragmented regions. These regions,
when hatched, can cause undesirable hatching patterns that
are visually unappealing (in Fig. 8, the left leg of the second
child from the right). A similar situation occurs when a short
siledge is trapped within a large hatching region. This causes
fragmented regions, where the hatching angles change abruptly
within the region. One solution may involve a region analysis
algorithm that also takes into account additional factors such as
intensity variations within the region, together with the image
skeleton approach we use.

V. CONCLUSION

We described a new non-photorealistic rendering method
to render 3D objects in the form of pencil-like sketches.
Our method is based on the observation that the dynamic
feedback mechanism involving the human visual system and
the motor control of the hand collectively generates the visual
characteristics unique to hand-drawn sketches. To this end, we
developed a stroke planning and dynamic tracking algorithm
that produces a sketch render using silhouette, edge and
hatching strokes. This approach allows visual artifacts unique
to hand drawn sketches to be reproduced.

The mapping between our algorithmic parameters and the
three sketch descriptors we present provides a convenient basis
for studying the stylistic variations produced by our system.
We believe this opens a new avenue for future work where
the technical parameters can be learned and mapped to the
descriptor parameters using data-driven approaches, thereby
providing a link between artistic and algorithmic languages.
We also believe our system may also serve as a training and
visualization tool, as our approach helps produce a temporal
progression of the sketch.
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