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(a) Base shape (b) Designing streamlines (c) Designing free-form features (d) Finished design

Fig. 1. Overview of a typical session using the described system. In column (b), the designer first draws streamline constraints (red strokes)

on the surface to generate a singularity-free parameterization (red and blue grids). Then the designer draws shape editing strokes (green) to
drive displacement maps and create free-form features (column c). The cuts on the hood (3rd row of column c) was created via a downward

extrusion.

Abstract

Streamline-like, free-form features that “flow” on a base shape are often utilized in the design of products ranging from automobiles
to everyday consumer products. Providing computational support for the design of such features is challenging, because of the
open-endedness of the design explorations involved, and the necessity to rapidly and precisely capture the design intents expressed
in very simple forms, such as free-form sketches. We present a novel approach for designing streamline-based, free-form surface
features in the context of product design. Using our approach, the user first designs a network of streamlines on the base shape,
by performing a stroke-constrained mesh parameterization. Then, the user utilizes these streamlines as a curvilinear scaffold for
creating 3D free-form features that are bounded and parameterized by these streamlines. The user is able to apply fine-grained
control of the outline, profile and extent of the resulting 3D features by manipulating the streamlines. We demonstrate the capability
of this approach on several product models.
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1. Introduction1

Many shape features in product design can be abstracted2

as streamline-like features that “flow” on the base shapes.3

This abstraction encompasses a wide range of geometric4
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features, such as creases, channels, ridges, bulges, which 5

bear critical implications on the aesthetic and ergonomic 6

aspects of the product [9,16]. They are prevalent in various 7

media and stages in conceptual design. Examples include 8

those shown in Figure 2. 9

Developing aesthetically pleasing, streamline-like surface 10

features on product forms has been a long standing chal- 11
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Fig. 2. Streamline-based features in conceptual design. (a) A pho-

torealistic rendering of the streamline features on the side panel of
Mazda Nagare. (b) Packaging design sketches by Christopher Lave-

lanet utilizing streamlines. (c) An informal streamline sketch made
as an overlay on a clay model by DiMonte Group.

lenge in industrial design. Designers approach this chal-12

lenge by strategically prototyping and evaluating many13

shape design alternatives, especially in the early conceptual14

stages [14]. Computational design tools should support the15

rapid creation and exploration of such shape features. How-16

ever, the existing free-form modeling systems, such as para-17

metric surface modeling tools, subdivision modeling tools18

and mesh sculpting tools, do not cater to such needs. With19

those tools, the designer will have to rely on indirect and20

incremental editing metaphors such as parametric control21

points, or mesh sculpting tools and engage in tedious trial-22

and-error of shape editing workflow, or distractive work-23

flows such as UV editing and re-topology.24

We provide an approach for streamline-based, free-form25

modeling that enables direct prescription of the desired26

streamline patterns and shape profiles, the rapid explo-27

ration and the fine-grained user control of the resulting28

shapes.29

1.1. Overview of User Interaction30

Our approach is built on “streamlines”. Mathematically,31

the streamlines refer to the isolines in the (u, v) parame-32

terization, visualized using a red-blue grid texture. Prac-33

tically, the streamlines are the geometric scaffold for con-34

structing free-form, 3D features that are aligned, bounded35

and parameterized by them.36

In a typical editing scenario shown in Figure 1, our sys-37

tem works on a 2-manifold, triangular meshM, and alter-38

nates between two modes: surface streamline design (Fig-39

ure 1b) and 3D feature editing (Figure 1c). Both modes are40

driven by the input strokes drawn by the user.41

In the streamline design mode, the user controls the42

shape of the flow by drawing constraint strokes. The sys-43

tem will populate two sets of isolines over the user-selected44

region of interest on the base shape. One set, the stream-45

lines, will interpolate the constraint strokes, and vary in46

between the constraints. The other set, the equipotential47

set, will be approximately orthogonal to the streamlines.48

The details are described in Section 3.49

In the 3D feature design mode, the user utilizes these50

streamlines as a curved scaffold to sketch and build 3D free-51

form features. The user specifies the extremity and profile52

of the resulting features by drawing outline strokes along53

the streamlines, and drawing cross-section strokes across 54

the streamlines, respectively. The system deforms the base 55

surface with a displacement map d(u, v) parameterized by 56

the streamlines (u, v), such that the created feature inter- 57

polates the strokes. The details are presented in Section 4. 58

Our technical contributions include the construction of 59

smooth surface editing handles through the interactive pre- 60

scription of characteristic streamlines, a linearized tech- 61

nique for fine-tuning the alignment of the field-guided pa- 62

rameterization, and a streamline-based curvilinear scaffold 63

for unprojecting shape editing sketches and driving 3D free- 64

form feature creation. 65

2. Related Work 66

The construction of on-surface streamlines pertains to 67

mesh parameterization. Research in surface mesh param- 68

eterization has generated a large body of literature. For a 69

review of the progress in this field, we refer to several sur- 70

vey papers [6,15,3,1]. 71

Our method is built on field-guided mesh parameteri-
zation. This family of methods aims to compute a global,
piece-wise linear parameterization from a guidance vector
field pre-computed for each triangle t in the meshM. Math-
ematically, the unknowns to be solved are the (u, v) coor-
dinates for each vertex, and they are the minimizers for the
variational problem

min
u,v

∑
t∈M

(‖τt −∇ut‖2 + ‖Jτt −∇vt‖2)wt, (1)

where∇ is the face-wise gradient operator [3], τt is a tangent 72

guidance vector usually computed to follow the principal 73

curvature directions, Jτt is the rotation of τt by π/2, and 74

wt is a weighting factor proportional to the area of face t. ut 75

and vt represent the u, v coordinates of vertices belonging 76

to face t on the mesh. 77

This is a well studied objective function [12,7,2,10,1]. It 78

minimizes the misalignment between the gradient direc- 79

tions of u, v and the guidance vector. However, the objec- 80

tive alone is insufficient to generate isolines aligned with 81

the constraint strokes: the isometry of the objective tends 82

to create uniformly spaced isoline grids, and deviate the 83

isolines away from the constraints. Several remedies have 84

been proposed to break isometry and improve alignment 85

with the constraints, though at the cost of computation ef- 86

ficiency [8,10], linearization assumption [12], user interven- 87

tion [2], or reduced user interaction such as processing a 88

single stroke only [13]. 89

3. Streamline Design by User-Guided 90

Parameterization 91

Streamline design is the first step of our shape editing 92

work-flow. As illustrated in Figure 1b, this step does not 93

entail any shape modification, but generates the geometric 94

scaffold that supports subsequent editing. We compute the 95
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Fig. 3. The generation and use of streamlines per the user’s constraint

strokes. (a) A triangle strip inM constrained by a streamline stroke

(red). (b) Two adjacent triangles ti and tj in the constrained strip
of faces.

streamlines by a constrained, field-guided mesh parame-96

terization described below. The variables to be determined97

are the (u, v) parameters for each vertex inM. To produce98

streamlines suitable for aesthetic design, we seek to align99

streamlines maximally to the user-drawn constraints, and100

avoid singularities such as sinks, sources or vortex centers.101

3.1. Vector Field Design102

In Figure 3a, we first sample the user constraint strokes as103

polylines, and project them ontoM to find the intersections104

with the edges. In Figure 3b, the constraints computed105

include the tangent direction τ of the segment contained106

within each face, and the intersection p.107

We then follow the approach of trivial connections [5], a108

particularly efficient and robust method, to compute a dis-109

crete, face-wise, tangent vector field τt, t ∈ M per the di-110

rectional constraints. For each face within a disc-like region111

selected by the user, we compute a directional vector via112

constrained linear least squares to ensure that the resulting113

field varies minimally and smoothly. To avoid singularities,114

we insert a phantom vertex connected to all the boundary115

vertices of the disc region, to form a topological sphere. We116

then assign a singularity index of 2 to the phantom ver-117

tex to concentrate the unavoidable singularity away from118

the surface, because the Poincaré-Hopf Theorem maintains119

that the total singularity of a vector field on the sphere is120

2. See Figure 6 for an example of the constraints and the121

resulting vector field.122

3.2. Constrained Parameterization with Fine-Tuning123

Our goal here is to compute a piece-wise linear param-
eterization from the guidance vector field. The unknowns
are the (u, v) coordinates of each vertex, and are computed
by

min
u,v

∑
t∈M

(‖stτt −∇ut‖2 + ‖stJτt −∇vt‖2)wt

s.t. ui = uj ,∀pi, pj ∈ the same constraint stroke.

(2)

The notation is similar to the parameterization objective124

(Equation 1) reviewed in Section 2. Here we have made the125
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Fig. 4. The effect of curl-minimization on parameterization. The test

case is the parameterization of a quad domain with one constraint

(bold red strokes). The histograms show the angular mismatches be-
tween the direction of the parameterization and the guidance vector

field. The red and blue histograms represent the mismatch for the u

and v parameters, respectively.

following two additions to this equation to adapt to our 126

application scenario. 127

Firstly, we have added a face-wise scaling factor st to
scale the length of each guidance vector, to reduce the curl
of the field which is non-integrable and causes a residual
misalignment between the smooth vector field and the pa-
rameterization. The discrete curl [11] of τ at each shared
edge eij in Figure 3b is

curl(τ )eij = −τi · eij + τj · eij , (3)

which suggests that by scaling τi per the ratio of its projec-
tion onto eij and that of τj , the curl at eij will be canceled
locally. Globally, however, we can only hope to minimize,
rather than completely cancel, the total curl of the vector
field. To do so, we model the scaling factor sij on edge eij
such that

min
sij

∑
i,j∈M

‖sij −
τi · eij
τj · eij

‖2

s.t. Πjsij = 1,∀ vertices j adjacent to vertex i.

(4)

The product constraint ensures the global consistency of
the scaling factors, such that any path between two faces
will accumulate the same amount of scaling. We solve for
log sij instead of sij to obtain a linear system, that is

min
sij

∑
e∈M
‖log sij − log(

τi · eij
τj · eij

)‖2

s.t. Σj log sij = 0,∀ vertices j adjacent to vertex i.

(5)

After solving for the edge-wise scaling factors sij , we re- 128

cover the face-wise scaling factor st by traversing the mesh, 129

and multiplying the scaling factors when crossing an edge. 130

Figure 4 shows the effect of curl minimization on reduc- 131

ing the directional mismatch between the parameterization 132

and the guidance vector field. 133

The vector field computed may contain curl irremov- 134

able by scaling, and solving Equation 5 may result in large 135

scaling factors. We therefore restrict the scaling factors to 136

[ 15 , 5] which is the typical range of the gradient magnitudes 137

for a number of smooth parameterization that we reverse- 138

engineered. Additionally, the user can choose to fall back 139

to an un-scaled version where st = 1, t ∈M. 140

Secondly, we add the equality constraints to explicitly 141

enforce the alignment between the streamlines and the con- 142

straint strokes. For instance, in Figure 3b, the intersections 143

between the mesh edges and the constraint stroke, namely 144
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Fig. 5. A matrix view of streamline parameterizations generated on a

plane with various constraints. In the upper triangle of the 3 matrix,

we apply the row constraints on the left, and the column constraints
on the right. Due to the symmetry of the constraints, we only show

the combinations in the upper triangle, and use the space in the

lower triangle to stress-test the parameterization method with highly
curved, irregular constraints. The narrow, red and blue lines are the

streamlines. The brighter, red lines are the constraint strokes drawn

by the user.

points pi, pj and pij , are constrained to the equal u coor-145

dinates. This requires expressing the value ui of edge point146

pi in terms of the u of the vertices, and trivially translates147

into a linear, barycentric interpolation.148

3.3. Evaluations149

Figure 5 shows several synthetic examples of the stream-150

lines generated with different combinations of constraints.151

In all cases, the streamlines interpolate the constraint152

strokes up to numerical precision. Figure 6 shows several153

examples of streamlines created on the curved surface of a154

shampoo bottle.155

We summarize the total time taken from the constraint156

processing to completion of the parameterization on sev-157

eral models in Table 1, and the results compare favorably158

with the reported performance of existing works such as159

conjugate direction field [10], but not on par with the sin-160

gle stroke parameterization of [13]. This performance dif-161

ference represents a trade-off between functionality (han-162

dling multiple constraint strokes) versus simplicity (han-163

dling one input constraint stroke).164

4. Shape Editing using Streamlines165

4.1. Curved Scaffold for Sketch-based Shape Modeling166

First, we use the streamlines on the surface as a curved167

scaffold, and perform the stroke unprojection with their aid,168

as illustrated in Figure 7. We first unproject the end points169

Fig. 6. Curved streamlines generated on a curved base surface. The

narrow red and blue lines are the streamlines. The wide red lines are
the constraint strokes drawn by the user. The first row also shows

the handling of the user constraints and the guidance vector field.

The green arrows are the face-wise directional constraints computed
from the constraint stroke, and the red arrows represent the guidance

vector field computed from the directional constraints.

Table 1

Run-time statistics on benchmark models. Run-times are measured
in seconds on a 2.6GHz Intel quad core CPU with 16GB of RAM,

the same as that of [10]. The hardware of [13] is unclear. Our solver

utilizes multi-cores. The timing of [10] is based on the reported values.
The timing of [13] is interpolated from the performance curve from

their Figure 13. For models tested in [10], we selected ones that are

homomorphic to a disc. See the Figure 6 of [10] for the models.

Model #Tri Our Method Baselines

Tower 6751 0.17 5.4 [10], ≈ 0.01 [13]

Shell 7214 0.14 0.91 [10], ≈ 0.01 [13]

Roof 10979 0.28 23.4 [10] ≈ 0.02 [13]

Bottle 8192 0.21 ≈0.01 [13]

Car 6786 0.15 ≈0.01 [13]

Mouse 20000 0.51 ≈0.04 [13]

of the editing stroke to the surface, and select the closest 170

streamline as the source curve. We then extrude each point 171

si on the source curve along a user-customizable direction 172

ni, and create a quad strip. This quad strip serves as a 173

curved scaffold, upon which we project the entire editing 174

stroke, and resolve their 3D locations in the model space. 175

We label the resulting 3D points the target ti. Finally, we 176

compute t−s, the local displacement induced by the editing 177

stroke, which we will propagate throughout the region of 178

interest in Section 4.2. 179

4.2. Procedural Displacement Mapping 180

In this step, the local edits induced by the editing stroke
(t − s) are propagated globally along the streamlines, in
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Fig. 7. Streamlines (red and blue) as a curved scaffold for inferring the

3D location of a shape editing stroke (green). Top right: The stroke

drawn in the screen space. Bottom right: The stroke unprojected
parallel to the viewing plane, and then viewed from a different view.

the form of a procedural displacement map. During the
propagation, the magnitude of the displacement vector is
adjusted per a fall-off function which controls the cross-
section profile of the resulting free-form feature. Unlike the
existing sketch-based modeling systems that base the fall-
offs on the geodesic distance on the surface, or a global
energy functional [4], we compute the fall-off in the (u, v)
space spanned by the streamlines. The resulting features
will flow along the user-designed streamlines, rather than
following intrinsic geometric traces such as the lines of cur-
vature or geodesics. The displacement scalar d of a vertex
with parameters (u, v) is determined by

d(u, v) = du(u)dv(v),∀u ∈ [−1, 1], v ∈ [−1, 1], (6)

such that two 1D fall-off functions du and dv, adjustable by181

the user, jointly controls the displacement.182

Figure 8 showcases a variety of free-form features gener-183

ated using our approach. By allowing various combinations184

of streamline patterns and displacement maps, we provide185

the user with flexibility in various design scenarios.186

Displacement map is not the only surface editing tech-187

nique compatible with the streamlines. Any deformation188

approach that relies on a pair of source and target curves to189

drive the deformation is suitable. We choose displacement190

map here due to its closed form and efficiency.191

5. Design Examples192

We showcase several design examples with complex free-193

form features created from minimal user inputs. Figure194

9b shows our system utilized in the design of an asym-195

metric mouse, which features a number of smooth and196

semi-smooth creases that flow through the shape. Figure197

9a shows our system utilized for the design exploration of198

shampoo bottles. Our system follows the conventional, pen-199

and-paper design work-flow that has led to the 2D design200

sketches in the first column, and extends the design into the201

3D space. Finally, we showcase another car design session202

in Figure 10.203

(a) Different shape features generated by keeping the streamline
patterns constant, while varying the shape profiles (i.e., displacement

fall-offs) along the red, blue streamlines. For each shape, the profiles

along the red (resp. blue) streamlines are the functions plotted in
the row (resp. column) header in the same color.

S-shaped
streamlines

Diverging 
streamlines

Original shape feature
on paralle streamlines

M-shaped
streamlines

(b) Different shape features generated by keeping the fall-offs con-

stant, while changing the underlying streamline patterns.
Increase 

streamline density
Reduce 

streamline densityOriginal shape feature
Translate 

streamlines on the surface 

(c) Different shape features generated by keeping the fall-offs and

streamline patterns constant, while transforming the streamlines by
scaling or translating the (u, v) coordinates of the vertices. In the last

column we display three instances of uv -translated shape features,

two of which are partially out of the domain boundary. We note
that this show our displacement-based scheme is not limited to local

bump-like features, but also open channels extending out of the

surface boundary.

Fig. 8. Shape feature variations created with a combination of dif-

ferent fall-off functions and streamline patterns.

6. Concluding Remarks 204

We have developed a novel, streamline-based shape edit- 205

ing system intended for streamline-like features that flow 206

on a base shape, such as creases, ridges, and valleys. It has 207

several advantages, including the ease of use, fine-grained 208

user control of the outline, profile and extent of the result- 209

ing features, and the capability to explore the shape design 210

space along such dimensions. Our design case studies have 211

initially demonstrated the potential of this method. 212

Current limitations of our system include the lack of sup- 213

port for designing streamline fields with intended singular- 214

ities such as sources and vortices, and artifacts when work- 215

ing with a low-density input mesh. 216
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(a) Shampoo bottles design starting from

concept sketches (first column).

(b) The design of a feature-rich, asymmetric mouse. The middle row shows the

evolution of the design. The top and bottom row provide alternative perspectives.

Fig. 9. Design examples.

Fig. 10. A car design session. Streamlines are drawn as the red
and blue curves on the surface. The streamline editing strokes are

rendered as the bold, red strokes. The shape editing strokes are
rendered as the green strokes. The starting shape is shown in the
bottom right corner.
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