
Computer Tutors Can Reduce Student Errors and

Promote Solution Efficiency for Complex

Engineering Problems

Paul S. Steif, Matthew Eicholtz, Levent Burak Kara

Department of Mechanical Engineering

Carnegie Mellon University

Pittsburgh, PA USA

Abstract—An ability to solve complex problems, for which a

variety of solution paths are possible, is an important goal in

engineering education. While feedback is critical to learning,

hand grading of homework rarely provides effective, timely

feedback on attempts to solve complex problems. Such feedback

is also unfeasible in distance education contexts. A technology,

based on the approach of cognitive tutors, is presented as a

generally applicable method of providing automated feedback on

complex problem solving, with truss problems studied in

engineering as an example. The tutor maintains a cognitive model

of problem solving for this class of problems, and associates

various solution steps with distinct skills or knowledge

components. One can determine whether students learn

individual skills by measuring the error rate as a function of

practice. Prior work has shown that for many skills the error rate

indeed decreases with practice. New insight into the tutor’s

effectiveness, pertaining to the efficiency of student solution

paths, is presented in this paper. While no explicit feedback is

given regarding solution efficiency, it is found that students using

the tutor become more efficient with practice. Furthermore,

more efficient paths are found to be associated with making

fewer errors.

Keywords-concept inventory; interactive learning; measures of

knowledge; pre-post tests; Statics; web-based courseware

I. INTRODUCTION

The development of problem-solving skills is a cornerstone
of engineering education. While some problems that students
learn to solve are simple, utilizing a single concept or principle,
more complex problems are undertaken even in lower division
courses. Students may need to coordinate and organize several
concepts and steps, and many pathways to correct answers may
be possible.

It is recognized in general that learning of any new skill is
promoted by timely and effective feedback [1-4]. The
opportunity for feedback on complex problem solving
traditionally occurs through grading of handwritten homework.
With weeklong turnaround such feedback is virtually never
timely, nor is it readily made effective. Solutions can vary from
one student to another, and with an incorrect answer, it is
laborious for graders to identify and communicate to the
student how the solution deviated from a correct path. Further,

in a distance-education setting hand grading would be largely
unfeasible.

This paper describes a technology that can provide students
learning to solve complex engineering problems feedback on
their efforts. The technology must be able to follow and assess
student solutions for a variety of pathways pursued. To that
end, we adapt the approach of cognitive tutors, which have
been developed for computer programming [5], math [6-7], and
other fields. Such tutors are based on a cognitive model for a
learner encountering the chosen tasks, and so can potentially
provide feedback for a range of solution pathways. There do
not appear to be previous efforts to devise cognitive tutors to
assist students with complex engineering problems. The
feasibility of a cognitive tutor style approach to providing
feedback on complex engineering problems has been
demonstrated [8] through a tutor focusing on truss problems,
which are commonly studied in mechanical and civil
engineering. This new application of cognitive tutors is distinct
from previous tutors in that student work involves the
coordination of multiple open-ended, student-initiated vector
diagrams and equations, all of which are interpreted on the fly
in terms of a set of skills needed to properly solve the class of
problems.

In the present paper, we consider in more depth the solution
path taken by students solving problems with the tutor. While
the tutor gives feedback on individual errors, it does not prompt
students, except for rare circumstances, to think about whether
their overall solution strategy is efficient. However, one can
speculate that more efficient strategies may lead to fewer errors
and that, in the course of solving problems, students may
discover such solution strategies on their own. Here, efficiency
relates to the maximum number of unsolved, yet defined,
variables at any given time in the solution path. Using this
definition, we investigate whether solution efficiency changes
with practice and whether higher efficiency is associated with
lower propensity for errors.

II. DESCRIPTION OF TUTOR FOR TRUSSES

Since use of the tutor is intended to ultimately lead to
success in solving problems with paper and pencil, user
interactions with the tutor should be as unconstrained as
possible, provided the tutor maintains the ability to judge user

Support provided by the National Science Foundation through grant DUE
1043241 and by the Department of Mechanical Engineering at Carnegie

Mellon University.

work. Although progress continues to be made in computerized
interpretation of completely freeform work, for example via
writing with a stylus on a tablet [9-13], such technologies may
be limited for the foreseeable future; we have therefore defined
unconstrained as still within the confines of a mouse and
keyboard user interface.

Fig. 1 displays a typical truss problem as it would appear in
a textbook. The problem consists of a set of pins (dark circles)
and connected bars. There are specified forces (10 kN) and
supports (idealized constraints that keep the pins in position).
Fig. 2 shows a portion of a solution to the problem in Fig. 1;
user input corresponding to such solution elements must be
enabled by the technology. A portion of the truss (a subsystem)
including point C has been singled out for attention, the
unknown and known forces drawn on the diagram (a so-called
free body diagram or FBD), and equations of equilibrium
(imposing Newton’s laws of motion) have been written. In
solving truss problems, students select multiple portions of the
truss, and for each subsystem draw free body diagrams and
write equilibrium equations. Students must also organize the
solving of equations and interpret results physically in terms of
the original truss. The solver can choose any portion of the
truss, write equations in any order, then choose any other
portion, and so forth. The technology must grant the user
latitude to pursue this large space of solution paths and still be
able to judge and give feedback regardless of the path chosen.

Even within the confines of a mouse and keyboard user
interface, there are a few additional intentional constraints on
how closely students’ action with the tutor mimic paper and
pencil solving. First, to reduce the cognitive load [14-15]
associated with exercising skills already mastered by the
student, certain tasks have been offloaded to the tutor; for
example, we removed the need to enter numbers into an
electronic calculator to obtain numerical solutions. Second,
motivated by the self-explanation effect [16] in educational
psychology, that students who explained problems to
themselves learn more, the tutor introduces selective highly
targeted opportunities to make the student’s thinking visible,
thinking which is rarely visible in pencil and paper solving.
Specifically, the tutor requests the user to designate each
defined force as falling into one of several categories.

We assume that students using the tutor have learned about
truss analysis through other means, such as lecture and
textbook. The tutor focuses exclusively on helping students
solve problems, allowing a solution process such as depicted in
Fig. 2 to be conducted on the computer with as little constraint
as possible, while maintaining the ability to interpret student
work. Observations of student work and typical errors [17]
solving truss problems have guided tutor design. The goal is to
allow a student using the tutor to commit most, if not all, errors
that are observed in pencil and paper solutions.

Based on an analysis of the required tasks to solve truss
problems, informed by prior work on the concepts and skills
needed in the overall subject in which trusses are taught [18],
and typically observed student errors [17], the computer tutor
limits users to the following actions:

 Any set of pins, members, and partial members can be
chosen as a subsystem for further analysis.

Figure 1. Typical truss problem, in which forces within the bars (members)

are to be determined.

Figure 2. Portion of handwritten solution to problem in Fig. 1, showing the

free body diagram of the pin at C and its connected partial bars, and associated
equilibrium equations.

 In the free body diagram of a subsystem, forces can be
drawn only at pins or at the free ends of partial
members. Forces are confined to lie along horizontal(x)
or vertical (y) directions or parallel or perpendicular to
members.

 For each subsystem, equations of force equilibrium
along x- and y-axes, and equations of rotational
equilibrium about any pin, can be written.

A screenshot of the tutor, with a problem partially solved, is
shown in Fig. 3. The left half of the display contains a menu
bar at the top and the problem diagram and statement. The
problem diagram can be toggled to display the solution
diagram, where support and bar forces that have been
determined are registered by the student, as described below.
The user chooses a subsystem for analysis by clicking on a set
of pins, members and partial members, and then clicking on the
draw (pencil) icon from the menu bar. The selected group of
parts is added as another subsystem to the right half of the
display, and would appear as one of the thumbnails depicted in
Fig. 3. Clicking on a thumbnail expands that subsystem,
allowing the user to draw its FBD and write its associated
equilibrium equations.

Figure 3. Screenshot of full display of truss tutor. The left panel contains the

problem description and solution diagram (where users register solved forces),

and the right panel comprises user-defined subsystems for analysis. A toolbar
is provided at the top to assist users in problem-solving tasks, such as drawing

an FBD or adding dimensions to a diagram.

In Fig. 4, we show a partially completed FBD with a new
force being added to a half bar. In freeform solving of trusses,
students draw arrows (for forces) and label those arrows with
variables or numbers. With the tutor, we also require the user to
categorize each force being drawn; the choices, shown in the
window labeled “Defining a force”, include: known applied
force, support reaction (unknown or determined), and internal
force (unknown or determined). Depending on the force
category chosen, a variable label or number is required. Even
though a student in freeform solving may not be thinking in
terms of these categories, an expert, such as instructor, is surely
clear when drawing a force which of these is being represented.

Requiring force categorization, together with the insistence
on including partial members and pins in a subsystem, provides
two benefits: (i) it helps students organize their thinking about
the various forces in a way that can carry over to paper-and-
pencil problem solving after tutor use and (ii) it establishes
some clear bases for the tutor to recognize errors in student
work, namely that applied and support forces can only act at
pins, and internal forces can only act at the ends of partial bars.

Beneath the free body diagram (Fig. 5), the user can write

equilibrium equations for the subsystem. Clicking on Fx = 0,
for example, initiates a place for an equation representing the
summation of the horizontal (x) forces; the user then enters the
equation by typing it. The user can choose to write moments
about any pin (as is typical in truss analysis). Note that the
interface naturally leads the user to associate any equations
with a specific subsystem. Admittedly, early in the subject in
which trusses are taught, students do sometimes write down
equations of equilibrium without specifying the subsystem or
drawing its free body diagram. The design feature of the tutor,
automatically associating equations with diagrams, is an
instance where the trade-off between constraint and latitude
seemed to argue in favor of constraint. The task of interpreting
a large set of equations, each unassociated with a free body
diagram, seemed overwhelming, with tutor errors likely.

We anticipate that a typical student would use the tutor for
several hours over a period of a week or at most a few weeks,
depending on the class. Therefore, the tutor must be easy to
learn to use. Utilizing several rounds of user testing, we have
sought to make its design as intuitive and simple as possible.
However, some instruction in its use will inevitably be
necessary. When students first start the program, the tutor

Figure 4. Screenshot of adding a force to a FBD. Upon drawing the force on

the diagram (red arrow), the user is queried to categorize and specify the
force.

Figure 5. Screenshot of writing equilibrium equations for a given FBD. The

user has already added consistent equations for the summation of forces in the

x- and y-directions and is now trying to write a moment equation, which
requires the selection of a moment center from the popup window.

appears with an example problem loaded, and on top of the
tutor window there appears a window with a voice-over
instruction video that addresses how to solve the example
problem. The instruction video contains four phases, which
deal with successive features of using the tutor. The video
pauses after each phase, and prompts the user to go to the tutor
window and carry out the portion of the solution just described
in the video.

The tutor is a standalone application developed in C++; it
can run on multiple platforms (Windows or Mac). While
typical user interaction comprises mouse clicks and keyboard
input, the tutor could be run on tablets or mobile devices using
simple finger gestures, although we have presently not pursued
this modality. For simplicity, we use the Qt toolkit

1
 for

graphics rendering, the Boost Spirit library
2
 for parsing

equations, and the SymbolicC++ library
3
 for solving equations.

All computation is done on the fly at interactive speed with no
apparent delay on a 2GHz single core desktop computer with
2GB RAM. Truss problems are created by hand and encoded as
XML data. A separate XML file is generated to track solution
progress; this data structure allows for easy export to the
Pittsburgh Science of Learning Center DataShop tools [19] or
MATLAB [20] for post-processing analysis. While specifically
developed to complement statics instruction, our technology
could be extended to other engineering disciplines provided a
set of required learning concepts/skills is known and a
cognitive model is established to enable timely, effective
feedback; the specific cognitive model used in the present tutor
is described below.

III. JUDGING STUDENT WORK AND GIVING FEEDBACK

A key capability of the tutor is to judge student work and
give feedback on it. The tutor does this by having a cognitive
model for solving truss problems. The cognition in the tutor
consists of the following algorithms corresponding to stages in
the solution:

 SUBSYSTEM: An algorithm to determine if a group
of pins, members, and partial members constitutes a
valid subsystem.

 FREE BODY DIAGRAM: Given a valid subsystem,
and any forces defined or determined up to that point,
an algorithm for the allowable forces that can be drawn
on the pins and partial bars of the subsystem. The FBD
of a given subsystem is not unique; for example, if an
internal force has been determined, the algorithm
allows that force in a new FBD to be represented either
as a determined force using the correct value, or as an
unknown internal force, but the symbols should be
consistent with the first definition.

 EQUILIBRIUM EQUATIONS: Given a valid FBD, an
algorithm for the correct set of terms in the
summations of forces along x- and y-axes and the
rotational equilibrium equation about any pin. These
summations include variables and constants and must
be consistent with how forces appear in the FBD.

 SOLUTION REGISTRATION: Given a correctly
determined support or internal force (from the
equilibrium equations), an algorithm for the correct
registration of that force in the solution diagram.

When to offer feedback on errors is a critical part of the
tutor design. Prior research has shown that it is typically
preferable to give immediate feedback [1], to ensure that the
student associates the feedback with the action just taken. The
tutor described here gives immediate feedback with the
following caveat. Tutors for solving complex problems with
limited constraints are distinct from most existing tutors: there
is not a predetermined set of answers which users are expected
to supply. The user is gradually adding elements of the solution
on what is, in effect, a blank canvas. In contrast to the answer

entered into a box, parts of the solution just added to the
canvas, such as a force added to a free body diagram, may be
tentative. It would be annoying and counterproductive to
critique user work that is still tentative. On the other hand, if
errors accumulate too long and new work builds upon errors,
judging new work becomes ambiguous.

The tutor balances these competing goals by identifying
natural breakpoints at which each task can be viewed as
completed and thus ready to be judged. The breakpoints are: (i)
the subsystem is judged after the user has selected parts and
clicked on the draw subsystem button; (ii) the FBD of the
subsystem is judged after the user clicks to initiate the writing
of the first equation; (iii) an equation is judged after the user
types return while entering an equation or clicks to initiate the
writing of a new equation; and (iv) the registered result is
judged after the user has entered a result into the solution
diagram and clicked OK. In each case, the student receives
feedback that points out the error, with additional information
to enable the user to fix the error and to learn why it is wrong,
lessening the likelihood of repetition. Moreover, until the errors
are corrected, the user cannot go on to the next stage of
solution for the subsystem that has an error. Thus, it is
unnecessary for the tutor to have algorithms to judge solution
paths that build upon earlier committed errors. The student can
pursue many different solution paths, but is halted on a chosen
path until detected errors are corrected. Fig. 6 displays an
overview of the tutor architecture, highlighting core modules
involved in the cognitive model for providing feedback.

IV. TRACKING EFFECTIVENESS OF FEEDBACK

As described in prior work [8], we studied the effectiveness
of the tutor’s feedback in helping students reduce the frequency
of errors. To analyze the progression of learning quantitatively,
the terminology, methodologies, and tools from the Pittsburgh
Science of Learning Center DataShop were adopted [19]. The
separate skills, or knowledge components (KC), with each task
of the problem solving process were tracked separately.
Whether a student correctly exercises the same KC at
successive opportunities is monitored. Fig. 7 shows the
percentage of students who erred as a function of opportunity
for a group of students in a given cohort (e.g. a class of
students taught by an instructor).

For each KC, we want to determine whether the error rate
decreases with practice (a sign of learning), the error rate is
always rather low (the particular skill is not difficult), or the
error remains high or has no discernable pattern (feedback on
errors appears to have little impact on future performance).
Furthermore, a logistic regression model [21], similar to those
used in other cognitive tutors, was applied to the data. The
statistical model predicts error fraction according to the
equation,

 ln[(1 – eij)/eij] = i + aj + bjTj

where eij is the probability of an incorrect answer by the ith
student on opportunity Tj for using the jth KC. Note that eij can
range from 0 to 1, and Tj takes on values of 1, 2, 3, and so
forth, for the first, second, and third opportunity.

1 http://qt.digia.com
2 http://boost-spirit.com/home/doc/
3 http://issc.uj.ac.za/symbolic/symbolic.html

Figure 6. Flowchart of tutor processing routines. The core stages in solving truss problems are contained in gray boxes, tasks requiring user interaction are

indicated by blue nodes, and user errors detected by the tutor are identified by red arrows. The parallel nature of the flowchart reflects the tutor’s unique ability to

allow users to explore multiple paths, only providing feedback at key junctures in the solution process. Some minor functions are not shown here for brevity; such

tasks include zoom controls, adding angular dimensions to the problem diagram, and saving solution progress for future sessions or post-processing.

Fitting this model to data for a student sample yields the

parameters in the statistical model. The parameter i captures
the overall skill level of the ith student. The parameter aj,
referred to as the intercept, reflects the initial probability of
correctly applying the KC. The coefficient bj, referred to as the
slope, corresponds to the rate at which errors in using the jth
KC decrease with successive opportunities to practice it. Prior
work on the effectiveness of the tutor’s feedback focused on
the extracted values for aj and bj. For many of the skills, but not
all, the values indicated that either a skill was relatively easy
from the start (aj high), or that the error rate reduced quickly
with successive opportunities (bj high). Relevant to the study

described in the next section is the student skill parameter, i.
This style of evaluation of the tutor’s effectiveness, comparable
to that used for other cognitive tutors [19], does not involve
comparison with a control group receiving some standard
instruction. Rather, it seeks to determine whether improved
performance on the tutor itself results from practice with the
tutor.

V. SOLVING EFFICIENCY ACQUIRED THROUGH USE OF

TUTOR

Explicit feedback given to users pertains to errors they
make along the path they choose to pursue. As pointed out
above, there are many paths that a user can choose. A path is
described by the sequence of joints (each joint is a single pin
and its connecting bars) that is chosen, and then, for each joint,
the sequence in which the equilibrium equations are written.
For each new joint, there are two or more unknowns, which
correspond to the unknown forces in the connecting bars. But,
for each joint there are only two equations corresponding to
equilibrium in the x- and y- directions. Thus, for each joint, the
user can solve for at most two additional unknowns.

One strategy would be to choose joints at random, draw
each FBD, and write down two equations of equilibrium for
each. Then, one either substitutes into a solver for linear
equations (not possible with the tutor and not available for
students solving truss problems in exams), or one finds an
equation that is solvable (only two unknowns), solves it and

Figure 7. Percentage of students in error plotted as a function of opportunity

(learning curve) on a skill (representing a determined support reaction) for

which the error rate is initially high, but decreases with practice.

then substitutes sequentially into other problems. An alternative
strategy would be to focus first on a joint that will be solvable,
draw its FBD, write its equations, and then solve for the
unknowns. The solved values can be used in analyzing the next
chosen joint. We consider the latter approach a more efficient
strategy. We hypothesize that, with it, one is less likely to get
lost in the solution, and that one would also make fewer errors.

An instructor teaching students to solve truss problems may
suggest that joints be chosen with an eye to introducing only
two unknowns at a time. But, with the exception of one
uncommon situation described below, the tutor does not
directly promote a more efficient strategy or give feedback on
the strategy. However, for various reasons, for example
because it is messy or frustrating to have too many unsolved
equations, students may with time naturally gravitate towards a
more efficient strategy. Certainly, another measure of the
success of the tutor would be if students developed such an
approach through using the tutor.

The efficiency of a solution path was studied by tracking
the number of open (unsolved) variables. Variables are created
when the user draws and labels undetermined forces on a FBD
and remain open until the user registers a value for the force in
the solution diagram. An efficient path, as defined above,
should minimize the number of unsolved variables at any given
time. The results presented here are based on data obtained
from a class of 48 students enrolled in a regularly scheduled
semester long statics course, 40 of whom completed all three of
the problems studied here. Students used the tutor in lieu of a
weekly homework assignment. Typical traces are shown in Fig.
8-10. User actions, as described earlier, include selecting a
subsystem, drawing a FBD, writing an equilibrium equation,
solving an equilibrium equation, and registering a determined
force.

All problems can be solved with no more than three
unknowns present at any time. Depending on the locations of
the supports, one may have to analyze the entire truss prior to
analyzing a joint; then there are three equilibrium equations
(rotational equilibrium, as well as x- and y-forces). Therefore, a
coarse estimate of efficiency relates to the maximum number of
unsolved variables in a solution trace. We computed how many
students solved each problem with no more than three
unknowns present at any time. The efficiency rate, or fraction

Figure 8. Example of an efficient solution path: the repeated sequence of

steps (select subsystem, draw FBD, write and solve equations, register force)
results in the “staircase” effect demonstrated here. The dotted line refers to

problem completion.

Figure 9. Example of an inefficient solution path: this user started in an

efficient manner, but became inefficient after completing two subsystems. The

dotted line refers to problem completion.

Figure 10. Example of an inefficient solution path: this user solves the entire

problem in parallel fashion, drawing all possible FBDs before solving for any
forces. The dotted line refers to problem completion.

Figure 11. Fraction of students per problem who maintain no more than three

unknowns throughout the solution path.

of students who were efficient, for the three successive
problems is shown in Fig. 11. The results suggest that users, on
average, did in fact become more efficient in the second
problem compared to the first. (There is little change from the
second to the third problem.) The difference in the efficiencies

of the first and second problem is indeed statistically
significant (z = 2.45, p = 0.014).

There is one rare circumstance when the tutor does promote
efficient solving. When a user decides he or she is stuck, there
is a button entitled What Next?. The message given is context
dependent, and it often involves finishing work that has been
started. However, if all initiated work is completed, the
message tells the user to select a new joint, ideally one that has
at most two unknowns. Of students in this sample, only eight
clicked on the What Next? button, and of them only two
received the particular message about choosing a new joint that
is solvable, a strategy which is necessary, but not sufficient, to
solving efficiently. Those two students received the message in
the first problem; they were efficient in the second and third
problems.

Finally, it was of interest to determine the relationship
between choosing an efficient path and the propensity for

errors, as measured by the overall student skill parameter, i, in
the statistical model described in Section IV. Fig. 12 displays
this relationship by plotting the individual ability of each

student (skill parameter i) against the number of problems
they solved efficiently. The results demonstrate moderate
positive correlation (r = 0.422) and are statistically significant
(p < 0.01). Because the statistical model described in Section
IV has only a single student parameter, we do not know
whether individual students improve at different rates, even
though for many skills we know that students improve with
practice. Thus, the question of whether being coaxed to a more
efficient path would reduce the number of errors a student
makes – perhaps because the work space is less messy – cannot
be answered without further study.

VI. SUMMARY AND CONCLUSIONS

Complex problems that engineering students learn to solve
often have multiple pathways to solution. It is difficult for
human graders to provide effective formative feedback to
handwritten solutions that are typically turned in as part of
homework assignments. In this paper, we have described a
technology, suitable for a distance education context, which
can provide students learning to solve complex engineering
problems feedback on their efforts.

By adapting the approach of cognitive tutors, we have
developed a computer tutor that has a cognitive model of a
student engaged in solving the problems of interest. The tutor
interface permits the user to solve problems correctly following
any pathway and to commit commonly observed errors. The
cognitive model and the judicious timing of feedback give the
user wide latitude to pursue different solution pathways,
prevent new work from building upon previously committed
errors, and still provide feedback on errors to enable students to
complete most problems correctly.

As previously described, metrics for judging the
effectiveness of feedback have been devised by viewing the
solving of problems as a set of distinct skills or knowledge
components. Actions by the student constitute opportunities to
exercise different knowledge components; the effectiveness of
feedback is quantified based on whether fewer students incur

Figure 12. Correlation between individual ability and the number of problems

solved efficiently. Each data point represents one student user.

errors with successive opportunities on each knowledge
component. The data from a cohort of students had been fit to a
statistical model that predicts the percent error as a function of
opportunity. The model has several parameters, including
initial difficulty and rate at which errors decrease with
opportunity for each knowledge component. Fitting these
parameters to the data provided evidence that the students do
learn: that is, their propensity for errors decreases with practice.
The statistical model also includes a single parameter for each
student in the cohort, corresponding to the overall skill level.

The present paper has focused on a different aspect of
student solutions using the tutor, namely on their overall
solution path. By contrast to errors, upon which students
receive feedback, the tutor does not give feedback to students
on their overall solution path, nor does the tutor promote
efficiency in the path. However, students may, through the
additional effort needed when solving problems inefficiently,
discover more efficient paths on their own. Furthermore,
efficiency in the solution path may be associated with fewer
errors.

To that end, a measure of efficiency involving the
maximum number of unsolved variables at any instant was
defined. It was found that the fraction of students who solved
efficiently increased by a statistically significant amount from
the first problem to the second problem, and held steady in the
third problem. Furthermore, efficiency in solution was found to
correlate significantly and positively with student skill, as
measured by the overall skill level extracted from the statistical
model. Thus, perhaps to reduce their workload, students do
become more efficient with practice. Furthermore, higher
efficiency is associated with making fewer errors. The
possibility of causal relationships between efficiency and errors
remains to be studied.

In summary, the technology described here has
demonstrated that students can be given sufficient feedback,
while working without an instructor, to complete complex
problems, that their errors reduce with practice, that they
become more efficient by virtue of their practice, and that such
efficiency is associated with fewer errors. Moreover, because
the technology maintains a detailed record of student work, and
interprets that work meaningfully by way of a cognitive model,
it enables the learning process to be studied and the tutor itself
to be systematically improved with time.

ACKNOWLEDGMENT

We thank Luoting Fu for his prime role in developing the
tutor, and Jackie Yang, Jeremy Jiang, and Rebecca Piston for
their assistance in development and initial testing of the tutor.

REFERENCES

[1] J. Hattie and H. Timperley, “The power of feedback,” Rev. Educ. Res.,
vol. 77, no. 1, pp. 81-112, March 2007.

[2] J. R. Anderson, F. G. Conrad, and A. T. Corbett, “Skill acquisition and
the LISP tutor,” Cogn. Sci., vol. 13, no. 4, pp. 467-505, 1989.

[3] R. L. Bangert-Drowns, C.-L. Kulik, J. A. Kulik, and M. Morgan, “The
instructional effect of feedback in test-like events,” Rev. Educ. Res., vol.
61, no. 2, pp. 213-238, Summer 1991.

[4] A. T. Corbett and J. R. Anderson, “Locus of feedback control in
computer-based tutoring: impact on learning rate, achievement and
attitudes,” Proceedings of the SIGCHI conference on Human factors in
computing systems, pp. 245-252, ACM, 2001.

[5] J. R. Anderson, C. F. Boyle, and B. J. Reiser, “Intelligent tutoring
systems,” Science, vol. 228, pp. 456-468, 1985.

[6] K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark,
“Intelligent tutoring goes to school in the big city,” Int. J. Artificial
Intelligence in Education, vol. 8, pp. 30-43, 1997.

[7] K. R. Koedinger, “Toward evidence for instructional design principles:
examples from Cognitive Tutor Math 6,” Proceedings of PME-NA
XXXIII, Annual Meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education, pp.
21-49, 2002.

[8] P. S. Steif, L. Fu, and L. B. Kara, “The potential for computer tutors to
assist students learning to solve complex problems,” Proceedings of the
American Society for Engineering Education Annual Conference and
Exposition, Indianapolis, Indiana, June 2014.

[9] L. B. Kara and T. F. Stahovich, “Hierarchical parsing and recognition of
hand-sketched diagrams,” Proceedings of the 17th annual ACM
symposium on User interface software and technology (UIST '04), New
York, NY, pp. 13-22, ACM, 2004.

[10] J. LaViola, “Advances in mathematical sketching: moving toward the
paradigm’s full potential,” IEEE Computer Graphics and Applications,
vol. 27, no. 1, pp. 38-48, January/February 2007.

[11] J. Peschel and T. Hammond, “STRAT: a sketched-truss recognition and
analysis tool,” International Workshop on Visual Languages and
Computing, Boston, MA, pp. 282-287, 2008.

[12] W. Lee, R. de Silva, E. J. Peterson, R. C. Calfee, and T. F. Stahovich,
“Newton’s Pen: a pen-based tutoring system for statics,” Computers &
Graphics, vol. 32, no. 5, pp. 511-524, 2008.

[13] L. Fu and L. B. Kara, “From engineering diagrams to engineering
models: Visual recognition and applications,” Computer-Aided Design,
vol. 43, no. 3, pp. 278-292, 2011.

[14] J. Sweller, “Cognitive load during problem solving: effects on learning,”
Cogn. Sci., vol. 12, pp. 257-285, 1988.

[15] J. Sweller, “Cognitive load theory, learning difficulty and instructional
design,” Learning and Instruction, vol. 4, pp. 295-312, 1994.

[16] M. T. H. Chi, M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser,
“Self-explanations: how students study and use examples in learning to
solve problems,” Cogn. Sci., vol. 13, pp. 145-182, 1989.

[17] P. S. Steif, L. Fu, and L. B. Kara, “Development of a cognitive tutor for
learning truss analysis,” Technical Report, Carnegie Mellon University,
2013, unpublished.

[18] P. S. Steif, “An articulation of the concepts and skills which underlie
engineering statics,” 34th ASEE/IEE Frontiers in Education Conference,
Savannah, GA, 2004.

[19] K. R. Koedinger, R. S. J. d. Baker, K. Cunningham, A. Skogsholm, B.
Leper, and J. Stamper, “A data repository for the EDM community: the
PSLC DataShop,” In C. Romero, S. Ventura, M. Pechenizkiy, R.S.J.d.
Baker (Eds.). Handbook of Educational Data Mining, Boca Raton, FL:
CRC Press, 2010.

[20] MATLAB, version 8.1.0.604 (R2013a). The MathWorks, Inc., Natick,
Massachusetts, 2013.

[21] K. L. Draney, P. Pirolli, and M. Wilson, “A measurement model for
complex cognitive skill,” In P. Nichols, S.F. Chipman, and R.L. Brennan
(Eds.). Cognitively diagnostic assessment, Hillsdale: Erlbaum, pp. 103-
126, 1995.

