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Abstract—An ability to solve complex problems, for which a 

variety of solution paths are possible, is an important goal in 

engineering education. While feedback is critical to learning, 

hand grading of homework rarely provides effective, timely 

feedback on attempts to solve complex problems. Such feedback 

is also unfeasible in distance education contexts. A technology, 

based on the approach of cognitive tutors, is presented as a 

generally applicable method of providing automated feedback on 

complex problem solving, with truss problems studied in 

engineering as an example. The tutor maintains a cognitive model 

of problem solving for this class of problems, and associates 

various solution steps with distinct skills or knowledge 

components. One can determine whether students learn 

individual skills by measuring the error rate as a function of 

practice. Prior work has shown that for many skills the error rate 

indeed decreases with practice. New insight into the tutor’s 

effectiveness, pertaining to the efficiency of student solution 

paths, is presented in this paper. While no explicit feedback is 

given regarding solution efficiency, it is found that students using 

the tutor become more efficient with practice. Furthermore, 

more efficient paths are found to be associated with making 

fewer errors. 

Keywords-concept inventory; interactive learning; measures of 

knowledge; pre-post tests; Statics; web-based courseware 

I.  INTRODUCTION 

The development of problem-solving skills is a cornerstone 
of engineering education. While some problems that students 
learn to solve are simple, utilizing a single concept or principle, 
more complex problems are undertaken even in lower division 
courses. Students may need to coordinate and organize several 
concepts and steps, and many pathways to correct answers may 
be possible. 

It is recognized in general that learning of any new skill is 
promoted by timely and effective feedback [1-4]. The 
opportunity for feedback on complex problem solving 
traditionally occurs through grading of handwritten homework. 
With weeklong turnaround such feedback is virtually never 
timely, nor is it readily made effective. Solutions can vary from 
one student to another, and with an incorrect answer, it is 
laborious for graders to identify and communicate to the 
student how the solution deviated from a correct path. Further, 

in a distance-education setting hand grading would be largely 
unfeasible. 

This paper describes a technology that can provide students 
learning to solve complex engineering problems feedback on 
their efforts. The technology must be able to follow and assess 
student solutions for a variety of pathways pursued. To that 
end, we adapt the approach of cognitive tutors, which have 
been developed for computer programming [5], math [6-7], and 
other fields. Such tutors are based on a cognitive model for a 
learner encountering the chosen tasks, and so can potentially 
provide feedback for a range of solution pathways. There do 
not appear to be previous efforts to devise cognitive tutors to 
assist students with complex engineering problems. The 
feasibility of a cognitive tutor style approach to providing 
feedback on complex engineering problems has been 
demonstrated [8] through a tutor focusing on truss problems, 
which are commonly studied in mechanical and civil 
engineering. This new application of cognitive tutors is distinct 
from previous tutors in that student work involves the 
coordination of multiple open-ended, student-initiated vector 
diagrams and equations, all of which are interpreted on the fly 
in terms of a set of skills needed to properly solve the class of 
problems. 

In the present paper, we consider in more depth the solution 
path taken by students solving problems with the tutor. While 
the tutor gives feedback on individual errors, it does not prompt 
students, except for rare circumstances, to think about whether 
their overall solution strategy is efficient. However, one can 
speculate that more efficient strategies may lead to fewer errors 
and that, in the course of solving problems, students may 
discover such solution strategies on their own. Here, efficiency 
relates to the maximum number of unsolved, yet defined, 
variables at any given time in the solution path. Using this 
definition, we investigate whether solution efficiency changes 
with practice and whether higher efficiency is associated with 
lower propensity for errors. 

II. DESCRIPTION OF TUTOR FOR TRUSSES 

Since use of the tutor is intended to ultimately lead to 
success in solving problems with paper and pencil, user 
interactions with the tutor should be as unconstrained as 
possible, provided the tutor maintains the ability to judge user 
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work. Although progress continues to be made in computerized 
interpretation of completely freeform work, for example via 
writing with a stylus on a tablet [9-13], such technologies may 
be limited for the foreseeable future; we have therefore defined 
unconstrained as still within the confines of a mouse and 
keyboard user interface. 

Fig. 1 displays a typical truss problem as it would appear in 
a textbook. The problem consists of a set of pins (dark circles) 
and connected bars. There are specified forces (10 kN) and 
supports (idealized constraints that keep the pins in position). 
Fig. 2 shows a portion of a solution to the problem in Fig. 1; 
user input corresponding to such solution elements must be 
enabled by the technology. A portion of the truss (a subsystem) 
including point C has been singled out for attention, the 
unknown and known forces drawn on the diagram (a so-called 
free body diagram or FBD), and equations of equilibrium 
(imposing Newton’s laws of motion) have been written. In 
solving truss problems, students select multiple portions of the 
truss, and for each subsystem draw free body diagrams and 
write equilibrium equations. Students must also organize the 
solving of equations and interpret results physically in terms of 
the original truss. The solver can choose any portion of the 
truss, write equations in any order, then choose any other 
portion, and so forth. The technology must grant the user 
latitude to pursue this large space of solution paths and still be 
able to judge and give feedback regardless of the path chosen. 

Even within the confines of a mouse and keyboard user 
interface, there are a few additional intentional constraints on 
how closely students’ action with the tutor mimic paper and 
pencil solving. First, to reduce the cognitive load [14-15] 
associated with exercising skills already mastered by the 
student, certain tasks have been offloaded to the tutor; for 
example, we removed the need to enter numbers into an 
electronic calculator to obtain numerical solutions. Second, 
motivated by the self-explanation effect [16] in educational 
psychology, that students who explained problems to 
themselves learn more, the tutor introduces selective highly 
targeted opportunities to make the student’s thinking visible, 
thinking which is rarely visible in pencil and paper solving. 
Specifically, the tutor requests the user to designate each 
defined force as falling into one of several categories. 

We assume that students using the tutor have learned about 
truss analysis through other means, such as lecture and 
textbook. The tutor focuses exclusively on helping students 
solve problems, allowing a solution process such as depicted in 
Fig. 2 to be conducted on the computer with as little constraint 
as possible, while maintaining the ability to interpret student 
work. Observations of student work and typical errors [17] 
solving truss problems have guided tutor design. The goal is to 
allow a student using the tutor to commit most, if not all, errors 
that are observed in pencil and paper solutions. 

Based on an analysis of the required tasks to solve truss 
problems, informed by prior work on the concepts and skills 
needed in the overall subject in which trusses are taught [18], 
and typically observed student errors [17], the computer tutor 
limits users to the following actions: 

 Any set of pins, members, and partial members can be 
chosen as a subsystem for further analysis. 

 
Figure 1.  Typical truss problem, in which forces within the bars (members) 

are to be determined. 

 

 
Figure 2.  Portion of handwritten solution to problem in Fig. 1, showing the 

free body diagram of the pin at C and its connected partial bars, and associated 
equilibrium equations. 

 In the free body diagram of a subsystem, forces can be 
drawn only at pins or at the free ends of partial 
members. Forces are confined to lie along horizontal(x) 
or vertical (y) directions or parallel or perpendicular to 
members. 

 For each subsystem, equations of force equilibrium 
along x- and y-axes, and equations of rotational 
equilibrium about any pin, can be written. 

A screenshot of the tutor, with a problem partially solved, is 
shown in Fig. 3. The left half of the display contains a menu 
bar at the top and the problem diagram and statement. The 
problem diagram can be toggled to display the solution 
diagram, where support and bar forces that have been 
determined are registered by the student, as described below.  
The user chooses a subsystem for analysis by clicking on a set 
of pins, members and partial members, and then clicking on the 
draw (pencil) icon from the menu bar.  The selected group of 
parts is added as another subsystem to the right half of the 
display, and would appear as one of the thumbnails depicted in 
Fig. 3. Clicking on a thumbnail expands that subsystem, 
allowing the user to draw its FBD and write its associated 
equilibrium equations. 



 
Figure 3.  Screenshot of full display of truss tutor. The left panel contains the 

problem description and solution diagram (where users register solved forces), 

and the right panel comprises user-defined subsystems for analysis. A toolbar 
is provided at the top to assist users in problem-solving tasks, such as drawing 

an FBD or adding dimensions to a diagram. 

In Fig. 4, we show a partially completed FBD with a new 
force being added to a half bar. In freeform solving of trusses, 
students draw arrows (for forces) and label those arrows with 
variables or numbers. With the tutor, we also require the user to 
categorize each force being drawn; the choices, shown in the 
window labeled “Defining a force”, include: known applied 
force, support reaction (unknown or determined), and internal 
force (unknown or determined). Depending on the force 
category chosen, a variable label or number is required. Even 
though a student in freeform solving may not be thinking in 
terms of these categories, an expert, such as instructor, is surely 
clear when drawing a force which of these is being represented. 

Requiring force categorization, together with the insistence 
on including partial members and pins in a subsystem, provides 
two benefits: (i) it helps students organize their thinking about 
the various forces in a way that can carry over to paper-and-
pencil problem solving after tutor use and (ii) it establishes 
some clear bases for the tutor to recognize errors in student 
work, namely that applied and support forces can only act at 
pins, and internal forces can only act at the ends of partial bars. 

Beneath the free body diagram (Fig. 5), the user can write 

equilibrium equations for the subsystem. Clicking on Fx = 0, 
for example, initiates a place for an equation representing the 
summation of the horizontal (x) forces; the user then enters the 
equation by typing it. The user can choose to write moments 
about any pin (as is typical in truss analysis). Note that the 
interface naturally leads the user to associate any equations 
with a specific subsystem. Admittedly, early in the subject in 
which trusses are taught, students do sometimes write down 
equations of equilibrium without specifying the subsystem or 
drawing its free body diagram. The design feature of the tutor, 
automatically associating equations with diagrams, is an 
instance where the trade-off between constraint and latitude 
seemed to argue in favor of constraint. The task of interpreting 
a large set of equations, each unassociated with a free body 
diagram, seemed overwhelming, with tutor errors likely. 

We anticipate that a typical student would use the tutor for 
several hours over a period of a week or at most a few weeks, 
depending on the class. Therefore, the tutor must be easy to 
learn to use. Utilizing several rounds of user testing, we have 
sought to make its design as intuitive and simple as possible. 
However, some instruction in its use will inevitably be 
necessary. When students first start the program, the tutor  

 
Figure 4.  Screenshot of adding a force to a FBD. Upon drawing the force on 

the diagram (red arrow), the user is queried to categorize and specify the 
force. 

 

 
Figure 5.  Screenshot of writing equilibrium equations for a given FBD. The 

user has already added consistent equations for the summation of forces in the 

x- and y-directions and is now trying to write a moment equation, which 
requires the selection of a moment center from the popup window. 

appears with an example problem loaded, and on top of the 
tutor window there appears a window with a voice-over 
instruction video that addresses how to solve the example 
problem. The instruction video contains four phases, which 
deal with successive features of using the tutor. The video 
pauses after each phase, and prompts the user to go to the tutor 
window and carry out the portion of the solution just described 
in the video. 

The tutor is a standalone application developed in C++; it 
can run on multiple platforms (Windows or Mac). While 
typical user interaction comprises mouse clicks and keyboard 
input, the tutor could be run on tablets or mobile devices using 
simple finger gestures, although we have presently not pursued 
this modality. For simplicity, we use the Qt toolkit

1
 for 



graphics rendering, the Boost Spirit library
2
 for parsing 

equations, and the SymbolicC++ library
3
 for solving equations. 

All computation is done on the fly at interactive speed with no 
apparent delay on a 2GHz single core desktop computer with 
2GB RAM. Truss problems are created by hand and encoded as 
XML data. A separate XML file is generated to track solution 
progress; this data structure allows for easy export to the 
Pittsburgh Science of Learning Center DataShop tools [19] or 
MATLAB [20] for post-processing analysis. While specifically 
developed to complement statics instruction, our technology 
could be extended to other engineering disciplines provided a 
set of required learning concepts/skills is known and a 
cognitive model is established to enable timely, effective 
feedback; the specific cognitive model used in the present tutor 
is described below. 

III. JUDGING STUDENT WORK AND GIVING FEEDBACK 

A key capability of the tutor is to judge student work and 
give feedback on it. The tutor does this by having a cognitive 
model for solving truss problems. The cognition in the tutor 
consists of the following algorithms corresponding to stages in 
the solution: 

 SUBSYSTEM: An algorithm to determine if a group 
of pins, members, and partial members constitutes a 
valid subsystem. 

 FREE BODY DIAGRAM: Given a valid subsystem, 
and any forces defined or determined up to that point, 
an algorithm for the allowable forces that can be drawn 
on the pins and partial bars of the subsystem. The FBD 
of a given subsystem is not unique; for example, if an 
internal force has been determined, the algorithm 
allows that force in a new FBD to be represented either 
as a determined force using the correct value, or as an 
unknown internal force, but the symbols should be 
consistent with the first definition. 

 EQUILIBRIUM EQUATIONS: Given a valid FBD, an 
algorithm for the correct set of terms in the 
summations of forces along x- and y-axes and the 
rotational equilibrium equation about any pin. These 
summations include variables and constants and must 
be consistent with how forces appear in the FBD. 

 SOLUTION REGISTRATION: Given a correctly 
determined support or internal force (from the 
equilibrium equations), an algorithm for the correct 
registration of that force in the solution diagram. 

When to offer feedback on errors is a critical part of the 
tutor design. Prior research has shown that it is typically 
preferable to give immediate feedback [1], to ensure that the 
student associates the feedback with the action just taken. The 
tutor described here gives immediate feedback with the 
following caveat. Tutors for solving complex problems with 
limited constraints are distinct from most existing tutors: there 
is not a predetermined set of answers which users are expected 
to supply. The user is gradually adding elements of the solution 
on what is, in effect, a blank canvas. In contrast to the answer 

entered into a box, parts of the solution just added to the 
canvas, such as a force added to a free body diagram, may be 
tentative. It would be annoying and counterproductive to 
critique user work that is still tentative. On the other hand, if 
errors accumulate too long and new work builds upon errors, 
judging new work becomes ambiguous. 

The tutor balances these competing goals by identifying 
natural breakpoints at which each task can be viewed as 
completed and thus ready to be judged. The breakpoints are: (i) 
the subsystem is judged after the user has selected parts and 
clicked on the draw subsystem button; (ii) the FBD of the 
subsystem is judged after the user clicks to initiate the writing 
of the first equation; (iii) an equation is judged after the user 
types return while entering an equation or clicks to initiate the 
writing of a new equation; and (iv) the registered result is 
judged after the user has entered a result into the solution 
diagram and clicked OK. In each case, the student receives 
feedback that points out the error, with additional information 
to enable the user to fix the error and to learn why it is wrong, 
lessening the likelihood of repetition. Moreover, until the errors 
are corrected, the user cannot go on to the next stage of 
solution for the subsystem that has an error. Thus, it is 
unnecessary for the tutor to have algorithms to judge solution 
paths that build upon earlier committed errors. The student can 
pursue many different solution paths, but is halted on a chosen 
path until detected errors are corrected. Fig. 6 displays an 
overview of the tutor architecture, highlighting core modules 
involved in the cognitive model for providing feedback. 

IV. TRACKING EFFECTIVENESS OF FEEDBACK 

As described in prior work [8], we studied the effectiveness 
of the tutor’s feedback in helping students reduce the frequency 
of errors. To analyze the progression of learning quantitatively, 
the terminology, methodologies, and tools from the Pittsburgh 
Science of Learning Center DataShop were adopted [19]. The 
separate skills, or knowledge components (KC), with each task 
of the problem solving process were tracked separately. 
Whether a student correctly exercises the same KC at 
successive opportunities is monitored. Fig. 7 shows the 
percentage of students who erred as a function of opportunity 
for a group of students in a given cohort (e.g. a class of 
students taught by an instructor). 

For each KC, we want to determine whether the error rate 
decreases with practice (a sign of learning), the error rate is 
always rather low (the particular skill is not difficult), or the 
error remains high or has no discernable pattern (feedback on 
errors appears to have little impact on future performance). 
Furthermore, a logistic regression model [21], similar to those 
used in other cognitive tutors, was applied to the data. The 
statistical model predicts error fraction according to the 
equation, 

 ln[(1 – eij)/eij] = i + aj + bjTj 

where eij is the probability of an incorrect answer by the ith 
student on opportunity Tj for using the jth KC. Note that eij can 
range from 0 to 1, and Tj takes on values of 1, 2, 3, and so 
forth, for the first, second, and third opportunity. 

1  http://qt.digia.com 
2  http://boost-spirit.com/home/doc/ 
3  http://issc.uj.ac.za/symbolic/symbolic.html 



 

Figure 6.  Flowchart of tutor processing routines. The core stages in solving truss problems are contained in gray boxes, tasks requiring user interaction are 

indicated by blue nodes, and user errors detected by the tutor are identified by red arrows. The parallel nature of the flowchart reflects the tutor’s unique ability to 

allow users to explore multiple paths, only providing feedback at key junctures in the solution process. Some minor functions are not shown here for brevity; such 

tasks include zoom controls, adding angular dimensions to the problem diagram, and saving solution progress for future sessions or post-processing. 

 

Fitting this model to data for a student sample yields the 

parameters in the statistical model. The parameter i captures 
the overall skill level of the ith student. The parameter aj, 
referred to as the intercept, reflects the initial probability of 
correctly applying the KC. The coefficient bj, referred to as the 
slope, corresponds to the rate at which errors in using the jth 
KC decrease with successive opportunities to practice it. Prior 
work on the effectiveness of the tutor’s feedback focused on 
the extracted values for aj and bj. For many of the skills, but not 
all, the values indicated that either a skill was relatively easy 
from the start (aj high), or that the error rate reduced quickly 
with successive opportunities (bj high). Relevant to the study 

described in the next section is the student skill parameter, i. 
This style of evaluation of the tutor’s effectiveness, comparable 
to that used for other cognitive tutors [19], does not involve 
comparison with a control group receiving some standard 
instruction.  Rather, it seeks to determine whether improved 
performance on the tutor itself results from practice with the 
tutor. 

V. SOLVING EFFICIENCY ACQUIRED THROUGH USE OF 

TUTOR 

Explicit feedback given to users pertains to errors they 
make along the path they choose to pursue. As pointed out 
above, there are many paths that a user can choose. A path is 
described by the sequence of joints (each joint is a single pin 
and its connecting bars) that is chosen, and then, for each joint, 
the sequence in which the equilibrium equations are written. 
For each new joint, there are two or more unknowns, which 
correspond to the unknown forces in the connecting bars. But, 
for each joint there are only two equations corresponding to 
equilibrium in the x- and y- directions. Thus, for each joint, the 
user can solve for at most two additional unknowns. 

One strategy would be to choose joints at random, draw 
each FBD, and write down two equations of equilibrium for 
each. Then, one either substitutes into a solver for linear 
equations (not possible with the tutor and not available for 
students solving truss problems in exams), or one finds an 
equation that is solvable (only two unknowns), solves it and  



 
 

 
Figure 7.  Percentage of students in error plotted as a function of opportunity 

(learning curve) on a skill (representing a determined support reaction) for 

which the error rate is initially high, but decreases with practice. 

then substitutes sequentially into other problems. An alternative 
strategy would be to focus first on a joint that will be solvable, 
draw its FBD, write its equations, and then solve for the 
unknowns. The solved values can be used in analyzing the next 
chosen joint. We consider the latter approach a more efficient 
strategy. We hypothesize that, with it, one is less likely to get 
lost in the solution, and that one would also make fewer errors. 

An instructor teaching students to solve truss problems may 
suggest that joints be chosen with an eye to introducing only 
two unknowns at a time. But, with the exception of one 
uncommon situation described below, the tutor does not 
directly promote a more efficient strategy or give feedback on 
the strategy. However, for various reasons, for example 
because it is messy or frustrating to have too many unsolved 
equations, students may with time naturally gravitate towards a 
more efficient strategy. Certainly, another measure of the 
success of the tutor would be if students developed such an 
approach through using the tutor. 

The efficiency of a solution path was studied by tracking 
the number of open (unsolved) variables. Variables are created 
when the user draws and labels undetermined forces on a FBD 
and remain open until the user registers a value for the force in 
the solution diagram. An efficient path, as defined above, 
should minimize the number of unsolved variables at any given 
time. The results presented here are based on data obtained 
from a class of 48 students enrolled in a regularly scheduled 
semester long statics course, 40 of whom completed all three of 
the problems studied here. Students used the tutor in lieu of a 
weekly homework assignment. Typical traces are shown in Fig. 
8-10. User actions, as described earlier, include selecting a 
subsystem, drawing a FBD, writing an equilibrium equation, 
solving an equilibrium equation, and registering a determined 
force. 

All problems can be solved with no more than three 
unknowns present at any time. Depending on the locations of 
the supports, one may have to analyze the entire truss prior to 
analyzing a joint; then there are three equilibrium equations 
(rotational equilibrium, as well as x- and y-forces). Therefore, a 
coarse estimate of efficiency relates to the maximum number of 
unsolved variables in a solution trace. We computed how many 
students solved each problem with no more than three 
unknowns present at any time. The efficiency rate, or fraction  

 

 

 
Figure 8.  Example of an efficient solution path: the repeated sequence of 

steps (select subsystem, draw FBD, write and solve equations, register force) 
results in the “staircase” effect demonstrated here. The dotted line refers to 

problem completion. 

 

 
Figure 9.  Example of an inefficient solution path: this user started in an 

efficient manner, but became inefficient after completing two subsystems. The 

dotted line refers to problem completion. 

 

 
Figure 10.  Example of an inefficient solution path: this user solves the entire 

problem in parallel fashion, drawing all possible FBDs before solving for any 
forces. The dotted line refers to problem completion. 

 

 
Figure 11.  Fraction of students per problem who maintain no more than three 

unknowns throughout the solution path. 

of students who were efficient, for the three successive 
problems is shown in Fig. 11. The results suggest that users, on 
average, did in fact become more efficient in the second 
problem compared to the first. (There is little change from the 
second to the third problem.) The difference in the efficiencies 



of the first and second problem is indeed statistically 
significant (z = 2.45, p = 0.014). 

There is one rare circumstance when the tutor does promote 
efficient solving. When a user decides he or she is stuck, there 
is a button entitled What Next?. The message given is context 
dependent, and it often involves finishing work that has been 
started. However, if all initiated work is completed, the 
message tells the user to select a new joint, ideally one that has 
at most two unknowns. Of students in this sample, only eight 
clicked on the What Next? button, and of them only two 
received the particular message about choosing a new joint that 
is solvable, a strategy which is necessary, but not sufficient, to 
solving efficiently. Those two students received the message in 
the first problem; they were efficient in the second and third 
problems. 

Finally, it was of interest to determine the relationship 
between choosing an efficient path and the propensity for 

errors, as measured by the overall student skill parameter, i, in 
the statistical model described in Section IV. Fig. 12 displays 
this relationship by plotting the individual ability of each 

student (skill parameter i) against the number of problems 
they solved efficiently. The results demonstrate moderate 
positive correlation (r = 0.422) and are statistically significant 
(p < 0.01). Because the statistical model described in Section 
IV has only a single student parameter, we do not know 
whether individual students improve at different rates, even 
though for many skills we know that students improve with 
practice. Thus, the question of whether being coaxed to a more 
efficient path would reduce the number of errors a student 
makes – perhaps because the work space is less messy – cannot 
be answered without further study. 

VI. SUMMARY AND CONCLUSIONS 

Complex problems that engineering students learn to solve 
often have multiple pathways to solution. It is difficult for 
human graders to provide effective formative feedback to 
handwritten solutions that are typically turned in as part of 
homework assignments. In this paper, we have described a 
technology, suitable for a distance education context, which 
can provide students learning to solve complex engineering 
problems feedback on their efforts. 

By adapting the approach of cognitive tutors, we have 
developed a computer tutor that has a cognitive model of a 
student engaged in solving the problems of interest. The tutor 
interface permits the user to solve problems correctly following 
any pathway and to commit commonly observed errors. The 
cognitive model and the judicious timing of feedback give the 
user wide latitude to pursue different solution pathways, 
prevent new work from building upon previously committed 
errors, and still provide feedback on errors to enable students to 
complete most problems correctly. 

As previously described, metrics for judging the 
effectiveness of feedback have been devised by viewing the 
solving of problems as a set of distinct skills or knowledge 
components. Actions by the student constitute opportunities to 
exercise different knowledge components; the effectiveness of 
feedback is quantified based on whether fewer students incur  

 
Figure 12.  Correlation between individual ability and the number of problems 

solved efficiently. Each data point represents one student user. 

errors with successive opportunities on each knowledge 
component. The data from a cohort of students had been fit to a 
statistical model that predicts the percent error as a function of 
opportunity. The model has several parameters, including 
initial difficulty and rate at which errors decrease with 
opportunity for each knowledge component. Fitting these 
parameters to the data provided evidence that the students do 
learn: that is, their propensity for errors decreases with practice. 
The statistical model also includes a single parameter for each 
student in the cohort, corresponding to the overall skill level. 

The present paper has focused on a different aspect of 
student solutions using the tutor, namely on their overall 
solution path. By contrast to errors, upon which students 
receive feedback, the tutor does not give feedback to students 
on their overall solution path, nor does the tutor promote 
efficiency in the path. However, students may, through the 
additional effort needed when solving problems inefficiently, 
discover more efficient paths on their own. Furthermore, 
efficiency in the solution path may be associated with fewer 
errors. 

To that end, a measure of efficiency involving the 
maximum number of unsolved variables at any instant was 
defined. It was found that the fraction of students who solved 
efficiently increased by a statistically significant amount from 
the first problem to the second problem, and held steady in the 
third problem. Furthermore, efficiency in solution was found to 
correlate significantly and positively with student skill, as 
measured by the overall skill level extracted from the statistical 
model. Thus, perhaps to reduce their workload, students do 
become more efficient with practice. Furthermore, higher 
efficiency is associated with making fewer errors. The 
possibility of causal relationships between efficiency and errors 
remains to be studied. 

In summary, the technology described here has 
demonstrated that students can be given sufficient feedback, 
while working without an instructor, to complete complex 
problems, that their errors reduce with practice, that they 
become more efficient by virtue of their practice, and that such 
efficiency is associated with fewer errors. Moreover, because 
the technology maintains a detailed record of student work, and 
interprets that work meaningfully by way of a cognitive model, 
it enables the learning process to be studied and the tutor itself 
to be systematically improved with time. 
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