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Abstract

In this work, we present a computational framework for automatically generating kinematic models of planar mechanical linkages
from raw images. The hallmark of our approach is a novel combination of supervised learning methods for detecting mechanical
parts (e.g. joints, rigid bodies) with the optimizing power of a multiobjective evolutionary algorithm, which concurrently maxi-
mizes image consistency and mechanical feasibility. A rigorous set of experiments was conducted to systematically evaluate the
performance of each phase in our framework, comparing various combinations of joint and body detection schemes and feasibility
constraints. Precision-recall curves are used to assess object detection performance. For the optimization, in addition to standard
accuracy measures such as top-N accuracy, we introduce a new performance metric called user effort ratio that quantifies the
amount of user interaction required to correct an inaccurate optimization solution. Current state-of-the-art performance is achieved
with (i) one (or a cascade of) support vector machines for joint detection, (ii) foreground extraction to reduce false positives, (iii)
supervised body detection using normalized geodesic time, distance, and detected joint confidence, and (iv) feasibility constraints
derived from graph theory. The proposed framework generalizes moderately well from textbook graphics to hand-drawn sketches,
and user effort ratio results demonstrate the potential power of an interactive system in which simple user interactions complement
computer recognition for fast kinematic modeling.

Keywords: computer vision, evolutionary multiobjective optimization, image processing, kinematic modeling, object recognition,
sketch recognition

1. Introduction

A planar mechanical linkage is an assembly of rigid bodies
connected by kinematic pairs (or joints) that constrain its mo-
tion within a plane. With applications in robotics [6, 7], health-
care [29, 38], transportation [58, 65], and industrial equipment
[32, 46], among others, we observe and make use of the dy-
namic behavior of complex mechanical systems on a daily ba-
sis. Visualizing the coordination motion of mechanical linkages
is indeed a valuable skill for improving design intuition [18],
yet during the design and analysis of such dynamic assemblies,
the visual content is largely static in nature, as illustrated in
Figure 1.

To overcome this information deficit, students and engineers
may use mental simulations to infer mechanical behavior [36],
but this can be difficult for complex problems [35] or for in-
dividuals with low spatial ability [37]. They also frequently
use hand-drawn sketches to convey design ideas, perhaps in-
corporating key annotations and arrows to demonstrate motion;
even so, the burden for visualization remains with the user. Al-
ternatively, computer simulations can be generated using spe-
cialized software [1–4], in which users manually create kine-
matic models. However, this task is often too time-consuming
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Figure 1: Example mechanical linkages (a) in the real world, (b) in textbooks,
and (c) in hand-drawn sketches2. The latter two cases represent valid inputs for
the recognition framework presented in this paper.

to be practical (e.g. students solving a dynamics homework
problem, professional engineers brainstorming potential design
concepts) and may require advanced programming skills, hin-
dering novice users. There is a clear need for better software
tools that facilitate quick computer-based kinematic visualiza-
tion of mechanical linkages, filling the gap between ineffective
mental simulations and impractical manual model creation.

In this paper, we address that need by proposing a computa-
tional framework that automatically recognizes the underlying
mechanical structure in images of textbook graphics or hand-

2Ironically, even the excavator shown here is static in this printed document,
despite our usual observation of its dynamic behavior in the real world. Images
courtesy of (a) MOBA (www.moba.de), (b) the MECH135 dataset, and (c) the
MECHS250 dataset.
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drawn sketches. In order to generate a proper kinematic simu-
lation of a planar mechanical linkage, the user typically needs
to specify the number and position of rigid bodies that make up
the linkage, as well as the type and location of joints that dictate
relative motion between rigid bodies. The goal of our method
is to offload this burden to the computer. We accomplish this
in multiple stages using a joint-centric approach, meaning that
linkages are viewed as a collection of connected joints (as op-
posed to connected bodies), and each pairwise joint connection
indicates that those two joints exist on the same rigid body. In
this way, rigid bodies can be inferred from the connections be-
tween joints. This reduces the problem to localizing joints in
the image, predicting which joints coexist on rigid bodies, and
resolving discrepancies to form reasonable mechanical assem-
blies. For simplicity, we limit our study to planar mechanisms
comprising only revolute (pin) joints.

2. Background

Our computational approach relies on ideas from many disci-
plines, including computer vision, sketch recognition, and evo-
lutionary computation. Here, we outline key references in these
areas that influenced the design of our recognition framework.

2.1. Scene understanding

The task of identifying structured objects in images is not a
new one [14, 24, 25]. Practical applications include face recog-
nition [26, 66], pose estimation [64], and 3D surface estimation
[55]. The key difference, though, between previous work in this
area and our present domain is that planar mechanisms do not
have well-defined structural or spatial dependencies. For exam-
ple, in face recognition, it is straightforward to learn that a chin
should not be located above the nose or that eyes should exist
between the ears; with mechanical linkages, it is less clear if
a specific joint should be systematically connected to another.
Little knowledge is gained about the likelihood of other objects
in the image just from knowing one object’s location.

Within the current domain of interest, Sato et al. [57] pro-
posed a vision-based approach for automatically estimating the
location of an axis of rotation in a mechanical linkage. The pri-
mary differences between that work and the research in this pa-
per are twofold. First and foremost, it relies on motion tracking
from a series of images to capture the moving parts, whereas
our work is restricted to a single image. Second, it seems to
be limited to simple mechanisms with only one axis of rota-
tion (single pin joint), whereas our approach can handle more
complex kinematic behavior (multiple pin joints).

2.2. Sketch recognition

Two important aspects of sketch recognition that relate to
the present work are representation and complexity. With re-
gard to representation, two classes of techniques have emerged
in the literature. Stroke-based methods treat each sketch as a
sequence of time-stamped strokes, each containing a series of
sample points in space. While some works share similarities
to our domain [17, 33, 34, 42, 52], stroke-based methods are

ill-suited for our recognition framework, which is designed to
work on rasterized images. Still, there are interesting parallels;
for instance, [34] uses a graph representation to combine low-
level primitives into high-level shapes using geometrical rules.
We also implement graphs in our recognition pipeline, but in-
stead connect low-level joints to form high-level mechanisms
based (partially) on mechanical feasibility rules.

The other class of sketch recognition techniques is image-
based approaches, including the present work, which neglect
temporal information and only consider the spatial layout of
pixels. This poses the additional challenge of grouping rele-
vant pixels, depending on the object being recognized. With
regard to sketch complexity, it is important to distinguish be-
tween isolated symbol recognizers and detecting objects in free-
hand sketches, which is a more challenging problem. The task
of symbol recognition can be treated as a template matching
problem; some examples of successful approaches in this area
include [13, 28, 39, 40, 43, 50]. In some sense, the joint recog-
nition algorithm used here is similar to a sliding window sym-
bol recognizer. However, due to the allowable shape variance
of objects in mechanical linkages, we do not use unsupervised
part templates and instead learn a discriminative model based
on local image features.

Within the current domain of interest, researchers have
briefly studied the automatic recognition of mechanical systems
from sketch input [17, 27, 28], but these approaches typically
involve clean images, well-defined part templates, and some-
times make use of temporal information to aid recognition. Our
approach must generalize well to raw images, which are often
noisy, may contain extraneous information from other graphics,
and do not always contain well-defined part models.

2.3. Evolutionary multiobjective optimization
The proposed framework includes an evolutionary optimiza-

tion stage to resolve discrepancies from the vision-based de-
tection of joints and joint connections. There is a growing
body of research in the area of multiobjective evolutionary al-
gorithms (MOEAs), especially in regard to real-world applica-
tions. Many well-known MOEAs are based on Pareto dom-
inance [19, 61, 67], which states that a given solution domi-
nates another solution if it is at least as good on all objectives
and better on at least one objective. Arguably the most popu-
lar MOEA of this type and the one used in this present work
is the nondominated sorting genetic algorithm (NSGA-II) [19],
which has been successful largely due to fast computation of
nondominated fronts, preservation of elitist solutions, and lack
of a user-specified sharing parameter.

The nondominated sorting genetic algorithm was first in-
troduced almost 20 years ago (NSGA, [61]) and improved 8
years later (NSGA-II, [19]). The two identifying characteris-
tics of NSGA-II are nondominated sorting and crowding dis-
tance. Nondominated sorting involves locating the Pareto front
(all nondominated solutions), assigning those solutions a rank
of 1, and iteratively assigning higher ranks to each Pareto front
level, ignoring all previously detected levels. Crowding dis-
tance measures the local spread of solutions and is used to pre-
serve diversity in the population. These parameters are used
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during the selection process as follows. When sorting a set of
solutions, any solution with lower (better) rank goes before so-
lutions with higher rank. Inevitably, there will be cases when
the desired number of survivors cuts through one of the Pareto
ranks. In this case, the solutions with that rank are sorted with
preference given to higher crowding distances. This algorithm
has been shown to have success when the number of objectives
is small, so it should be a suitable approach for the problem
presented in this paper.

A number of researchers have applied evolutionary algo-
rithms to the domain of mechanical linkages [5, 9, 41, 44, 45,
49]. However, this line of work is concerned with synthesis of
new mechanisms rather than analysis of existing ones. Gen-
erally, the optimization goal is to evolve mechanical linkages
(many times with fixed topology) for which a coupler point
follows a target trajectory path. Additional constraints on the
parameter space make the problem tractable. By contrast, our
optimization goal is to evolve mechanical linkages that are con-
sistent with the visual content in an image and kinematically
feasible; no path trajectories are prescribed. While these related
works on mechanism synthesis are confined to a well-defined
parameter space, our approach must deal with the additional
challenges of object recognition.

For the present domain, the feasibility of a predicted mech-
anism is governed by mechanical principles. These principles
can be formulated as a series of constraints; in this way, large
regions of the search space may become infeasible because one
or more of the constraints fail. A critical step in algorithm de-
sign is determining how to handle such constraints. Constraint
handling methods can be broadly categorized into two groups:
(i) those that always prefer feasible solutions (hard constraints)
[12, 19] and (ii) those that treat constraints as objectives (soft
constraints) [62]. We employ the latter method in order to allow
infeasible, yet strong, solutions to persist because they may be
near the constraint boundaries.

3. Related work and contributions

The current work builds upon two previous attempts to solve
the problem of automatic image-based kinematic modeling of
mechanical linkages. In our first effort [22], we introduced a
baseline approach comprising a fixed-window sliding object de-
tector to localize probable joints, an unsupervised metric called
normalized geodesic time to predict which joints should be con-
nected to each other, and the NSGA-II algorithm [19] to evolve
a small set of feasible mechanical structures using the vision
output.

Despite initial promising results, there was room for im-
provement in each phase of the approach. Indeed, one of the
benefits of our framework is that core modules (e.g. joint de-
tection, body detection, structural optimization) can be modi-
fied in isolation without affecting the underlying principles of
the approach. With this in mind, in a secondary work [21], we
enhanced the joint detection algorithm by incorporating multi-
ple context-based classifiers of increasing window size and im-
plementing a greedy foreground extraction technique. Broadly
speaking, these modifications had the effect of increasing the

confidence gap between true positives (actual joints in the im-
age) and false positives (incorrectly-identified joints) as well as
descreasing the total number of false positives, respectively. In
addition, we investigated whether training our system on im-
ages of textbook graphics could transfer well to tests on hand-
drawn sketches and vice versa. The primary contribution of that
work was the idea that it may be possible to build a powerful
sketch recognition tool without ever needing a sample sketch
for learning.

In the present work, we shift our focus to the systematic eval-
uation of each phase in our framework. Previously, quantita-
tive comparisons between algorithm variants were made only at
the optimization level. In this paper, we incorporate precision-
recall curves to assess the quality of joint and body detection
schemes. Also, the performance metrics previously used to
evaluate accuracy of evolved solutions were somewhat coarse –
that is, a binary indicator of success for a given image may not
fully characterize the quality of the optimization routine. Me-
chanical linkages are complex, with many examples containing
ten or more parts. We believe a recognition framework that reg-
ularly identifies 90% of the required components successfully,
for example, is better than one that only identifies 10% of the
required components. To that end, we propose a novel metric
called user effort ratio that expresses the amount of user effort
required, on average, to correct a solution provided by our opti-
mization routine. In effect, this metric exemplifies the potential
benefit of using our system versus fully manual construction of
kinematic models.

In addition to the evaluation goals of this work, we also con-
tinue to improve our algorithms by integrating a supervised
method for learning pairwise joint connections and creating
more robust optimization constraints on mechanical feasibility.
In summary, the significant contributions of this paper beyond
previous related work include:

1. Inclusion of a supervised learning approach for body de-
tection.

2. Development of new feasibility constraints for optimiza-
tion based on graph theory.

3. Introduction of a new performance metric (user effort ra-
tio) for assessing overall solution quality.

4. Systematic evaluation of each stage in the recognition
framework, comparing recent algorithm modifications to
all previously reported methods.

4. Overview

The proposed methodology for recognizing mechanical link-
ages in images is illustrated in Figure 2. A database of images
with labeled ground truth information – mechanical structure
including joint locations and pairwise connectivity – is required
for training. During testing, the input to our algorithm is a sin-
gle image containing a planar mechanical linkage. Model pa-
rameters are unknown a priori, including the number of joints,
number of bodies, topology, and geometric configuration. Al-
though we initially targeted textbook graphics, the framework
can be applied to images of hand-drawn sketches without any
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Figure 2: Overview of the proposed recognition framework. Taking a raw image as input, probable joints are detected using a supervised classifier (g1) and filtered
using foreground extraction (h1). Then, rigid bodies are inferred from the supervised detection of pairwise joint connections (g2), removing any remaining joints
that do not have any connections (h2). The resulting data is passed to an evolutionary algorithm (h3) that optimizes a graphical model based on fitness criteria related
to image consistency and mechanical constraints.

modifications. No explicit restrictions are made regarding the
position, scale, or orientation of the linkage within the image,
although it is assumed the entire mechanism is fully visible. In
addition, images do not need to be pre-processed in any way
(e.g. cropping, filtering), so they may contain noise, illumina-
tion changes, and extraneous information such as text, annota-
tions, pencil markings, or partial depictions of other mechanical
systems.

The fundamental principle of our approach is to identify
salient components that make up mechanical linkages first, and
then to optimize the collection of detected components into
structural graphs such that results are consistent with visual
cues in the image and plausible in terms of engineering mechan-
ics. Mechanical components are detected in a serial manner.
Probable joints are identified first (g1), with an optional filtering
step to ignore background candidates (h1). Then, the likelihood
of body connections between joints is estimated (g2), followed
by a simple filter to remove joints without any connections (h2).
The optimization (h3) takes into account the confidence of all
vision-based detections as well as mechanical principles to en-
sure that feasible structures are preferred. The output is a small
set of kinematic models that can be easily integrated into engi-
neering software packages for further analysis and simulation.

In the next section, we discuss the technical details of our
algorithms. As stated earlier, portions of the proposed frame-
work were developed in earlier papers [21, 22]. For complete-

ness, we describe the entire framework here, but emphasize the
components that are unique to this paper, which are identified
in Figure 2 by red lines.

5. Technical details

5.1. Detecting pin joints

The first step in the vision pipeline is to identify the location
of joints in an input image. We accomplish this task by running
a sliding window over the entire image and classifying each
patch using a linear support vector machine (g1 in Figure 2).
The SVM is trained over HOG features [15] computed on a set
of example images; this process is outlined in Figure 3.

The training data comprises positive and negative image
patches extracted from selected hand-labeled images. Positive
samples contain a pin joint, while negative samples do not. The
negative patches are randomly selected from the training im-
ages, making sure they do not overlap with positive samples.
Similar to Fu and Kara [27], we augment the training set by ap-
plying a series of simple transformations to each positive exam-
ple: reflection about the vertical or horizontal axis, and rotation
by 90, 180, and 270 degrees. This effectively increases the pos-
itive training data by a factor of 5, which likely improves the
discriminative power of the joint detector. In addition, we fol-
low the approach of Dalal and Triggs [15] to improve classifi-
cation accuracy by mining hard negatives after initially training
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Figure 3: Training a support vector machine for joint detection. (a) Extract positive examples of joints in training images; (b) Augment the dataset by reflection and
rotation; (c) Extract random negative examples from images; (d) Compute features for all examples; (e) Train a soft linear support vector machine; (f) Mine hard
negatives from training images and retrain the support vector machine.

Figure 4: (a) An example image and (b) its corresponding heat map for joint
detection, where color encodes distance to the decision boundary and bounding
boxes highlight local maxima. Bounding box thickness positively correlates
with detection confidence.

the SVM. This is especially critical for our problem domain be-
cause most of the background in textbook images and sketches
is blank, and therefore the initial set of negative training ex-
amples may not accurately reflect the diversity of the negative
image space.

After training, the SVM can be used on a test image to clas-
sify the image patch centered at each pixel. The result is a
heat map, in which distance from the decision boundary (hyper-
plane) encodes detection confidence. In our method, we ignore
pixels with confidence less than zero (negative distance to the
hyperplane indicates the patch is more likely to not contain a
joint) and then apply the non-maxima suppression technique in
[24] to isolate local maxima. Figure 4 illustrates this concept
on an example image. The remaining detected joint locations
and associated confidence values are then passed to later stages
of the algorithm.

5.1.1. Multiple context-based classifiers
Preliminary experiments using the fixed-window SVM clas-

sifier described above revealed that text and annotations in an
image frequently trigger false joint detections with high con-
fidence. These false positives can be problematic for our op-
timization routine, which relies on detection confidence in the
computation of multiple fitness objectives (see section 5.3.2).
With this in mind, we introduced the idea of using context cues
from larger neighborhoods in the image to better discriminate
between true and false joints [21]. More specifically, we train
three SVM classifiers on HOG features over increasing win-
dow size and employ a weighted sum of the distances to each
decision boundary as the indicator of detection confidence. The
HOG descriptor parameters are modified according to window

size such that all image patches have the same number of fea-
tures; in other words, larger window sizes yield coarser spatial
binning. Unlike many multi-scale classification schemes, we do
not run all classifiers in parallel on the full image. Instead, we
implement a serial approach, in which the root classifier instan-
tiates potential joint detections and then the two context classi-
fiers adjust the confidence level of those detections accordingly.
Refer to [21] for additional details regarding classifier weights
and example results for this detection scheme.

5.1.2. Foreground extraction
The inclusion of multiple context classifiers has the primary

benefit of increasing the confidence gap between true positive
joints and false positive joints, on average. In order to increase
the overall precision of the joint detection scheme, i.e. to re-
duce the number of false positives, we filter out background de-
tections using a greedy foreground extraction algorithm (h1 in
Figure 2). The algorithm is depicted in Figure 5 and proceeds
as follows. First, a Sobel edge detector [20] is run over the satu-
rated grayscale image, yielding a set of boundaries. The bound-
aries are dilated by a fixed radius (6-8 pixels for a 600x800 im-
age), then connected regions are extracted. We select the region
with the maximum area (i.e. number of boundary pixels), but
unlike [21], we only count edge pixels in the middle 50% of the
image. This is motivated by the observation that most of the
foreground is typically near the center of the image, although it
does not restrict objects from being close to the image bound-
aries. The foreground mask corresponds to the region with the
highest pixel count. We determined empirically that it is use-
ful to fill the holes in the foreground region when dealing with
sketches, but this is not necessary for textbook graphics. This
approach yields 100% accuracy for the images used throughout
this paper, meaning the filtering process never removes a true
joint from consideration. We hypothesize that this simple step
has a large impact on the quality of joint detection, which we
investigate further in section 6.

5.2. Detecting rigid bodies
As alluded to in section 4, rigid bodies are not explicitly rec-

ognized using a sliding window detector; rather, they are iden-
tified by local features from pairs of detected joints. This de-
cision was motivated by the observation that rigid bodies ex-
hibit high variance in shape, color, texture, and size, making
it difficult to learn a reliable detector using typical image fea-
tures. Since any rigid body must be connected to at least two

5



Figure 5: Greedy foreground extraction on a sample textbook image. (a) The input grayscale image after saturating the top and bottom 1% of pixels. (b) A binary
mask of boundaries detected by the Sobel edge filter. (c) After dilating the boundaries by a small amount, regions are grouped together (distinguished here by
different colors) and edge pixels are counted for each region. Note that only pixels inside the black bounding box are counted and the background (grey) is ignored.
(d) The region with the highest count is identified as the foreground.

Figure 6: Computation of normalized geodesic time and distance for a pair of points in a sample image. (a) The grayscale image, from which we are comparing
the pin joints at A and C. (b) Heatmaps indicate the geodesic time between pin A (front) or pin C (back) and every other pixel in the image. (c) The sum of the
heatmaps can be used to extract the optimal path between the pair of points. (d) The optimal path P has an associated distance (pixel count) and time (sum of the
pixel intensities along the path). The distance d between the pair of points is used to normalize the geodesic measures between 0 and 1.

joints3, we have already reduced the search space by identify-
ing probable joints and can now check pairs of joints for body
characteristics.

In contrast to our previous work in this area [21, 22], we cur-
rently present a supervised learning approach for the task of
body detection (g2 in Figure 2). Specifically, we train a soft,
linear SVM in the four-dimensional space defined by the fol-
lowing features: (i) normalized geodesic time; (ii) normalized
geodesic distance; (iii) minimum joint confidence for the pair in
question; and (iv) maximum joint confidence between the same
joints.

The geodesic time [59] between any pair of pixels (p, q) in a
grayscale image is defined as

tg(p, q) = min{ tg(P) | P links p to q } (1)

and the geodesic time of a given path P of length n connecting
two pixels is given by

tg(P) =
Ip0

2
+

Ipn

2
+

n−1∑
i=1

Ipi (2)

where Ip j is the pixel intensity of the jth pixel on the path. In
other words, the geodesic time indicates how long it would take

3The exception to this rule is a pendulum, which contains a rigid body con-
nected by only one pin; this case is excluded from the current domain of interest
due to lack of complexity.

to traverse an image “landscape”, if you followed the quickest
path between points and height of the landscape is determined
by pixel intensity. We believe this is a useful metric for char-
acterizing rigid bodies in mechanical linkages because there is
typically a path through dark boundary lines for joints located
on the same body. As a result, we can expect the geodesic time
for true pairwise connections to be low and for false connec-
tions to be high. To scale all data in the range of [0,1], we
divide the geodesic time between two points by the worst-case
scenario, which is a line of white pixels connecting the points.
Without this normalization, the algorithm may exhibit positive
bias toward false connections between joints that are near each
other and negative bias toward true connections in which the
joints are far apart.

On its own, normalized geodesic time is likely insufficient for
discriminating between true joint connections and false connec-
tions. The reason for this is simple: mechanical linkages can be
viewed as chains of connected bodies. As such, there should be
a path with low geodesic time between joints at opposite ends
of the chain that are not on the same rigid body. To combat
this challenge, we include a second metric called normalized
geodesic distance.

The geodesic distance [59] between any pair of pixels (p, q)
in a grayscale image is defined as

dg(p, q) = { L(P) | tg(P) = tg(p, q) } (3)

where L(P) is the length (number of pixels) of the minimum
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Figure 7: Comparison of rigid body detection approaches. (a) Sample image
with true positive (green) and false positive (red) joint detections highlighted;
(b) Previous unsupervised method based only on normalized geodesic time; (c)
Current supervised approach using four features.

path P connecting p and q. To scale all data in the range of
[0,1], we apply the following normalization

| dg(p, q) | =
||p, q||

dg(p, q)
(4)

where ||p, q|| is the Euclidean distance between p and q. Based
on this formula, pairs of joints that have an approximately
straight-line minimum path will yield high values for normal-
ized geodesic distance, while pairs that require a longer, ob-
scure path will result in low geodesic distance values. An il-
lustrative summary of the geodesic computations is shown in
Figure 6.

While low geodesic time and high geodesic distance are good
indicators that a pair of joints belong to the same rigid body,
there are some limitations. Consider, for instance, the exam-
ple depicted in Figure 7. In this case, multiple false joint de-
tections are located near the edge of a rigid body (Figure 7a).
Thus, the normalized geodesic time and distance between these
false joints and true joints will likely create false rigid body con-
nections that are indistinguishable from true connections (Fig-
ure 7b). In order to mitigate this effect, we add pairwise joint
confidences as features for the rigid body classifier. In this way,
false connections may be correctly identified as such due to the
low relative confidence of the false joint (Figure 7c).

5.2.1. Training
Using the results of the pin joint detector as context cues for

rigid body detection has an important implication for training
protocol. Given the sequential nature of the vision pipeline, the
rigid body detector is prone to overfit the training data if all
samples are used at once to train the previous detector. Ideally,
we would like to train the rigid body detector using context cues
that mimic joint detection behavior during testing. To accom-
plish this, we implement a stacked training procedure similar to
[54] and described in [10, 63].

The underlying idea of stacked learning is that training data
for a classifier that relies on information from a previous clas-
sifier should only be generated from images that were not used
for training the previous classifier. In this sense, stacked learn-
ing is similar to cross-validation. Figure 8 demonstrates this
concept. To produce training data for rigid body detection, we
split the training database into k equal subsets (k = 5 for all
experiments in this paper). Then, we train a joint detector on
(k−1) subsets and test it on the remaining subset. By repeat-
ing this process k times, we effectively create an unbiased set of

Figure 8: Stacked learning protocol. (a) The original training database is split
into k folds. (b) For each fold, the g1 classifier is trained using the remaining
(k−1) folds. (c) The test results for each fold are compiled into a new train-
ing database for subsequent classifiers that has the same size as the original
database.

joint detections for each image in the original training database.
This data is subsequently used to train the rigid body detector
using the aforementioned features.

5.2.2. Filtering unused joints
During testing, all pairs of detected joints in an image are

evaluated using the learned SVM. Similar to the joint detection
protocol, the confidence of a rigid body connection is deter-
mined by its distance to the SVM decision boundary, and con-
nections with distance less than zero are discarded. As a result,
it may occur that one or more joints have no positive connec-
tions to other joints. As a rule, we remove such joints because
they are no longer useful for the optimization routine (h2 in Fig-
ure 2).

5.3. Optimizing mechanical structure

Given the output from the vision pipeline, which is a set
of confidence values associated with detected joints and pair-
wise joint connections, the problem becomes one of constrained
multiobjective optimization (h3 in Figure 2). Specifically, we
seek to find a hypothesis of a mechanical linkage that is strongly
consistent with what has been detected in the image as well as
reasonable in terms of kinematic simulation. To that end, we
employ the nondominated sorting genetic algorithm (NSGA-II)
introduced by Deb et al. [19]. This algorithm was selected
for several reasons, including its well-known success in solv-
ing real-world applications, its ability to quickly find a diverse
set of good solutions for multiple conflicting objectives, and the
unique opportunities it provides for handling constraints. No-
table details specific to the present domain are outlined below.

5.3.1. Representation
We represent a mechanical linkage using a structured graph,

similar to [44], but with vertices representing joints and edges
corresponding to pairs of joints on the same rigid body. It is
important to note that edges do not explicitly identify rigid bod-
ies (i.e. there is not a one-to-one correspondence); in fact, any
body containing more than two joints will be encoded as a fully
connected subgraph comprising multiple vertices and edges. In
addition, we relax the constraint that multiple pins fixed to the
ground must share an edge because a typical image may not
exhibit strong visual cues that grounded pins are connected.
Consequently, the graph representation of a given mechanism
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Figure 9: Phenotype-genotype mapping. (a) An artificial example of the phe-
notype space comprising all available graph vertices and edges. Note that the
graph does not have to be fully connected as shown here. (b) A candidate so-
lution, highlighted in red, contains a subset of the available graph. (c) The first
part of the genotype encodes which vertices exist in the solution, and the sec-
ond part dictates which edges should be included. The latter portion is derived
from the upper triangular adjacency matrix.

is not necessarily unique; also, multiple linkages with different
kinematic behavior can be represented by the same graph.

Figure 9 illustrates the phenotype-genotype mapping for our
problem. The genotype is a vectorized transformation of the
structured graph, and it consists of two parts: (i) a bit-string
of length N to indicate the presence of a joint in an individual
hypothesis, where N is the number of detected joints; and (ii)
a bit string of length N(N − 1)/2, which encodes the presence
of pairwise edges. The latter part is derived from the upper tri-
angular matrix of the adjacency matrix, which is symmetric. It
should be noted that the genotype does not explicitly include
any information regarding the spatial layout of detected joints.
Also, this representation allows an edge to exist in the absence
of one or more of its connecting vertices. To deal with this
issue, the bit-string that encodes vertices (joints) is used to vir-
tually mask “invalid” edges (connections) for the purpose of
fitness evaluation. However, the true value of those edges is re-
tained during crossover and mutation so that there is no internal
bias toward solutions with fewer edges. Similarly, this repre-
sentation allows a vertex to exist in the absence of one or more
of its connecting edges. We virtually mask such vertices during
fitness evaluation, but keep the true value during crossover and
mutation.

5.3.2. Fitness criteria
The ultimate goal of our recognition framework is to find the

mechanism topology graph that concurrently optimizes a series
of objectives using Pareto dominance. Specifically, we seek to
maximize the image-based confidence of joints and connections
used in a solution, to minimize the confidence of unused image
information, and to maximize the likelihood that the mechani-
cal behavior is meaningful.

1. The joint likelihood ( f1) is the average detection confi-
dence of joints present in a given hypothesis (H), or

f1(H) =

∑N
i=1 s j,iyi∑N

i=1 yi
(5)

where s j,i is the confidence of the ith joint and yi is the
(Boolean) value of the ith gene.

2. Similarly, the joint connection likelihood ( f2) for a given
hypothesis is computed as the average connection confi-
dence,

f2(H) =

∑L
i=N+1 sc,iyi∑L

i=N+1 yi
(6)

where sc,i and L are the confidence of the ith connection
and the chromosome length, respectively.

3. Residual image data refers to the average confidence of
unused joints ( f3) and connections ( f4) in an individual
solution. These two objectives are critical for enabling the
detection of complex mechanisms; without them, a four-
bar linkage (the simplest mechanism in our domain) will
always be preferred unless additional nodes and edges im-
prove the confidence of f1 or f2.

4. A series of binary mechanical constraints are evaluated to
estimate the kinematic feasibility of solutions. The per-
centage of constraints that are satisfied make up the final
objective ( f5); for a feasible mechanical linkage, this will
equal one. No constraint is more important than the others,
and the feasibility objective contributes to nondominated
sorting in the same way as the other fitness criteria.

5.3.3. Mechanical constraints
In this section, we discuss the design of the mechanical con-

straints on feasibility in more detail since this is fundamentally
the most critical objective function; without it, the optimization
simply maximizes object detection output with no regard to the
domain of interest. By feasible, we mean that a solution should
represent a single, closed kinematic chain and that all rigid bod-
ies (with the exception of a world frame) should be capable of
motion. While it may be easy for an expert engineer to evalu-
ate these criteria, it is a nontrivial task to transform them into
mathematical constraints that can be used by the computer. Ide-
ally, a full kinematic simulation would provide the best insight
regarding feasibility, but this approach is too computationally
expensive (imagine generating 10,000+ dynamic simulations
quickly). Instead, we found through trial-and-error that sim-
ple heuristics yield a reasonable estimate of feasibility without
the lag in computational speed.

The initial set of constraints we developed [22] include: (i)
the degrees of freedom (DOF) should be greater than zero, (ii)
each joint must have at least one connection, (iii) there must
be at least four rigid bodies, including the frame, and (iv) all
joints must be a minimum distance away from each other (e.g.
15-30 pixels). Even though each of these constraints is indeed
a requirement for a mechanical linkage to be feasible, our im-
plementation was perhaps too simplistic. For example, we used
Gruebler’s equation [60] to compute the DOF, such that

DOF = 3(nb − 1) − 2nlp − nhp (7)

where nb is the number of rigid bodies (including the world
frame), nlp is the number of lower kinematic pairs (i.e. rev-
olute and prismatic joints), and nhp is the number of higher
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Figure 10: (a) Example cliques containing two, three, and four vertices, re-
spectively. (b) A graph with thirteen cliques, but only four maximal cliques
(distinguished by color).

kinematic pairs4. However, we substituted the number of edges
for nb, which, as explained previously, overestimates the true
rigid body count. This is also problematic for the third con-
straint listed above. The effect of this superficial computation
on the optimization results was clear during testing; many of the
Pareto-optimal solutions were not actually sensible mechanical
linkages, even though they met all of the constraints we im-
posed.

To address this shortcoming, a significant contribution of this
paper is the introduction of a new set of robust constraints that
more accurately reflect mechanical feasibility. The constraints
are derived from graph theory, largely from the idea of cliques
[31]. A clique is a fully connected subgraph – that is, all pairs
of vertices in the clique must have an edge between them. See
Figure 10 for an illustration of this concept. A maximal clique
is one that is not contained within a larger clique. So, for exam-
ple, the graph in Figure 10b has thirteen cliques, but only four
maximal cliques. Mechanically speaking, a fully connected set
of links connected by pins cannot move relative to each other.
Therein, locating the rigid bodies in a graph amounts to find-
ing all of the maximal cliques [51]. There are three important
constraints related to cliques (rigid bodies). First, there must be
at least three maximal cliques for a feasible mechanical link-
age with only revolute joints; four rigid bodies are required5,
including the world frame, which may not be explicitly iden-
tified. Second, no cliques can be members of more than one
maximal clique (Figure 11a), for this violates the definition that
all pairs of joints sharing a rigid body should be connected.
Third, no rigid bodies (maximal cliques) can form a subgraph
with zero DOF; the prime example of this violation is the tri-
angular graph shown in Figure 11b-c, which if you assume the
world frame connects the bottom two vertices, cannot move at
all. See Appendix A for details on the computation of these
three constraints. As a final constraint, because of the nature of
kinematic chains, the graph should be connected – that is, there
must exist a path between every pair of vertices. To determine

4A higher kinematic pair is one in which the contact between bodies is along
a point or a line; lower kinematic pairs have contact along a plane. None of the
mechanisms studied in this paper have higher kinematic pairs, so this last term
can be ignored.

5To verify this, note that a closed kinematic chain with m bodies requires at
least m pin joints, and then try plugging values of m into nb and nlp in Equation
(7). Only values >=4 will yield DOF>0.

Figure 11: Mechanical constraint violations. (a) In this graph, a clique {2, 5}
participates in more than one maximal clique ({2, 3, 5}, {2, 4, 5}). (b-c) In these
instances, two maximal cliques form a subgraph with zero degrees-of-freedom
(i.e. if you fix the free ends, the cliques cannot move relative to each other).
Note that both graphs violate the same constraint despite having different
topologies.

whether this is true for a given solution, we use the Dulmage-
Mendelsohn decomposition of the adjacency matrix [53].

To recap, the updated mechanical constraints for feasibility
are as follows:

1. There must be at least three maximal cliques.
2. There must be no cliques that are members of more than

one maximal clique.
3. There must be no subgraphs with zero DOF.
4. There must be only one connected component.

6. Experiments

6.1. Data

For textbook graphics, we use the MECH135 dataset [22],
which consists of 135 images of planar mechanical linkages
containing only revolute joints. For hand-drawn sketches, we
use the MECHS250 dataset [21], which comprises 250 images
of sketches created by 25 engineering students (10 sketches per
user). Each sketch depicts a single planar mechanical linkage
chosen randomly from the MECH135 dataset. All images are
scaled to 600x800 pixels.

6.2. Methods

The primary goal of the experimental studies presented here
is to characterize the performance of each subroutine in our
recognition framework. The three subroutines of interest are
joint detection (section 5.1), body detection (section 5.2), and
structural optimization (section 5.3). Previous work [21, 22]
only focused on evaluation at the optimization end, which lim-
ited our ability to quantify the impact of earlier stages in the
pipeline when comparing algorithm modifications. In this pa-
per, we systematically evaluate each stage for all combinations
of detections schemes and optimization constraints to deter-
mine which methods yield state-of-the-art performance and to
diagnose areas requiring improvement in the future. Table 1
summarizes the algorithm variants explored in this paper.

We conduct two sets of independent experimental studies,
one for textbook graphics and one for hand-drawn sketches.
The former includes three textbooks for testing, and the latter
tests sketches from three users. Considerable effort was made to
select exemplary users with varied sketching style and level of
abstraction. Unlike our previous intermodal study [21], in this
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Table 1: Description of algorithm variants

Joint Detection
SVM fixed-window, soft, linear support vector machine trained on HOG

features
CSVM cascade of three context-based support vector machines trained on

HOG features
SVM+FG same as SVM, but with the additional foreground filter

CSVM+FG same as CSVM, but with the additional foreground filter

Body Detection
SVM4 support vector machine trained on four features including normal-

ized geodesic distance and time as well as confidence of detected
joints

SVM2 same as SVM4, except that joint detection confidences are ignored
|dg | normalized geodesic distance (unsupervised)
|tg | normalized geodesic time (unsupervised)

Mechanical Constraints for Structural Optimization
NAIVE initial set based on DOF, number of joint connections,

and distances between joints
GRAPH-THEORETIC updated set based on graph theory

Table 2: General NSGA-II parameters

Parameter Symbol Value

population size µ 200N†

number of offspring λ µ
maximum number of generations n 20
crossover method − uniform
crossover probability pc 0.9
mutation method − uniform
mutation probability pm 0.1
tournament size k 0.02µ

†N refers to number of detected joints

paper we exclusively train and test our framework on the same
type of image at a given time – that is, textbook graphics are
used to train a system that is tested on textbook graphics and
sketches are used to train a system that is tested on sketches.
Nonetheless, to avoid overfitting, we do not allow testing im-
ages to be involved during the training process. In fact, we do
not even allow images from the same subset (e.g. textbook,
user) to be included in both training and testing. In this way,
we believe our protocol mimics the practical scenario of a stu-
dent or engineer using a pre-trained recognition framework on
a new textbook or previously unseen sketches.

For a given experimental condition and test subset, we train
a joint detector using the remaining images in the correspond-
ing dataset (MECH135 or MECHS250). As needed, we train
a body detector using 5-fold stacked learning (section 5.2.1).
The detectors are used to locate probable joints and pairwise
joint connections in every test image. Then, for each image,
NSGA-II is run five times using the general parameters listed in
Table 2 and the appropriate mechanical constraints. We follow
the measures against uncertainty and post-processing methods
described in [21, 22]. The full implementation has been devel-
oped in MATLAB [3], and all experiments were performed on
an Intel(R) quad-core 3.30GHz CPU with 8 GB RAM.

6.3. Evaluation metrics

In this section, we highlight relevant performance measures
for each stage in our recognition framework. For joint and
body detection, we employ Precision-Recall (PR) curves [56]

because they are a well-established assessment technique used
in computer vision [16]. For instance, PR curves are the princi-
pal method for comparing algorithms in the popular PASCAL
VOC challenge [23]. As the name implies, a PR curve is a plot
of precision versus recall for a binary classifier. Precision is
defined as

Pr =
tp

tp + f p
(8)

and recall is given by

Re =
tp

tp + f n
(9)

where tp is the number of true positives (correctly identified
objects), fp is the number of false positives (false alarms), and
fn is the number of false negatives (missed objects). Precision
reflects the number of false detections made by the classifier, or
the positive predictive value (i.e. How confident can we be that
a detection is actually a good one?). Recall reflects the sensi-
tivity of the classifier to missed detections (i.e. How confident
can we be that the classifier will not miss desired detections?).
Both precision and recall can vary from 0 to 1, with 1 being the
best score. In other words, the globally optimal operating point
in Precision-Recall space is at (1,1), or the top-right corner of
the plot.

A PR curve is generated as follows. For a set of detections,
perform ground truth matching to locate true matches. Then,
sort the detections based on confidence. Vary a threshold be-
tween the minimum and maximum confidence values. At each
threshold, consider all detections with confidence greater than
the threshold to be positive detections and all others negative.
The relevant variables (tp, fp, fn) can be computed from the
positive/negative labels and ground truth matches, and a single
value for precision and recall is calculated. After computing the
precision and recall at each threshold, the result can be plotted.

A PR curve can provide qualitative assessment of the
strengths and weaknesses of a classifier. For quantitative com-
parison, most researchers use the average precision (AP), or the
area under the curve. In our experiments, the mean average pre-
cision (mAP) across different textbooks or users yields a holis-
tic view of classifier performance.

For mechanical graph optimization, we leverage a collection
of different evaluation metrics to assess overall performance.
First, we look at whether an image is solvable, meaning the true
graph is contained within the search space of the optimization.
In a way, the percentage of images that are solvable reflects the
combined quality of the joint and body detection schemes. If
the joint detector fails to locate one of the true joints in an im-
age, for instance, the optimization will never evolve the true so-
lution. The next metric we consider is the percentage of solved
images. By this we mean the number of images for which the
true solution was found in at least one independent run. The rel-
ative difference between the percentage of solvable and solved
images may provide insight into the limits of the optimization.
An image that is solvable, but not solved, may indicate that the
joint and body detectors have high recall, but low mean average
precision. In other words, weak confidence in true objects or
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Figure 12: Both of these solutions do not match the ground truth, but are they
equally bad? In (a), the solution can be corrected in one step by moving the
joint at point D to point O. The solution pictured in (b) requires multiple steps
to accurately match the ground truth.

strong confidence in false objects may restrict the ability of the
optimization routine to evolve the true solution. Refer to [21]
for additional details and examples of unsolvable and unsolved
images.

Another performance measure used to assess optimization
quality is top-N accuracy. Top-N accuracy refers to the percent-
age of runs in which the true solution was located in at least the
top N sorted Pareto-optimal solutions. Ideally, we desire for
the true solution to be the top solution (high top-1 accuracy),
but this may not be realistic given the fact that we have multi-
ple, conflicting objective functions. As a result, we also look
at top-5 accuracy and consider post hoc user selection or full
kinematic simulation of the top 5 solutions to be reasonable ap-
proaches for narrowing the output set of solutions.

In our baseline experiments [21, 22], we relied on top-N ac-
curacy to measure the success of our framework. While it is a
valuable metric, it may be too coarse in resolution. Consider
the examples in Figure 12. Neither of these graphs matches the
ground truth, but it is clear that the graph on the left is closer
to the true solution than the one on the right. Is there a way to
capture this information? We propose a novel evaluation metric
called the user effort ratio. The basic premise is that the worst
recognizer would require the user to manually create the entire
model on their own (similar to what current modeling software
requires). The best recognizer, on the other hand, would not
require any effort from the user for model creation. In practice,
our recognition framework likely exists somewhere in the mid-
dle. It may not always get the true mechanical linkage correct,
but it should at least give results that are close to the true solu-
tion. In this way, it is conceivable that the user could correct the
model with simple, intuitive strokes (e.g. add a missing joint by
circling it, remove a false edge by crossing it out).

The user effort ratio (RE) is thus defined as

RE =
number of steps to correct model

number of steps for manual model creation
(10)

Lower values of RE are preferred. The denominator is easily
computed as the sum of all vertices and edges in the ground
truth solution; the user would simply need to specify each one
to construct the graph manually. The numerator, however, is
treated a bit differently. As illustrated in Figure 13, we consider

Table 3: Average Precision for joint detection in textbook graphics

SVM CSVM SVM+FG CSVM+FG

Ginsberg 0.48 0.79 0.75 0.88
McGillKing 0.89 0.88 0.96 0.95

MeriamKraige 0.91 0.91 0.92 0.93

mAP 0.76 0.86 0.88 0.92

each of the following user operations to count as one step: (i)
adding a joint; (ii) adding an edge between two existing joints;
(iii) removing a joint and its corresponding edges; (iv) remov-
ing an edge; and (v) moving the location of a joint, keeping
its edges intact. This novel performance measure has two ad-
vantages. First, it provides more fine-grained information for
comparing optimization routines. Second, it gives an interest-
ing estimate of how beneficial our computational method will
be to end users – that is, how much effort will our automatic
recognition framework save them? In this paper, we compute
user effort ratio based solely on the top solution, although in
theory an average user effort ratio could be computed on a small
set (e.g. top 5 solutions).

6.4. Results and discussion

Sample results for both textbook graphics and hand-drawn
sketches are provided in Figure 14. In the following sections,
we discuss the results for each study separately.

6.4.1. Textbook graphics
The three textbooks selected for testing are referenced by au-

thor name: Ginsberg [30], McGillKing [47], and MeriamKraige
[48]. Each textbook contributes 3, 15, and 27 images to the
dataset, respectively. Precision-recall curves for joint detection
are shown in Figure 15 and average precision results are sum-
marized in Table 3. In general, mean average precision is high
(>0.75 for all cases with a maximum of 0.92 for the CSVM+FG
case), indicating that the joint detection methods we selected
are largely successful. It should be noted that the results for
Ginsberg appear noisier than the others, but this is simply due
to the low number of images for that textbook (3) and is not
representative of large-scale detection performance. Still, all
textbooks demonstrate the same trend of increasing mAP as
multiple context classifiers are added and even more so when
the foreground filter is applied. The markers on each plot in
Figure 15 pinpoint the actual operating points of each classi-
fier, and they exemplify the same trend. An important outcome
of this assessment is that recall is always very high, meaning
we rarely miss a joint detection, even if there are many false
positives. Since it is clear that including foreground extraction
always yields better average precision, we only consider the
SVM+FG and CSVM+FG cases further in the pipeline.

Precision-recall curves for rigid body detection are illustrated
in Figure 16 and accompanied by average precision results in
Table 4. For this, we analyze eight experimental conditions
based on the two remaining joint detection schemes and the four
available body detection methods. The mean average precision
is markedly lower than the joint detection mAP (Table 3) for all
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Figure 13: Artificial examples of user effort required to fix an incorrect solution. (a) The correct solution. Each of the following interactions count as one step: (b)
removing a joint and its associated connections; (c) removing an edge between two joints; (d) adding a joint; (e) adding an edge between two joints; and (f) moving
a joint to a new location, keeping its edges intact.

Figure 14: Sample results on textbook images and sketches. For each textbook and user, we select a representative example and show the original image (top), the
output from our vision pipeline (middle), which depicts detected joints and bodies (thicker, more yellow lines and circles indicate higher confidence), and the top
solution evolved during one optimization run (bottom). All solutions shown here require 2 or fewer steps for correction.

experimental conditions. This is most likely a result of the fact
that our rigid body detection space depends on the joint detec-
tor. Some false positive joints may create pairwise connections
with very high confidence. Also, whereas our joint detector is
trained on a high-dimensional (1764) feature space, the body
detector uses at most four features, which may not be discrimi-
native enough. Nonetheless, the results exhibit some important
trends. While the difference that is attributable to joint detec-
tion is small, the SVM4 method outperforms all other body de-
tection methods. Interestingly, the unsupervised approaches do
not fare well, and the method that is most similar to our prior
work (geodesic time [22]) has the lowest mAP by far. Know-
ing this, we only include the SVM4 and SVM2 conditions in
further analyses.

Figure 17 depicts the performance of our recognition frame-
work at the optimization stage. The eight remaining experi-
mental conditions are described in Table 5. Solvability is high
(> 90%) for all cases, which reemphasizes that the combined
vision-based detectors generate few false negatives. The per-
centage of solved images, however, varies significantly. For
this metric, we can draw the following conclusions: (i) the new
graph-theoretic mechanical constraints perform better than the
old naive constraints (compare 1↔ 5, 2↔ 6, 3↔ 7, 4↔ 8);

(ii) SVM4 leads to more solved images than SVM2 (compare
1↔3, 2↔4, 5↔7, 6↔8); and (iii) the joint detection method that
works better depends on the body detection method (compare
1↔2, 3↔4, 5↔6, 7↔8). Sometimes, CSVM+FG outperforms
SVM+FG, but the condition with the highest overall percentage
of solved images uses SVM+FG (condition 5).

There are two meaningful measures of top-N accuracy, one
related to performance on any image and one related to perfor-
mance only on solved images. These metrics are indicated in
Figure 17 by darker and lighter bars, respectively. One way to
think about this distinction is that top-N accuracy on all images
provides a sense for the overall success of the optimization,
while top-N accuracy on solved images represents the repeata-
bility of the optimization. For top-1 accuracy, the naive con-
straints do better on solved images (99.3% for condition 1), but
the graph-theoretic constraints do better overall (70.2% for con-
dition 5). Top-5 accuracy shows a similar trend, except that the
percentages for solved images are now relatively even among
all conditions.

Perhaps the most important takeaway of this work is the
user effort ratio. The results in Figure 17 are very promis-
ing. Keeping in mind that lower values indicate less re-
quired effort from the user, the best experimental condition is
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Figure 15: Precision-Recall curves for joint detection in textbook graphics.

Figure 16: Precision-Recall curves for body detection in textbook graphics. Solid lines represent the SVM+FG joint detection method; dashed lines refer to
CSVM+FG.

Table 4: Average Precision for body detection in textbook graphics

Body Detection SVM4 SVM2 |dg | |tg |
Joint Detection SVM+FG CSVM+FG SVM+FG CSVM+FG SVM+FG CSVM+FG SVM+FG CSVM+FG

Ginsberg 0.84 0.78 0.59 0.85 0.34 0.49 0.06 0.10
McGillKing 0.49 0.52 0.32 0.39 0.16 0.19 0.06 0.08

MeriamKraige 0.48 0.53 0.25 0.34 0.11 0.18 0.04 0.06

mAP 0.60 0.61 0.38 0.53 0.20 0.29 0.05 0.08

Figure 17: Optimization results on textbook graphics using eight experimental conditions. Solvable: average percentage of images from a textbook for which the
optimization can find the correct solution; Solved: average percentage of images from a textbook for which the optimization does find the correct solution in at least
one run; Top-N accuracy: average percentage of images from a textbook for which the optimization finds the correct solution in the top N solutions; darker bars
account for all images, while lighter bars only include accuracy for solved images; User effort ratio: average amount of effort required by a user to correct the top
solution for images from a given textbook; error bars on reveal one standard deviation.
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Table 5: Experimental conditions for optimization

ID Joints Bodies Constraints

1 SVM+FG SVM4 NAIVE
2 CSVM+FG SVM4 NAIVE
3 SVM+FG SVM2 NAIVE
4 CSVM+FG SVM2 NAIVE
5 SVM+FG SVM4 GRAPH-THEORETIC
6 CSVM+FG SVM4 GRAPH-THEORETIC
7 SVM+FG SVM2 GRAPH-THEORETIC
8 CSVM+FG SVM2 GRAPH-THEORETIC

Table 6: Average Precision for joint detection in hand-drawn sketches

SVM CSVM SVM+FG CSVM+FG

user08 0.61 0.59 0.81 0.82
user09 0.93 0.94 0.97 0.97
user10 0.65 0.73 0.75 0.83

mAP 0.73 0.75 0.84 0.87

5 (SVM+FG/SVM4/GRAPH-THEORETIC) with a user effort
ratio of 9.7%. For all experimental conditions, our recognition
framework is effectively reducing user effort by at least 75%.

6.4.2. Hand-drawn sketches
Next, we applied the same experimental conditions to im-

ages of hand-drawn sketches from three users. Figure 18 shows
precision-recall curves for joint detection, and Table 6 lists av-
erage precision results. For any given method, the mAP is rea-
sonably high, but 6.7% lower on average than the correspond-
ing mAP for textbooks. Precision at the operating point has
high variance and is most likely dependent on sketching style.
The PR curves for joint detection exemplify the same trends
for sketches as for textbooks (i.e. CSVM+FG > SVM+FG >
CSVM > SVM).

Precision-recall curves for rigid body detection in sketches
are illustrated in Figure 19 with average precision results in Ta-
ble 7. Similar to textbook graphics, mean average precision is
lower for bodies than for joints and the SVM4 method greatly
outperforms the other approaches. The CSVM+FG joint detec-
tion leads to slightly higher mAP for bodies than SVM+FG, but
the difference is not significant.

Again, we only consider the eight experimental conditions
outlined in Table 5 for evaluating the optimization stage. The
results are illustrated in Figure 20. Generally speaking, the
recognition framework performs reasonably well on sketches,
although not as well as textbooks. Solvability is high (96.7%)
and is unaffected by choice of detection scheme or mechani-
cal constraints. As with textbook graphics, condition 5 is able
to solve the most images, but the percentage is lower (40%).
Regarding top-N accuracy and the user effort ratio, the dif-
ference in using SVM+FG versus CSVM+FG for joint detec-
tion appears to be small. The new mechanical constraints seem
to positively impact performance, but the largest improvement
comes from using the SVM4 method for detecting bodies over
the SVM2 method. One significant result from Figure 20 is that
conditions 5 and 6 have top-5 accuracy of 100% for solved im-
ages. In other words, even though the number of images that are

solved may be low, the optimization is always able to evolve the
correct solution in the top five candidates for images that it does
solve under those two conditions. The user effort required on
average to correct the top solution is 27-28% for all conditions
using SVM4 (1, 2, 5, and 6). While it may seem redundant
to correct an image of a paper-and-pencil sketch with digital
sketch-based gestures, we believe our framework may be par-
ticularly useful if both sketch creation and editing operations
were digital.

6.4.3. Limitations
There are two major limitations of this work in its current

state. First, the optimization operates under the assumption that
all true joints are at least weakly detected; in the presence of
a false negative, this method will never find the correct solu-
tion. Solving this issue will likely require something similar to
expectation-maximization, in which detected joints and bodies
iteratively inform the likelihood of each other so that previously
undetected joints can be identified if there is the strong pres-
ence of a rigid body nearby. Second, the current domain is lim-
ited in scope. We did this purposefully to ensure our problem
was tractable; however, future work should look to extend this
framework to more complex mechanical behaviors (e.g. pris-
matic joints, gears, cams, intermittent contact).

7. Conclusions

The computational method presented here leverages well-
known computer vision techniques for object recognition with
evolutionary methods for optimizing the graphical structure of
planar mechanical linkages in images. We conducted a thor-
ough evaluation on textbook graphics and hand-drawn sketches
to demonstrate the efficacy of each stage in the framework.
Overall performance is improved by a new supervised learn-
ing method for detecting rigid bodies that takes into account
the context of detected joints. In addition, new constraints on
mechanical feasibility based on graph theory ensure that Pareto-
optimal solutions are actually capable of exhibiting meaningful
kinematic behavior. Finally, we introduce a novel evaluation
metric called user effort ratio that reflects the benefit derived
from using our automatic approach over manual model cre-
ation. The results demonstrate that with very little effort (10%
for textbook graphics and 27% for sketches), a user can quickly
generate kinematic models of planar mechanical linkages.

Appendix A. Computing graph-theoretic mechanical con-
straints

For efficient computation of maximal cliques, we use the
Bron-Kerbosch method with pivoting [8, 11]. The output is
an m-by-n matrix C, where m is the number of vertices (i.e.
joints in a mechanical linkage) and n is the number of maximal
cliques in the graph. Each column represents a maximal clique,
encoded as a bit-string such that

Ci j =

{
1 if vertex i is in maximal clique j
0 otherwise (A.1)
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Figure 18: Precision-Recall curves for joint detection in hand-drawn sketches.

Figure 19: Precision-Recall curves for body detection in hand-drawn sketches. Solid lines represent the SVM+FG joint detection method; dashed lines refer to
CSVM+FG.

Table 7: Average Precision for body detection in hand-drawn sketches

Body Detection SVM4 SVM2 |dg | |tg |
Joint Detection SVM+FG CSVM+FG SVM+FG CSVM+FG SVM+FG CSVM+FG SVM+FG CSVM+FG

user08 0.47 0.46 0.26 0.28 0.15 0.17 0.26 0.27
user09 0.41 0.47 0.26 0.32 0.16 0.23 0.30 0.41
user10 0.65 0.66 0.15 0.23 0.07 0.15 0.11 0.15

mAP 0.51 0.53 0.22 0.28 0.13 0.18 0.22 0.28

Figure 20: Optimization results on hand-drawn sketches using eight experimental conditions. Solvable: average percentage of images from a user for which the
optimization can find the correct solution; Solved: average percentage of images from a user for which the optimization does find the correct solution in at least one
run; Top-N accuracy: average percentage of images from a user for which the optimization finds the correct solution in the top N solutions; darker bars account for
all images, while lighter bars only include accuracy for solved images; User effort ratio: average amount of effort required by a user to correct the top solution for
images on average; error bars on reveal one standard deviation.
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Next, we describe how to use the matrix C to compute each
of the three relevant constraints.

1. To compute the number of maximal cliques in the graph,
simply count the number of columns in C.

2. To determine whether any cliques are members of more
than one maximal clique, we need to find shared edges
between maximal cliques. We can do this by counting
the number of shared vertices between pairs of maximal
cliques, which is efficiently computed as the product of
the transpose of C with itself. Let A = CtC. Then, A is
a symmetric, n-by-n matrix and A jk equals the number of
shared vertices between the jth and kth maximal clique.
If any of the off-diagonal terms are greater than one, by
definition this indicates one or more shared edges between
a pair of maximal cliques. So, to evaluate this constraint,
simply check that A jk ≤ 1 ∀ j , k.

3. To check if any subgraphs have zero DOF, the primary
subgraph we search for is two cliques that shared a ver-
tex, but do not share any other vertices with each other or
another clique. To determine if this subgraph exists, first
we find the set of vertices that are only involved in one
maximal clique, v ∈ Rm |

m∑
j=1

Cv j = 1

 (A.2)

Next, let B = CCt. B is a symmetric, m-by-m matrix in
which Bik equals the number of maximal cliques contain-
ing at least vertex i and vertex k. Taking the column-wise
sum of the rows indexed by v yields a vector u comprising
the number of vertices in v that participate in a maximal
clique with each of the other vertices. If any element of u
is greater than one, the triangular subgraph exists and the
constraint is violated.

Let us test an example to demonstrate one of these constraint
violations. For the graph in Figure 11, it is straightforward to
determine that there are four maximal cliques and C can be
written as

C =



1 0 0 0
1 1 1 0
0 1 0 0
0 0 1 0
0 1 1 1
0 0 0 1


(A.3)

The matrix of shared vertices is then given by

A = CtC =


2 1 1 0
1 3 2 1
1 2 3 1
0 1 1 2

 (A.4)

Since A(2, 3) > 1, the second and third maximal cliques (in-
dexed by columns in C) share a clique and the second mechan-
ical constraint is violated.
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