
Providing Formative Assessment to Students Solving Multi-path Engineering
Problems with Complex Arrangements of Interacting Parts: An Intelligent

Tutor Approach

Paul S. Steif (corresponding)
steif@andrew.cmu.edu

412-268-3507

Luoting Fu
luoting.fu@alumni.cmu.edu

412-268-2509

L. Burak Kara
lkara@cmu.edu
412-268-2509

Department of Mechanical Engineering

5000 Forbes Av.
Pittsburgh, PA 15213

ACKNOWLEDGMENTS
We thank Jackie Yang, Jeremy Jiang, and Rebecca Piston for their assistance in development,
testing and implementation, and Ken Koedinger for insights into the learning curve analyses.

FUNDING
This work was supported by the National Science Foundation under grant DUE-1043241.

ABSTRACT
Problems faced by engineering students involve multiple pathways to solution. Students rarely
receive effective formative feedback on handwritten homework. This paper examines the
potential for computer-based formative assessment of student solutions to multi-path engineering
problems. In particular, a cognitive tutor approach is adopted and tested out on problems of truss
analysis, studied in engineering statics. With a cognitive model for solving the class of problems,
the tutor allows the student wide latitude in solution steps, while maintaining sufficient
constraints for judging the solution and offering feedback. Proper selection of judging points
prevents interference with productive student work, while avoiding accumulated errors.
To monitor student learning, efforts to apply distinct skills were extracted on the fly from student
work. Using statistical methods developed for intelligent tutoring systems, metrics of the
effectiveness of the feedback and areas for further improvements were gleaned from error rates
in successive opportunities to apply distinct skills.

Keywords: cognitive tutor, feedback, statics, engineering, interactive problem solve, student
learning and assessment

1. Introduction

Many courses in engineering majors involve significant time spent by students solving
homework problems and corresponding efforts to grade these problems (Fernandez, Saviz, &
Burmeister, 2006). Problems often revolve around assessing a given physical situation or system
using concepts and physical principles, which leads to equations that can be solved and
conclusions drawn from their solutions. Problems differ in their level of complexity, from those
that involve a single concept or step, to problems that require students to coordinate and organize
multiple concepts and steps. A student may need to decompose the original problem into inter-
related sub-problems, define variables of different types, carry out analyses of sub-problems, and
finally combine and interpret the results. Often such problems have multiple pathways to the
correct answers.

Clearly, an improved ability to solve problems is the desired outcome from all this effort. Such
improvement should depend on practices that are known to promote learning generally, in
particular, timely formative feedback to the learner (Anderson, Conrad, and Corbett, 1989;
Bangert-Drowns, Kulik, Kulik, and Morgan, 1991; Corbett and Anderson, 2001; Hattie and
Timperley, 2007). We take formative feedback, as defined by Shute (2008), as information
communicated to the learner that modifies thinking or behavior to improve learning. In
particular, this paper addresses the issue of providing effective and timely formative feedback for
students confronting problems that have spatially complex arrangements of interacting parts, and
in which there is significant latitude in decomposition and construction of solutions.
Traditionally, students solve such problems as part of written homework assignments that are
hand graded. It is certainly difficult for grading of written homework to provide timely feedback.
Grading in many circumstances may take a week; students have likely engaged in, and probably
completed, the following homework before receiving feedback on the prior homework.

Offering effective formative assessment of written homework is also exceptionally challenging.
A correct final answer may confirm student work, but an incorrect answer likely provides no
information on where a solution was in error. Thus, a grader would ideally recognize the
different parts of the solution and seek to judge each part on its own. This is laborious to do: one
part can utilize completed work that was incorrect and thus may vary from one student to the
next. Given the very limited effectiveness of human grading to provide timely, effective
feedback to students on multi-path homework problems, it is natural to inquire whether
alternative means, for example by computer, can do better. In this paper we present an approach
to providing automated, formative assessment of students’ efforts to solve multi-path engineering
problems, along with metrics that allow one to judge the effectiveness of the feedback and seek
improvements to the formative assessment offered.

To provide automated, formative assessment for multi-path problems, the assessment system
should grant the student latitude to follow any of the potential solution pathways, and still be
able to judge student work and offer feedback regardless of the path taken. Furthermore, the
freedom granted to students should permit them to commit errors commonly found in student
work. Cognitive tutors, which have been developed for computer programming (Anderson,
Boyle, and Reiser, 1985), and high school mathematics (Koedinger, Anderson, Hadley, and
Mark, 1997; Koedinger, 2002), and other fields, offer one approach to enabling the assessment

system to interpret a range of possible solutions. Cognitive tutors are based on a cognitive model
for a learner encountering the chosen tasks; they provide feedback based on that model, and they
can also yield data upon which to judge whether learning is occurring with ongoing practice.
The approach taken here is inspired in part by aspects of cognitive tutors.

The present work also shares the goal of the Andes intelligent tutoring system (VanLehn, Lynch,
Schulze, Shapiro, Shelby, Taylor, Treacy, Weinstein, and Wintersgill, 2005), from the closely
related domain of physics. In contrast to many cognitive tutors, the Andes tutoring system does
not seek to provide instruction in a whole subject; rather it focuses exclusively on helping
student learn to solve problems that are typically assigned by instructors. Andes resulted in
demonstrable improvements to students learning to solve problems by comparison with
traditional paper and pencil. However, by comparison with what is realistically feasible for the
vast array of engineering subjects, problem solving in physics has received significant attention
from cognitive science. Further, significant resources were devoted to developing Andes, and
there is a notable time investment for students to learn to use Andes, an investment that is
recouped over the course of an entire semester.

The present work seeks to show that simpler forms of intelligent tutoring can be practically
implemented to aid problem solving in domains typical of engineering, which involve complex
spatial arrangements of interacting parts and multiple possible solution paths. Unlike Andes and
many cognitive tutors, our approach does not involve a high level of knowledge engineering, a
full student model, a set of production rules, the necessity of determining in advance a complete
set of solution pathways, and so forth. However, the tutor described below shares several
features of Andes which its developers believed were most critical to its efficacy: insisting users
be clear and explicit in defining variables, guiding students so correct solutions were arrived at
upon completion, and the offering of hints that encouraged principle-based repair of errors.

We illustrate our approach with a tutor to help students learning to solve truss problems, which
are commonly studied in statics, a course taken in multiple engineering majors. Trusses have
complex arrangements of connected members (bars) that interact with each other, and with the
external world. There are numerous pathways to solving such problems, with several types of
steps taken in various orders sequentially and in parallel. The student selects portions of the truss
including multiple whole and partial members, draws a free body diagram and writes down
equations representing relevant physical laws for each selected portion, organizes the solving of
equations, and interprets results physically in terms of the original truss. Mastery of trusses
requires conceptual and mathematical competence, as well as clarity and systematic
organization. Recently, computer systems have been developed (Roselli, Howard, and Brophy,
2006; Dannenhoffer and Dannenhoffer, 2009) that allow students to work on some simple statics
problem more or less from start to finish, and provide feedback on individual steps. But, such
systems do not involve problems with many solution paths, nor do they offer data upon which to
judge how much students are learning. Trusses are potentially also a rich domain for studying
other learning phenomena, for example evaluating the impact of different types of dialogs on
learning and problem solving (Hausmann, 2005), typically by learners new to a domain. By
contrast, we focus, like Andes, on helping students learn to derive mathematical relations
between key quantities based on direct applications of physical laws. However, unlike physics
problems treated in Andes, it is impractical, and we show unnecessary, to identify all solution

paths in advance in devising a tutor.

2. Design Of Tutors for Multi-Path Problems

There is no unique embodiment of a computer tutor for monitoring student solving of truss
problems, let alone for solving multi-path engineering problems in general. However, results of
prior research can provide guidance for design choices, particularly choices pertaining to how
much to constrain user action and when to judge it. To provide some context for the discussion,
we show a typical truss problem (Figure 1a) and a small part of the solution involving analysis of
one selected portion of the truss (Figure 1b). Trusses have bars, pins connecting them, different
means of anchoring the truss to ground (the “supports”, symbolized with triangles), and applied
forces. The goal is to find the resulting internal forces in the bars. Typically, the solver must
consider multiple portions (subsystems) of the truss, draw a free body diagram for each (the set
of forces acting on the chosen portion), and then write down equations of equilibrium. The
solutions of those equations will affect the free body diagrams of other subsystems and
ultimately lead to the results requested in the problem statement. The natural latitude in solving
such problems is that the student can choose any portion of the truss, write equations in any
order, then choose any other portion, and so forth, thus creating a large space of possible solution
paths. Students in statics are typically taught two distinct methods for solving truss problems. In
the method of joints (MoJ), depicted in the solution in Figure 1b, students choose subsystems of
the truss that include a single pin and the connected partial bars. In the method of sections
(MoS), students choose subsystems of the truss that include multiple adjacent pins, the connected
bars, and the adjacent partial bars. The tutor presented below enables students to practice both
methods of solving.

Figure 1a. Typical truss problem.

Figure 1b. Portion of handwritten solution to problem from Figure 1a in which joint C is

analyzed.

Because learning to solve problems correctly in a free form style, akin to paper and pencil, is the
goal, we seek to have user interactions with the tutor similar to those in the targeted task,
provided the tutor maintains the ability to judge user work. While completely free form work
such as writing with a stylus on a tablet might be ideal, challenges remain to implementing such
technologies, although progress continues to be made along this front (Kara and Stahovich,
2004; LaViola, 2007; Peschel and Hammond, 2008; Lee, de Silva, Peterson, Calfee, and
Stahovich, 2008; Fu and Kara, 2011). Within the constraints of conventional keyboard and
mouse interactions, one can still grant the user opportunities to commit errors similar to those
observed when students solve with pencil and paper. The tutor then has opportunities to detect
and give feedback to students when they commit such errors.

There are, however, reasonable exceptions to the goal of making user interactions with the tutor
as similar to paper-and-pencil solving as possible. Most problem solving involves some tasks
that require mental resources, but which are mastered already by students at the level in question.
It is worthwhile to identify tedious, non-essential tasks, which unnecessarily add to the cognitive
load (Sweller, 1988, 1994) on the learner, and seek to off-load such tasks to the tutor. A key
example in the tutor presented below will be removing the need to use an electronic calculator to
obtain numerical solutions.

A second exception pertains to a key finding that students who explained example problems to
themselves learn more from those examples (Chi, Bassok, Lewis, Reimann, and Glaser, 1989);
researchers have termed this the self-explanation effect. This effect has had many implications;
in particular it has been applied in some cognitive tutors (Aleven and Koedinger, 2002), where
students need to explain their answers, and the tutor potentially evaluates those explanations.
Such features in tutors seek to make student thinking more visible. Tutors of multi-path
engineering problems can likewise create opportunities to make student thinking visible, to both
the student and the tutor, thinking which is rarely visible in pencil and paper solving.
Furthermore, the tutor can judge such explanations, and the additional information may better
enable the tutor to interpret student work. A key example in the tutor presented below will be
requesting the user to designate each defined force as falling into one of several categories.

To the extent that the tutor gives feedback prior to completion of a solution, the tutoring
environment is clearly different from paper-and-pencil problem solving. The points in the
solution process at which the tutor potentially intervenes and offers feedback clearly constitute
significant decisions in the tutor design. Often, it is true that immediate feedback is best (Hattie
and Timperley, 2007); this has the benefit of ensuring that the student associates the feedback
with the action just taken. In exceptional circumstances, delayed feedback may be justified if it is
feasible for students to check their work downstream and if such a skill is deemed worthwhile to
develop (Mathan and Koedinger, 2005).

The tutor described below gives immediate feedback with the following caveat. Tutors for
solving multi-path problems with limited constraints are distinct from most existing tutors: there
is not a pre-determined set of answers which users are expected to supply or set of choices from
which to select. The user is gradually adding elements of the solution on what is, in effect, an an
initially blank canvas. In contrast to the answer entered into a box, parts of the solution just
added to the canvas, such as a force added to a free body diagram, may be tentative. It would be
annoying and counterproductive to critique user work that is still tentative. On the other hand, if
errors accumulate too long and new work builds upon errors, judging new work becomes
ambiguous. Based on observations of written homework, the possibility that students would
check work downstream and then discover earlier mistakes was viewed as unlikely, and not
worth the significant additional burden on interpretation.

3. Description of Tutor

We assume that students using the tutor have learned about truss analysis through other means,
such as lecture and textbook. Thus, the tutor can focus exclusively on helping students solve
problems, allowing a solution process such as depicted in Figure 1a to be conducted on the
computer with as little constraint as possible, within the confines of a mouse and keyboard user
interface, while maintaining the ability to interpret student work. Observations of student work
and their typical errors, examples of which are shown in Steif, Fu, and Kara (2013), have guided
tutor design. As stated above, the goal is for a student using the tutor to be able to commit most,
if not all, errors that are observed in pencil and paper solutions. If some errors are never or rarely
observed in student pencil and paper work, then the tutor user interface need not go to
unnecessary lengths, at the expense of programming complexity or interpretation uncertainty, to
permit such errors. For example, it is virtually always clear which member or partial bar is being
drawn on paper and pencil; thus, the interface need offer only limited options of selection, rather
than allow ill-formed depictions of bars that are ambiguous to interpret.

To satisfy the above requirements, the tutor limits users to the following actions:

• Any set of pins, members and partial members can be chosen as a subsystem for further
analysis.

• In the free body diagram of a subsystem, forces can be drawn only at pins or at the free
ends of partial members. Forces are confined to lie along x-y directions or parallel or
perpendicular to bars.

• For each subsystem, equations of force equilibrium along x- and y-axes, and equations of

moment equilibrium about any joint, can be written.

Figure 2 contains a screen shot of the tutor, with a problem partially solved. The left half of the
display contains a menu bar at the top and the problem diagram and statement. The problem
diagram can be toggled to display the solution diagram, where results (support reactions and bar
internal forces) that have been determined are registered by the student, as described below.
The user chooses a subsystem for analysis by clicking on a set of pins, members and partial
members, and then clicking on the draw (pencil) icon from the menu bar. The selected group of
parts is added as another subsystem and would appear as one of the thumbnails to the right half
of the display. Clicking on a thumbnail expands that subsystem, allowing the user to draw its free
body diagram (FBD) and write its associated equilibrium equations.

Figure 2. Screen shot of full display of truss tutor.

In Figure 3, we show a subsystem with a pin and the two connected partial members; a new force
is being added to a partial member. As seen in the window labeled “Defining a force”, the user
categorizes each force being drawn. Sometimes more than one category is acceptable, but the
category chosen affects the subsequent representation of the force. A category is not specified as
part of pencil and paper solving, but it has been included in the tutor as a form of self-
explanation. Requiring force categorization makes the user’s thinking visible and aids the tutor in
interpreting student work.

Figure 3. Screen shot of force being added to free body diagram, showing force categorization.

Beneath the free body diagram the user can write equilibrium equations for the subsystem
(Figure 4). When the user has written down an equation with one variable (always a linear
equation in truss analysis), upon request the tutor can solve the equation for that variable. This
eliminates the need to use a calculator and also eliminates errors due to mistyping into a
calculator. Once a variable such as a support reaction or an internal force has been determined,
the user needs to “register” that force in the solution diagram. Registration serves to declare that
a force has been determined, so it can be categorized as a determined force in a subsequent FBD.
Registration is also an important opportunity for the student to signal the meaning of what has
been solved. Unknown support forces can be drawn on FBD’s in any direction; the associated
variables may turn out to be positive or negative. But in the solution diagram the support force
must be drawn in its actual sense and given a positive magnitude. Likewise, when the internal
force of a bar is registered, the user gives it a magnitude and describes it as in tension or
compression. More details on the interface have been presented by Steif, Fu, and Kara (2013).

Figure 4. Screen shot of writing equations, and choosing moment center.

4. Judging student work and giving feedback

A key capability of the tutor is to judge work and give feedback on it. The tutor can do this by
having algorithms for carrying out the steps for solving truss problems. These algorithms are
analogous to a cognitive model of the domain. There are distinct algorithms corresponding to
the distinct stages in the solution for a given subsystem:

• SUBSYSTEM: An algorithm to determine if a group of pins, members, and partial
members constitutes a valid subsystem.

• FREE BODY DIAGRAM (FBD): Given a valid subsystem, and any forces defined or
determined up to that point, an algorithm for the allowable forces that can be drawn on
the pins and partial bars of the subsystem. The FBD of a given subsystem is not unique.
For example, if an internal force has been determined, the algorithm allows that force in a

new FBD to be represented either as a determined force using the correct value, or as an
unknown internal force using symbols consistent with the first definition.

• EQUILIBRIUM EQUATIONS: Given a valid FBD, an algorithm for the correct set of
algebraic terms in the summations of forces along x- and y-axes and the summation of
moments about any pin in the truss. These summations include variables and constants
and must be consistent with how forces appear in the FBD. The terms can be in any order
and there are multiple ways of composing terms.

• SOLUTION REGISTRATION: Given a correctly determined support or internal force
(from the equilibrium equations), an algorithm for the correct registration of that force in
the solution diagram.

As described above, the tutor seeks to offer immediate feedback. But, it is recognized that a
student may be in the midst of formulating the current portion of the solution, such as drawing
the forces on a FBD or writing a single equation of equilibrium, when interruptions would be
annoying. On the other hand, we do not want to wait so long that the student builds upon work
that is as yet unjudged and may be incorrect. In the latter, undesirable situation, the tutor might
need to indicate that the built-on portion is correct in and of itself, but that it is based on incorrect
prior solution steps.

We can offer immediate feedback, while respecting the tentative nature of currently formulated
portions of solution, by judging and offering feedback at these points: (i) the subsystem is
judged after the user has selected parts and clicked on the draw subsystem button; (ii) the FBD of
a subsystem is judged after the user clicks to initiate the writing of the first equilibrium equation
for that subsystem; (iii) an equation is judged after the user types return while entering an
equation or clicks to initiate the writing of a new equation; and (iv) the registered result is judged
after the user has entered a result into the solution diagram and clicked “Ok”. In each case, if
there is an error, the student receives feedback that points out the error, including information to
enable the user to fix the error and to learn why it is an error, thus lessening the likelihood of
repetition. This type of feedback, in light of results presented below, is formative feedback by
the definition of Shute (2008). Moreover, until the errors are corrected, the user cannot go on to
the next stage of solution for the subsystem that has an error. Thus, it is unnecessary for the tutor
to have algorithms to judge solution paths that build upon earlier committed errors. The student
can pursue many different solution paths, but is halted on a particular path until detected errors
are corrected.

With the approach just described, it is possible to provide automated, formative assessment of
students’ efforts to solve one class of engineering problems with complex arrangements of
interacting parts that have multiple solution pathways. To generalize our approach to such
problems more generally, a tutor should have three integrated elements. First, it must have a
graphical user interface that allows interactions that enable users to pursue solutions and commit
errors elsewhere observed in student work. Second, it must have algorithms that can judge the
correctness of actions that the interface permits. Third, it must have suitable junctures at which to
judge student work and, if need be, halt further progress until algorithms can once again
accurately judge student work. The complexity of problems to be handled, and the latitude
granted to students while solving them, is a matter of tutor design. The approach is streamlined
compared to other intelligent tutors, because it demands only algorithms that judge the

correctness of forward steps, presuming the current state is a correct state. In the remaining
sections, we propose an approach to determine if the feedback promotes learning and on how
potential changes in the tutor can be targeted to improve learning.

5. Analysis of student work to track learning

As one approach to judging whether the tutor promotes learning, we seek to determine whether
types of errors that are initially prevalent are observed less frequently as students progressively
solve more problems. Because different sub-tasks may have distinct difficulties, we need to keep
track of how students fare with respect to different subtasks. How we choose to view the
problem as composed of subtasks is central to developing evidence as to whether learning is
occurring. These choices constitute our model of learning to solve problems in the chosen
subject or topic: they are the distinct skills or Knowledge Components that the student needs to
learn. The task analysis underlying the tutor for truss problems has been informed by previously
identified concepts and skills in statics (Steif, 2004) and the development of the statics concept
inventory (Steif and Dantzler, 2005). The Knowledge Component (KC) model used thus far
involves 23 skills each falling into one of the phases of the solution process: selecting a
subsystem, drawing a free body diagram, writing equations of equilibrium, and registering a
result derived from an equation of equilibrium in the solution diagram. The full set of
knowledge components (KC model) for the analysis reported here is given in Table 1.

Table 1. Full set of Knowledge Components (KC Model) used to analyze presented data.
KC Category: Select Subsystem
KC1 Select full truss (all bars and pins) as subsystem
KC2 Select joint (pin and attached partial bars) as subsystem
KC3 Select section (pins, bars, and partial bars) as subsystem

KC Category: Draw FBD
KC4 Draw known applied force
KC5 Include no forces on pin that is supposed to be free
KC6 Represent unknown reaction forces at pin support for first time
KC7 Represent unknown reaction forces at roller support for first time
KC8 Represent unknown support reaction forces consistent with prior representation
KC9 Draw now known support reactions forces that were previously determined
KC10 Represent unknown internal force in bar for first time
KC11 Represent unknown internal force in bar consistent with prior representation
KC12 Draw now known internal forces in bar previously determined

KC Category: Write Equilibrium Equation
KC13 Include in summation terms that contribute to known force (no resolution)
KC14 Include in summation terms that contribute to known moment (no resolution)
KC15 Include in summation terms that include vector resolution of a known force
KC16 Include in summation terms that include vector resolution of a known moment
KC17 Include in summation term that requires resolving variable force
KC18 Include in summation term that requires resolving variable moment
KC19 Replace variable in equation with value found from previously solved equation
KC20 Include in summation term with variable force (no resolution)
KC21 Include in summation term with variable moment (no resolution)

KC Category: Register Result
KC22 Register value and draw determined support force in solution diagram
KC23 Register value and direction of determined internal force in solution diagram

The tutor described here is distinct from tutors in which there are known-in-advance sets of items
that the student responds to, which can be tagged with the KCs in advance. In this tutor, the
student is building up the solution on essentially a blank canvas. At the discrete junctures for
judging work described above, the tutor records each new instance in which the user undertakes
an action corresponding to one of the KCs, whether it is done correctly or not. Any correction by
the user of an incorrect action in response to feedback is not counted as a new opportunity to
exercise the KC. The student charts his or her own solution pathway, and the tutor extracts on the
fly the sequence of KCs attempted, which can be different for each student.

To analyze the progression of learning, we have adopted the terminology, methodologies, and
tools from the Pittsburgh Science of Learning Center Datashop (Koedinger, Baker, Cunningham,
Skogsholm, Leber, and Stamper, 2011). Data corresponding to the sequence of KC opportunities

for each student in a sample are extracted from the files the student saves while using the tutor;
these data are imported into Datashop. Among the various outputs from Datashop pertinent to
our study is the so-called learning curve: a plot of the percentage of students in the sample that
err in applying a particular KC as a function of the opportunity (first, second, third, etc.) to use
that KC.

Learning curves are typically noisy; to determine if such data provide evidence of learning,
Datashop tools also fit a statistical model to the sequence of opportunities to apply a KC. In
particular, Datashop fits a widely used logistic regression model (Draney, Pirolli, and Wilson,
1995) for capturing the progressive mastery of a skill with practice. For our learning model in
which each action is dependent on a single KC, the statistical model predicts error fraction as
follows:

ln[(1- eij)/eij] = θi + aj + bj Tj

In this equation, eij is the probability of an incorrect answer by the ith student on opportunity Tj
for using the jth KC. Note that eij can range from 0 to 1, and Tj takes on values of 1, 2, 3, and so
forth, for the first, second, and third opportunity. The parameter θi captures the overall initial
skill level of the ith student. The parameter aj, referred to as the intercept, reflects the initial
probability of correctly applying the jth KC. The coefficient bj, referred to as the slope,
corresponds to the rate at which errors in using the jth KC decrease with successive opportunities
to practice it. In this commonly used model, one takes the student parameter, θi, to be KC-
independent, and KC-parameters, aj and bj, to be student-independent. Fitting this model to data
for a student sample yields the parameters in the statistical model. Note, in particular, that values
for bj are one measure of the tutor’s effectiveness: more effective error messages or hints should
lead to higher slopes, that is more rapid decreases in errors with practice.

6. Samples

The tutor described here is appropriate for students in virtually all statics courses. Because the
tutor is intended to substitute for completing paper and pencil homework, use of the tutor fits
into the rhythm of statics courses generally. Thus, the target population for a tutor such as this
corresponds to most students who might take a statics course.

Because we wanted to capture how a tutor can give feedback on multi-path problem solving in
the context of real engineering courses, the study was conducted within the scope of regularly
scheduled statics courses. The tutor was used in lieu of solving paper and pencil homework
problems in two distinct educational environments. Data was collected for all students and
information on their completion of problems was returned to the instructor for the purposes of
assigning a grade on the homework assignment. When students first registered to receive the
tutor software, they were asked if they consented to have their data used anonymously for
research; only data from those who consented were included in the analysis presented below.

Sample 1 was from a statics course at a community college, in a class comprising a total of 21
students. Of those students, 18 consented to have their data studied. Sample 2 was from a statics

course at a military academy, in a class comprising a total of 109 students. Of those students, 99
consented to have their data studied. In both classes, students had received lecture on trusses,
covering the method of joints and method of sections, and were shown the solution of example
problems. Thereafter, students practiced solving trusses exclusively using the tutor (no paper and
pencil problems). Students in sample 1 were assigned five problems using the method of joints
and five problems using the method of sections; sample 2 students were assigned three problems
using the method of joints and five problems using the method of sections. There is no claim that
these two samples are broadly representative of students, nor is there any reason to expect them
to be atypical.

7. Results and Analysis

Typical learning curves for specific knowledge components are shown in Figures 5 – 7, all
pertaining to Sample 2. The data points and solid lines connecting them (red) are the actual error
percentages. The dotted (blue) curve is the prediction based on the fit of the statistical model.
Successive opportunities in a learning curve can correspond to diminishing numbers of students,
because different students have different solution paths and may even solve fewer problems.
These three learning curves represent three typical outcomes. For KC9 depicted in Figure 5,
utilizing a determined support reaction in a subsequent FBD, the error is reasonably high initially
and becomes progressively lower with practice. This suggests that practice is having the desired
effect – getting feedback on the errors enables students to gradually make fewer errors. For
KC23 depicted in Figure 6, registering an internal force, the error starts low and remains low.
There is little need for tutoring on this skill. Finally, for KC15 depicted in Figure 7, which
pertains to one facet of writing equations of equilibrium, the error rate is initially high and never
improves. (The wild error rate at the end corresponds to a very small number of students making
many errors.) Practice is having no observable benefit. Learning curves for knowledge
components associated with writing equations of equilibrium were found to be rather erratic
generally. By the point in the course when they study trusses, students already have experience
writing equations of equilibrium. Tutor feedback on equation writing is not conceptually
informative, but simply points to terms that are in error, which are then readily corrected. We,
therefore, speculate that the incentive for being careful in writing equations in the tutor is very
low, at least in comparison with other stages of solution. Hence, additional results for these
knowledge components are not presented.

Figure 5. Percentage of students in error plotted as a function of opportunity (Learning curve) for

KC9 (representing a determined support reaction) for which the error rate is initially high, but
decreases with practice.

Figure 6. Percentage of students in error plotted as a function of opportunity (Learning curve) for

KC23 (registering an internal force) for which the error rate starts low and remains low.

Figure 7. Percentage of students in error plotted as a function of opportunity (Learning curve) for

KC15 pertaining to writing equilibrium equations for which the error rate is initially high and
remains high.

The possible decrease in errors with practice, the learning rate, corresponds to the KC-specific
slope bj. Typical learning rates with existing tutors (Koedinger, McLaughlin, and Stamper, 2012)
correspond to slopes bj in the range of 0.05 to 0.15. To illustrate the rate of improvement that
such slopes imply, let the probability of a student first making an error be 0.5. Then, with a slope
of 0.1, the error probability drops to 0.40 at the fifth opportunity and to 0.29 at the tenth
opportunity.

The values of the parameters aj and bj in the statistical model, when fit to data from each of the
two samples, are shown in Table 2. The intercept corresponds to 1 – initial error fraction, as
predicted by the model fit. So a skill for which students incur few errors initially would have a
high intercept; many initial errors would correspond to low intercept. The KCs have been
grouped according to the phases of solution: selecting subsystems, drawing FBDs, and
registering results. Within each phase, the KCs have been ordered by increasing intercept (in
sample 1). (There were too few opportunities to exercise KC8 to produce a meaningful learning
curve.) The following observations hold for both samples. Some, but not all, of the KCs with
lower intercepts have quite high slopes, for example, section_as_subsystem,
unknown_internal_consistent, and determined_support. The tutor is playing a valuable role if it
helps students master skills, such as these, that they did not initially possess. Thus, high slopes
are most critical in the case of low intercept KCs. By contrast, other skills tend have a low initial
error rate, which corresponds to high value of intercept. For a few of those skills, such as
unknown_support_new_pin and unknown_support_new_roller, the slope is again high, but for
other skills, the slope is low. In any event, rapid reduction in the error rate with practice (high
slope) is less critical if the initial skill level is relatively high. Altogether learning curves and the
model parameters of intercept and slope constitute metrics that can be used to gauge whether

learning is occurring while using the tutor. Furthermore, for the tutor described here, these
metrics suggest that learning is occurring across a number of key component skills of solving
truss problems. Further in-depth studies of metrics are beyond the scope of this paper.

Table 2. Statistical fit of Knowledge Component learning model for two samples: initial fraction
correct (Intercept) and decrease of error fraction with practice (Slope) for different Knowledge
Components.
 Sample 1 Sample 2

KC (Select Subsystem) Intercept (aj) Slope (bj) Intercept (aj) Slope (bj)
KC3: section_as_subsystem 0.74 0.20 0.68 0.26
KC2: joint_as_subsystem 0.94 0.00 0.93 0.01
KC1: full_truss_as_subsystem 1.00 4.54 0.98 0.31

KC (Draw FBD) Intercept Slope Intercept Slope
KC11: unknown_internal_consistent 0.26 0.46 0.45 0.16
KC9: determined_support 0.51 0.32 0.64 0.30
KC12: determined_internal 0.79 0.06 0.67 0.10
KC6: unknown_support_new_pin 0.82 0.28 0.91 0.31
KC7: unknown_support_new_roller 0.89 0.12 0.87 0.38
KC10: unknown_new_internal 0.89 0.02 0.91 0.03
KC4: applied_force 0.90 0.04 0.81 0.10
KC5: free_pin 0.98 0.07 0.98 0.14

KC (Register Result) Intercept Slope Intercept Slope
KC13: register_support_force 0.87 0.06 0.91 0.03
KC14: register_internal_force 0.88 0.05 0.92 0.05

Note that results can also be used to decide where improvements to the tutor’s feedback are
warranted. One can seek out in Table 2 those skills with insufficiently high intercept and
insufficiently high slope; that is, skills for which the error rate was initially high and did not
decrease rapidly with practice. Most notable is the KC12 determined_internal: this corresponds
to the skill of using a bar internal force, which has been already determined, in a new FBD where
that internal force also acts. One must use the correct magnitude and interpret the earlier found
tension or compression to draw the force in the correct direction in the new FBD. For both data
sets, this KC does not have a high intercept (0.79 and 0.67) and does not have a particularly high
slope (0.06 and 0.10), at least not high compared to the slopes for some of the other KCs. With
the goal of accelerating the learning of this skill, the feedback on the associated error could be
altered; whether such alterations lead to improvement can be judged based on the results for
intercept and slope of this KC for new samples in which students receive the altered feedback.
This will be considered in future research. We note that ultimate effectiveness of such a tutor
could only be determined by a controlled study that compared the truss problem solving ability
of students who used the tutor with those who had solved only with pencil and paper. Such a
study is currently ongoing, with results to be reported in the future.

8. Summary and Conclusions

Problems that engineering students learn to solve often involve spatially complex arrangements
of interacting parts and have multiple pathways to solution. It is difficult for human graders to
provide effective formative feedback to handwritten solutions that are typically turned in as part
of homework assignments. With the goal of devising better means of providing feedback for
such problems, we have undertaken the development of a computer tutor that allows students to
pursue multiple pathways to solution, and still provides feedback on those efforts.

We have taken an approach inspired by intelligent and cognitive tutors: basing the computer
tutor not on preset correct answers, but on algorithms for judging the correctness of steps that
students might take to solve the problems of interest. In particular, a computer tutor was devised
for the test case of truss problems in statics; the interface permits the user to solve problems
correctly following any pathway and to commit commonly observed errors. Immediate feedback
is provided, short of annoying interruptions. Furthermore the tutor prevents new work from
being built upon previously committed errors, which enables the judging algorithms to be limited
to steps from a current correct state. Furthermore, the steps for solving truss problems are cast as
a distinct set of skills or knowledge components (KCs). Each action by the student is viewed as
an opportunity to exercise a KC, and the effectiveness of feedback can be judged based on
whether fewer students incur errors with successive opportunities. The fit of a statistical model to
the curves of percent error vs. opportunity for each KC yields values for the parameters in the
model, which can serve as metrics for the effectiveness of feedback.

Data was obtained from students in statics classes at two institutions who used the tutor for one
week’s assignment in lieu of pencil and paper homework. We found that the error rates for
various KCs differ significantly. From the fit of the statistical model, most of the KCs either had
low error rates from the start, or if the error rate was initially high, it decreased markedly with
successive opportunities to practice. Thus, for most skills, students already had the skill at the
start or developed the skill through using the tutor. Furthermore, based on those few KCs for
which the error rate decreases insufficiently, we have identified aspects of the tutor that could
benefit from improvements. In general, this paper has shown that solving of problems with
complex spatial arrangements of interacting parts and multiple pathways to solution is amenable
to automated feedback with computer tutors. Further, the algorithms for judging distinct steps
both can enable the tutor to follow many possible solution pathways, and provide metrics upon
which to judge the effectiveness of feedback and pinpoint areas for tutor improvement.

Bibliography

Aleven, V.A.W.M.M. and Koedinger, K. R. (2002). An effective metacognitive strategy:
learning by doing and explaining with a computer-based Cognitive Tutor, Cognitive Science 26,
147–179.

Anderson, J. R., Boyle, C. F., and Reiser, B. J. (1985). Intelligent tutoring systems. Science 228,
456-468.

Anderson, J. R., Conrad, F. G., and Corbett, A. T. (1989). Skill Acquisition and the LISP Tutor,
Cognitive Science 13(4), 467-505.

Bangert-Drowns, R. L., Kulik, C.-L., Kulik, J. A., and Morgan, M. (1991). The instructional
effect of feedback in test-like events. Review of Educational Research 61, 213-238.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and Glaser, R. (1989). Self-explanations:
how students study and use examples in learning to solve problems. Cognitive Science 13, 145–
182.

Corbett, A.T. and Anderson, J.R. (2001). Locus of feedback control in computer-based
tutoring: Impact on learning rate, achievement and attitudes. Proceedings of ACM CHI’2001
Conference on Human Factors in Computing Systems, 245-252.

Dannenhoffer, J. and Dannenhoffer, J. (2009). An online system to help students successfully
solve statics problems. Proceedings of the 2009 American Society for Engineering Education
Annual Conference and Exposition, Austin, Texas, June 2009.

Draney, K.L., Pirolli, P., and and Wilson, M. (1995). A measurement model for complex
cognitive skill. In P. Nichols, S.F. Chipman, and R.L. Brennan (Eds.). Cognitively diagnostic
assessment (pp. 103–126). Hillsdale: Erlbaum.

Fernandez, A., Saviz, C., and Burmeister, J. (2006). Homework as an outcome assessment:
Relationships between homework and test performance. Proceedings of the American Society for
Engineering Education Annual Conference and Exposition, Chicago, IL.

Fu, L. and Kara, L. B. (2011). From engineering diagrams to engineering models: Visual
recognition and applications. Computer-Aided Design 43(3), 278-292.

Hattie, J., and Timperley, H. (2007). The power of feedback. Review of Educational Research
77(1), 81-112.

Hausmann, R.G.M. (2005). Elaborative and critical dialog: two potentially effective problem-
solving and learning interactions. Doctoral Dissertation, University of Pittsburgh, http://d-
scholarship.pitt.edu/9144/.

Kara, L. B., Stahovich, T. F. (2004). Hierarchical Parsing and Recognition of Hand-Sketched
Diagrams. 17th ACM User Interface Software Technology (UIST).

Koedinger, K. R. (2002). Toward evidence for instructional design principles: Examples from
Cognitive Tutor Math 6. Presented at Proceedings of PME-NA XXXIII, Annual Meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education 2002.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., and Mark, M. A. (1997). Intelligent tutoring
goes to school in the big city. International Journal of Artificial Intelligence in Education 8, 30-
43.

Koedinger, K.R., Baker, R.S.J.d., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.
(2011). “A Data Repository for the EDM community: The PSLC DataShop. In C. Romero, S.
Ventura, M. Pechenizkiy, R.S.J.d. Baker (Eds.). Handbook of Educational Data Mining, Boca
Raton, FL: CRC Press.

Koedinger, K., McLaughlin, E., Stamper, J. (2012). Automated Student Model Improvement,”
In Proceedings of the 5th International Conference on Educational Data Mining (EDM
2012). Chania, Greece. Jun 19-21, pp. 17-24.

LaViola, J. (2007). Advances in Mathematical Sketching: Moving Toward the Paradigm's Full
Potential", IEEE Computer Graphics and Applications 27(1), 38-48.

Lee, W., de Silva, R., Peterson, E. J., Calfee, R. C., Stahovich, T. F. (2008) Newton's Pen: A
pen-based tutoring system for statics. Computers and Graphics 32(5), 511-524.

Mathan, S. and Koedinger, K. R. (2005). Fostering the intelligent novice: Learning from
errors with metacognitive tutoring. Educational Psychologist 40(4), 257-265.

Peschel, J., and Hammond, T. (2008) STRAT: A Sketched-Truss Recognition and Analysis Tool,
International Workshop on Visual Languages and Computing (VLC 2008), pp. 282-287, Boston,
Massachusetts.

Roselli, RJ, Howard, L and Brophy, S. (2006). A computer-based free body diagram assistant.
Computer Applications in Engineering Education 14: 281-290

Shute, V.J (2008). Focus on Formative Feedback. Review of Educational Research 78(1), 153-
189.

Steif, P.S. (2004). An Articulation of the Concepts and Skills Which Underlie Engineering
Statics. 34rd ASEE/IEEE Frontiers in Education Conference, Savannah, GA.

Steif, P.S. and Dantzler, J. A. (2005). A Statics Concept Inventory: Development And
Psychometric Analysis. Journal of Engineering Education 94, 363-371.

Steif, P.S., Fu, L., and Kara, L.B. (2013). Technical Report: Development of a Cognitive Tutor
for Learning Truss Analysis, Retrieved 03/21/15 from
http://www.andrew.cmu.edu/user/steif/papers/Truss%20tutor%20Technical%20Paper%202013.p
df

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science
12, 257-285.

Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning
and Instruction 4, 295-312.

VanLehn, K., Lynch, C., Schulze, K. Shapiro, J. A., Shelby, R., Taylor, L., Treacy, D.,
Weinstein, A., and Wintersgill, M. (2005). The Andes physics tutoring system: Lessons Learned.
International Journal of Artificial Intelligence and Education 15 (3), 1-47.

