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Understanding and tailoring the visual elements of a de-
veloping product to evoke desired perceived qualities and a
positive response from the consumer is a key challenge in in-
dustrial design. To date, computational approaches to assist
this process have either relied on stiff geometric represen-
tations, or focused on superficial features that exclude often
elusive shape characteristics. In this work, we aim to study
the relationship between product geometry and consumers’
qualitative judgments through a visual decomposition and
abstraction of existing products. At the heart of our inves-
tigation is a shape analysis method that produces a spec-
trum of abstractions for a given 3D computer model. Our
approach produces a hierarchical simplification of an end
product, whereby consumer response to geometric elements
can be statistically studied across different products, as well
as across the different abstractions of one particular prod-
uct. The results of our case study show that consumer judg-
ments formed by coarse product “impressions” are strongly
correlated with those evoked by the final production models.
This outcome highlights the importance of early geometric
explorations and assessments before committing to detailed
design efforts.

1 Introduction
The ability to identify, engineer, and incorporate consumer

preferences into a new product has a pivotal role in market success.
Studies have shown that, among others, emotional factors play a
critical role on how strongly a product captivates its user [1,2,3]. As
part of this pursuit, designers spend a considerable effort to create
appropriate stylistic rules and form languages that lead to positive
assessments and a desirable perception of the product from its con-
sumers [4, 5]. Recent studies have identified several categories of
key form factors [6] such as shape, characteristic curves, textures,
colors and materials. However, the engineering of strictly geometric
elements remains a highly elusive, labor intensive and iterative task,
whose success depends largely on human skill and expertise [7].
We believe a lack of appropriate computational techniques in sup-
port of this task contributes directly to this challenge. Specifically,

∗lkara@cmu.edu Address all correspondence to this author.

while our current knowledge includes vast anecdotal evidence sup-
porting a strong coupling between shape and perceived qualities,
we currently lack the means to digitally decipher and engineer such
relationships. This shortcoming poses a great challenge to develop-
ing a brand identity across a family of products, as well as across
temporally and geographically dynamic consumer markets.

This work aims to address this challenge through a new com-
putational method that helps reveal the relationships between prod-
uct geometry and consumers’ qualitative assessments regarding the
product. In particular, we focus on the task of reverse-engineering
geometric form features from production models in the form of a hi-
erarchy, and study the effect of the identified features on consumers’
perception. A distinguishing characteristic of the proposed work is
its ability to alleviate the dependency on canonical shape templates,
over which parametric studies are typically conducted [8,9,10,11].
Instead, our approach aims to reveal design-specific 3D geometric
features that are not readily extractable from the surfaces of the fi-
nal production models, yet form the perceived volumetric entities
giving rise to the final shape.

1.1 Contributions
Our work attempts to reveal how early design decisions regard-

ing form may influence consumer perception. For this, we believe
one must study consumer responses to approximate and abstract 3D
geometries that are representative of a product’s form, but are de-
void of superficial revealing features such as icons, logos, and sim-
ilar elements. The hierarchical abstraction geometries ( [12]) used
in this work facilitate this task. Additionally, the ability to add and
subtract features progressively, enables specific geometric features
to be studied in isolation.

Our technical contributions are:

1. A template-free study of the relationship between shape and
consumer qualitative assessments that is applicable to a wide
variety of products.

2. A geometric assessment of how individual shape features and
product proportions impact consumer perception.

3. The ability to decouple consumer perception originating
purely from geometry versus perception superficially associ-
ated with the consumer’s prior knowledge related to a recog-
nized brand or product.

4. The ability to dissect a final model in ways that enable inde-
pendent access to its features developed in different phases of



the design process. To the best of our knowledge, this work is
the first to attempt such a deconstruction, which facilitates the
study of conceptual versus detail design decisions.

1.2 Case Study Overview and Summary
To demonstrate the proposed approach, we conducted a three-

stage user study. At the heart of this study is a geometric anal-
ysis method that produces a spectrum of abstractions of a given
3D model [12]. An abstraction is a geometrically simplified ver-
sion of an original production model, where the level of abstrac-
tion (i.e. simplification) in the spectrum determines how much of
the original details are preserved or removed. Specifically, starting
from the most abstract version of the model, a geometric feature
is added or removed from the abstracted model, until the working
model matches the original 3D model. This approach allows geo-
metric features to be studied in isolation and forms the basis for our
user studies.

We chose to study a set of relatively well-recognized cars to
illustrate our methodologies. In the scenarios easiest to our online
participants, this choice enables an accurate visual recognition in
nearly all cases, which forms a suitable benchmark for our analysis.
Our approach allows our participants to serve as suitable potential
consumers of these products. Figure 1 illustrates a hierarchy of 3D
abstractions for a Mustang model and a sample set of car images
employed in our user studies.

2 Related Work
Shape-emotion studies: Kansei engineering [13] aims to map style
features and parameters to observer emotions. Recent studies have
used geometric models and user surveys to uncover the mecha-
nisms behind such design-evoked consumer emotions. Chen and
Chuang [14] studied a large number of cellular phone drawings to
identify the relationship between engineering performance and cus-
tomer satisfaction. Luo et al. [15] studied bottle designs to identify
the factors that make certain designs more successful than others.
Luo et al. [16] later studied cars and wheel hubs to identify con-
sumers’ aesthetic preferences. In these studies, query designs are
typically created manually as 2D side or front view proxy drawings.
These interventions are both laborious, and lead to oversimplifica-
tions and information loss that may introduce perceptive biases.

In automotive shape studies, recent works have relied on para-
metric templates to study shape variation (e.g. sedan, hatchback,
SUV, etc.) and synthesis. Lai et al. [8] identified parameters that
impact specific attributes, Orsborn et al. [9] focused on aesthetic
preferences, Reid et al. [10] studied the perceived environmental
friendliness, and later studied [11] the trade-offs using aerodynamic
analyses. These studies have shown that a mapping from consumer
emotions to a parametric model can be learned through user sur-
veys. We build on these works to study consumer’s judgment of
shape using 3D geometric information.
Form language studies: Previous studies proposed methods to iden-
tify and reuse form languages from existing designs. In one group
of studies, Chen and Owen [17] developed a generative system
that can produce block-based structures with stylized transitions be-
tween the blocks. Chan [18] attempted to quantify style by compar-
ing the similarities between repeating geometric features, then stud-
ied architectural structures [19] to embed artistic preferences within
a form language. Prats et al. [20] studied visual perception mecha-
nisms from 2D drawings to identify a set of generative design rules.
Similarly, Cheutet et al. [21] identified G1 continuities as part of a
commonly utilized form of stylization, and developed a computer
aided design tool to semi-automatically apply such geometric rules.

Giannini and Monti [22, 23] aim to determine a relationship
between geometric curve characteristics and resulting consumer as-
sessments. Subsequent studies [24,25] demonstrated the utility with
a computer-aided modeling system that allows the control of geo-
metric curves through semantically labeled attributes.
Brand identity studies: Previous studies have also focused on ge-
ometric cues that make up a brand’s identity [26, 27]. Pugliese
and Cagan [28] inspected Harley Davidson motorcycles to identify
salient structures and encode them as shape grammars. McCormack
et al. [29] later applied a similar approach to study Buick models.
Similarly, Karjalainen [30] studied Volvo models for symbolic de-
sign cues. Closest to our work, Ranscombe et al. [31] decomposed
side and front view drawings of cars by selectively removing groups
of curve features, and studied the influence of different features on
the consumers’ perception of a brand.

In contrast with the existing work, we aim to extend the bound-
aries of these previous efforts through a 3D hierarchical deconstruc-
tion method capable of producing a rich set of topologies and shape
variations. Our approach allows aesthetically salient 3D forms to be
isolated, preserved, and methodologically manipulated throughout
the human studies. Specifically, the domain-invariant, automatic
shape decomposition enables final production models to be repre-
sented and visualized at a variety of detail levels, thereby helping
isolate the effects of different geometric elements. We believe this
property makes our approach suitable for studying a wide variety of
geometric shapes and their variations, even though this work only
focuses on a set of car models as a test-bed.

3 Terminology and Methodology
In the remainder of this work, the following terminology is

used:
Full model: The original computer model of a car, containing all
the details representing a production model.
Abstraction spectrum: Various abstractions of a full model, sim-
ilar to those shown in Fig. 1a. All abstractions start with the sim-
plest model, and moves toward higher complexity until the final,
full model is reached. Different car models may have a different
number of abstractions.
Feature (Geometric): A volumetric detail added or subtracted
from a working abstraction model. The addition of such features
moves the model from simple toward complex along the abstraction
spectrum.
Attribute (Consumer response): The set of attributes that the par-
ticipants of our user studies employ for evaluating the car models.
In this work, we use the following six attributes: fast, muscular,
elegant, sophisticated, utility and compact. These attributes are
used to demonstrate the proposed analysis techniques. While they
do not form a comprehensive basis to fully characterize the mod-
els used in our studies, they are nonetheless distinct, commonly
well-understood by our participants, and form a small set that is
not overwhelming to our participants. Note that the proposed tech-
niques are amenable to the addition of new attributes or car models,
without affecting the subsequent analysis methods.
Debranded model (DB): For a given car, the abstraction model
containing the most amount of feature details, yet which cannot
be reliably recognized by consumers. A debranded model repre-
sents the abstraction model from which all brand-apparent abstrac-
tion have been removed. Identification of such abstractions are sup-
ported by a conservative assumption that the brand will not be rec-
ognized when it cannot be visually distinguished from other models
within its class. In Fig. 1a, our studies showed that Abstraction 2 is
the DB model for the Mustang.



Fig. 1. (a) The 9-level simple-to-complex abstraction of a Mustang model. Note that several distinguishing characteristics of a Mustang such
as the front bumper, grill and air intake on the hood start to emerge over abstractions. (b) Various real car images used in our user studies.
The Mustang model in (a) corresponds to the top-left image in (b).

3.1 Volumetric Shape Abstraction
We utilize the volumetric shape abstraction method introduced

by Yumer and Kara [12]1. This approach views a product as a set
of volumetric regions, whose unions and intersections produce the
perceived surfaces and character lines of the product. The volume-
based view and construction of objects is common in aesthetic form
design, where conceptualization begins with rough volumetric ele-
ments such as scaffolds or inside/outside spaces [4]. The abstrac-
tion method initially uses volumetric constructs to decompose the
original model into successively smaller volumes. In each step, the
surfaces of the identified primitives are beautified to reproduce the
form present in the original model. Our formulation results in a
compact representation of the original geometry as a set of implicit
surfaces and blending functions. The method can operate on models
containing many internal components, but still produce a represen-
tative outer form of interest.

The abstraction method seeks to generate beautified volumet-
ric primitives, which are bounded spaces that evolve from basic
primitives. The abstraction method is based on a probabilistic prim-
itive generation and scoring algorithm that, in each step, tries to
identify the progressively smaller volumes of the model which have
not been represented by the primitives of the earlier levels. After a
basic primitive is fit, each face of the primitive undergoes a polyno-
mial beautification, while maintaining its association with the prim-
itive. Starting from the coarsest level of abstraction, i.e. model rep-
resented with the minimum number of primitives (Abtsraction 1 in
Fig. 1a), the algorithm hierarchically identifies other primitives that
progressively refine the initial abstraction. The refinement can add

1A demonstration of this method, examples, and supplemen-
tal material can be found at: http://vdel.me.cmu.edu/
co-abstraction-of-shape-collections/

or subtract volumes, similar to the union and difference operations
in conventional Constructive Solid Geometry (CSG) algorithms.
The process iteratively continues until the volume of the smallest
primitive falls below a user-specified threshold, thereby leading to
the abstraction hierarchy of an input model. The following studies
rely on this hierarchical structure of the resulting abstractions.

3.2 Study I: Debranding - Isolation of Bias Toward Recogniz-
able Brand and Design Features
This study aims to identify the debranded abstract model (DB)

of an input car to the point where all the brand-apparent abstractions
are removed, and the viewers could no longer reliably identify the
make of the car. Note that this user study is based on the assumption
that if the participants cannot visually distinguish an abstraction,
they are unable to tell the brand of the product.

Procedure: We recruited 31 participants (18 male and 13 fe-
males) with age = 24.6± 2.5 to an online survey on a voluntary
basis. We instructed the participants to answer a series of multiple
choice questions to the best of their ability, and offered no mone-
tary incentive. No time restriction was imposed. Figure 2 shows
an example survey question. In each question, we showed the par-
ticipants an image of a computer-rendered model that is either the
full or one of the abstraction models of a car. We then asked them
to choose, from a pool of 15 photographic images, the image that
corresponds to the presented computer model. In each case, only
one of the 15 photographic images was the correct match to the
presented computer model. Aside from the true match for the com-
puter model, the remaining 14 models were chosen randomly from
a large database of car images, all approximately taken from the
conventional 3/4 view. The random draw from a large pool was

http://vdel.me.cmu.edu/co-abstraction-of-shape-collections/
http://vdel.me.cmu.edu/co-abstraction-of-shape-collections/


Fig. 2. A typical survey question in Study I. The answer to this ques-
tion is the Subaru at the top right.

introduced to alleviate identification via elimination.
The set of cars we used in this and subsequent studies consist

of 7 different models. Each car model had anywhere between 3
to 9 abstractions, which depended on the geometric complexity of
the full models. In total, we have 36 abstraction models (i.e. 5.14
abstractions per car on average) plus the 7 full models as queries,
leading to 43 total questions per participant. The order of these
questions was randomized and different for each participant.
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Fig. 3. (a) Average participant recognition accuracies in Study I as
a function of the abstraction level. For each plot, the left-most point
corresponds to the simplest abstraction, while point FM corresponds
to the full models, (b) Full models, (c) DB models.

Results: Figure 3 shows the average participant recognition ac-
curacy of each car versus the abstraction level, together with the full

models, and inferred debranded models.
As expected, the general tendency is that the accuracy for

brand recognition increases as the abstraction moves from simple to
complex. We rule a few exceptions, such as car 5 (Ford Mustang)
at abstraction level 9, as incidental, because at such levels they lack
small, but crucial details to be distinguished from similarly shaped
“decoys” among the choice images.

This study sought to determine the highest level of abstraction
at which the brand identity is not revealed (DB models). Toward
this end, we start from the rightmost, full model end of the accu-
racy curve, trace the curve to the left towards the lower abstraction
levels, and look for the largest drop in accuracy. The abstraction
level corresponding to the lower end of this drop is declared the DB
model. Note that a DB model does not represent an abstraction for
which none of the viewers are able to discern the brand. Instead, it
represents a threshold model such that, on average, the introduction
of one additional feature causes a significant increase in the model’s
recognition. In our study, the DB models serve as a suitable sim-
plification of the full models that enable a separation of geometry
versus brand-driven user perception.

When Pearson’s χ2 test is applied to the accuracy drops, all
but one of the drops are found to be significant with p < 0.05. The
only notable exception, car 4 (Le Mans), exhibits a stable but low
recognition rate of ≈ 60%. We attribute recognition stability to Le
Mans’ unique shape as a highly aerodynamic race car: its identity
is deeply rooted in the base shape of a low and wide stance already
prevalent in its simplest abstractions. However, we have found the
low recognition rates to be due to the participants’ frequent con-
fusion of this model with two other incorrect “decoy” models that
closely resemble the Le Mans.

3.3 Study II: Correlations Between Consumer Judgments to
Abstractions and Full Models
This study intends to measure and compare the consumer judg-

ments to debranded abstractions and full models of cars. It utilizes
the debranded abstractions found in Study I. It aims to discover
whether humans’ relative assessments across a set of full car mod-
els are similar to their assessments across the debranded versions of
the same cars.

Procedure We recruited 30 participants (19 males and 11 fe-
males) with age = 35.6± 14.2 to an online survey through Ama-
zon Mechanical Turk. There was no overlap between the par-
ticipants in Study I and this study. We instructed the partici-
pants to answer a series of questions to the best of their abil-
ity, and offered a monetary incentive of 25 cents upon comple-
tion. In each question, we first showed the participants a pair
of computer-rendered models, and then asked them to compare
and rate the two in terms of the 6 perceived attributes using a
set of sliders. As introduced previously, these 6 attributes are
[fast,muscular,elegant,sophisticated,utility,compact]. A typi-
cal survey question is shown in Fig. 4. (Please note that the se-
lected attributes are perceived, qualitative judgments that are not
supported by actual performance characteristics. For instance, at-
tribute fast relates to how fast the participant thinks the car should
be in comparison)

The set of cars we used in this study are the same seven used
in Study I. We asked the participants to compare any two of them in
a pairwise fashion. Hence there are C2

7 = 21 such pairwise compar-
isons in total, corresponding to 21 survey questions. In Study II and
III, we choose to use pairwise comparisons to avoid complications
that arise with absolute scales. The survey questions could use a
fixed 1-10 scale, however, the meanings of bottom and top values



Fig. 4. A typical survey question in Study II.

is questionable, and thus prevents an evaluation that is consistent
across the participants. By contrast, pairwise comparisons do not
rely on an absolute scale through relative assessments, which can
later be analyzed to deduce a consistent absolute scale.

We randomly assigned each participant to one of the following
two conditions:

1. Condition D We showed the participant pairs of only de-
branded abstractions.

2. Condition F We showed the participant pairs of only full mod-
els.

With this, participants never compared a full model to an ab-
stract model. The survey allowed the participants to advance to
subsequent screens only if all the sliders have been activated/moved
in the current screen. For some of the attributes, hovering over its
name revealed a description of that attribute for the participants un-
sure about its interpretation.

For each attribute, the participants make their assessments on
a semantic scale akin to “Left more, Both about the same, Right
more”. However, internally the scores are recorded in the range
of [−100,100], where − and + signs denote higher scores for the
car on the left and right, respectively. With this choice, for each
pair of cars, each attribute can attain a unique quantitative value in
[−100,100].

Results Given two car models, for each of the attribute compari-
son solicited, we compare the responses from condition D and con-
dition F. We plot all the pairwise comparisons in Figure 5, using
color-coded edges to represent the mean differences. In this figure,
an edge between two numbers, say 2 and 6, represent a comparison
between car 2 and car 6. For each attribute, say utility, we record
the slider positions set by the participants in the range [−100,100].
Note that multiple responses are typically recorded from different
participants for the same comparison.

The edges in Figure 5 show the differences between the at-
tribute values recorded for the comparisons across the full models
(condition F) versus the comparisons across the debranded abstract
models (condition D). Significant differences between the graphs of
D and F (individual graphs not shown) are displayed in solid lines,
while similar attribute values between the graphs of D and F give

rise to faint dashed lines. Hence, faint lines suggest a strong con-
sistency between consumers’ relative assessments of models when
viewed in full models versus when viewed in abstract representa-
tions. Conversely, solids lines, whose colors represent the severity
of the difference, indicate a discrepancy between the assessments in
D versus the assessments in F. As shown with the dashed lines, the
assessments with abstractions and full models are mostly in con-
gruence. As the solid lines show, interpretations of attributes “fast”
and “muscular” exhibit differences which point to brand-specific or
feature specific origination of these attributes.

For further interpretation of the results, we conducted an An-
alytic Hierarchy Process (AHP, [32]) analysis to infer absolute at-
tribute scores from pairwise comparisons. Please refer to Appendix
A for a brief summary. We convert the earlier attribute scores to a
ratio scale, where one model can attain a score at most four times
more than its competitor, in which case, the competitor’s attribute
score is four times less. We populate a matrix by taking the av-
erage scores from our survey and converting them into such score
ratios. In the case of debranded abstraction and full model compar-
isons, we calculate a 7×7 AHP matrix for each attribute. Through
an Eigenanalysis on these matrices, we calculate the eigenvector
that corresponds to the highest eigenvalue. When unit normalized,
this eigenvector yields the absolute scores of the cars specific to
that attribute, similar to a 1D embedding of a high dimensional dis-
tance graph. Hence, for a given attribute, different cars can be rank-
ordered if desired separately for condition D and condition F. When
applied to all six attributes, this analysis results in a joint 6D embed-
ding of each car. Figure 6 shows the absolute scores of abstracted
(D, blue) and full (F, red) models as a set of 2D plots for each at-
tribute pair. As shown, the embeddings of the cars in D and the cars
in F exhibit a good correspondence, as evidenced by the relatively
short edge links. Similar to the previous assessment, the distances
along longer links are mainly contributed by the differences in at-
tributes “fast” and “muscular”, which as well point to brand-specific
or feature specific origination of these attributes.

Implications: These outcomes suggest that humans’ perception
of a set of products may indeed be detail- and brand-neutral: their
perception of fully developed products may be consistent with their
perception of highly abstract, simple representations of the same
products. For designers, this points to the importance of establish-
ing a convincing base form before detail design efforts are under-
taken. More specifically, it gives rise to informative early form-
assessment opportunities, whose results are likely to remain valid
even after seemingly unique, brand-specific details are added.

3.4 Study III: Design Features and Associated Judgments
The goal in this study is to compute the sensitivity of a ge-

ometric feature on the resulting consumer judgments. The study
is designed to systematically assess all the abstractions of one car
model, using the set of 7 full car models as a basis.

Procedure We recruited 80 participants (53 males and 27 fe-
males) with age = 38.3±14.7 to an online survey through Amazon
Mechanical Turk. There was no overlap between the participants in
Study I, II and this study. We instructed the participants to answer
a series of questions to the best of their ability, and offered a mone-
tary incentive of 25 cents upon completion. No time restriction was
imposed.

In each survey question, we first showed the participants a
pair of computer-rendered models, one of which is an abstracted
model while the other is a full model. We then asked them to com-
pare the two, and rate them in terms of the 6 perceived attributes
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Fig. 5. The differences between consumers’ relative assessments within a set of final products (condition F) and that within a set of de-
branded abstracted models of the same products (condition D) for the 6 tested attributes. The numbers (1-7) in circles denote the brand.
Each edge between two circles corresponds to a pairwise comparison. In each graph there are 21 such edges. The color of each edge repre-
sents the magnitude of the mean difference between the assessments of full models and that of the debranded abstractions. See the legend
for the color map. Edges are drawn as solid lines if the mean difference is statistically significant, and dashed otherwise. The percentage of
solid edges for each attribute is 24%, 19%, 5%, 14%,10% and 0% respectively.
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Fig. 6. The positioning maps of the debranded abstractions and full models by their AHP scores in terms of two attributes. The numbers in
or near the circles denote the brand. The blue circles in the plot represent the debranded abstractions. The red circles represent the full
models. The solid lines connect the abstraction and the full model of the same car. The models, debranded and full, are shown at the top.

introduced in Study II using a slider. The questions here were in a
format similar to that in the previous study (Fig. 4).

In this study, the dataset contains a total of 36 abstraction mod-
els and 7 full models, which results in 36×7 = 252 pairwise com-
parisons. The pool of abstract models from which query screens
were generated included the entire set of abstractions, instead of
only the abstraction spectrum of the particular model being studied.
The reason behind this choice is that we observed that when the

participants were repeatedly presented with different abstractions
of the same car in question (even in random order), they quickly
became familiar with the car and responded with the same judg-
ment score, regardless of the geometric variations present across
the abstraction spectrum.

To alleviate such a bias, we solicited from each participant
only 21 pairwise judgments, where the abstraction models could
come from different car models. As a result, no participant was



presented with the abstractions of solely a single model, but rather
provided scores for randomly chosen 21 out of 36×7 possible pair-
wise comparisons. The 80 participants contributing to this study
resulted in an average of 6.67 responses per comparison.

Results Similar to Study II, we use AHP to calculate absolute
attribute scores of the abstractions. However, different from Study
II, here we consider the full models of cars as a consistent basis
for analysis. The seven links corresponding to the pairwise com-
parisons between a particular abstraction model and all of the full
models are collected into a vector v1×7, and are combined with the
full-to-full model comparisons that were encoded in Study II as a
matrix Q7×7. This allows an absolute score to be calculated for any
abstraction model and any attribute with respect to the full models.
The AHP comparison matrix in this case is 8× 8, where the first
column is [1 v]T , the first row is [1 v], and the rest of the matrix is
Q.

Figure 7 shows the AHP scores (blue with circle markers) with
respect to the abstraction models of all cars. The figure also over-
lays the recognition rates (green) calculated from Study I, as well
as their forward (red) and backward (black) cross-correlations with
the AHP scores. As shown, the attribute scores exhibit interesting
trends. For instance, car 4 is consistently rated fast throughout its
abstractions despite its simplicity, whereas cars 1, 3 and 5 are per-
ceived faster as more geometric details are added. In addition, the
“fast” attribute for car 1 is strongly correlated with brand recogni-
tion accuracy. By contrast, the “compact” attribute for car 1 and 5
are strongly and negatively correlated with brand recognition rates.
In both cases, these correlations reveal the coupled effect of brand
and geometry on perceived attributes: as the participants begin to
recognize the features associated with a brand, they alter their judg-
ments in ways that reflect brand-specific notions and qualities. For
instance, as soon as the brand is recognized, respondents reverse
their opinions about the compactness of the cars, even though the
geometric differences between the abstraction models might have
been minor. However, these outcomes only point to the joint influ-
ence of geometry and brand; they do not suggest one influence out-
weighs the other. Additionally, the trend in “sophistication” closely
follows the trend in “elegance” for all the cars, suggesting a strong
correlation between the two attributes.

Implications The results of this study suggest that geometric
features may influence consumers’ assessments through two paral-
lel pathways. On one hand, bulk geometric features developed early
in the design process may directly evoke particular perceived qual-
ities, and their effect seems invariant to the subsequent emergence
or recognition of brand identity. Such features should be discovered
through studies and reused so as to preserve fundamental product
qualities. On the other hand, brand recognition may act as a medi-
ator between geometric features and certain consumer assessments,
and establishes an indirect pathway therein. This second pathway
is particularly interesting, because it suggests that brand identity or
recognition bias) is not an artificial notion, but carries strong judg-
ment associations.

4 Discussions
Our studies provide valuable insights into form characteristics

and associated consumer judgments. We believe the answers to the
questions raised earlier may guide the development of future syn-
thesis methods.

Study I suggests that there exist brand-apparent abstractions
whose presence greatly impact brand recognition. For certain prod-
ucts, such abstractions may develop early in the design process,

which highlights the impact of major volumetric constructs and
proportions on brand identity. (Figure 8a,b illustrates the introduc-
tion of brand identity by geometric features on two example cases.)
Our approach has shown that through similar computational analy-
ses and human studies, designers can decipher the core geometric
features making up a brand, and possibly engineer them to suite
future endeavors. In comparison with the existing brand identity
studies, Study I has shown that a relationship exists between vol-
umetric abstractions that represent the overall shape of a products
and the perceived brand identities in the absence of obvious brand
cues (e.g. brand emblems, chrome front grills).

The results of Study II point to an invariance in percep-
tion: humans’ comparative assessments of a set of products may
be detail- and brand-neutral. Our results suggest that the relative
scores among a set of fully developed products are strongly consis-
tent with the scorings among the highly simplified, coarse versions
of the same products. Such a consistency suggests that early form-
assessments are as valuable as late stage assessments, and these re-
sults are likely to remain valid even after seemingly unique, brand-
specific details are added.

Study III suggests that a mapping between geometric features
and particular consumer judgments can be identified. The results
show that the variations in perceived attributes can be explained by
additional geometric features in the absence of a recognizable brand
identity. Figure 8c illustrates an example. Certain perceived at-
tributes are invariant to an identified brand and are instead ingrained
in the core stance of the product. Such attributes may emerge early
in the design cycle and are difficult to change with detailed shape
manipulations. Conversely, certain other perceived attributes ex-
hibit strong and consistent associations with a recognized brand,
but show major fluctuations when the brand cannot be recognized.

5 Conclusions
Our work puts forth a streamlined surveying and analysis ap-

proach that computationally identifies the relationships between
shape and evoked judgments. We believe that our approach is a
step toward a methodical analysis of form language and its impact
on consumer reactions and can lead to integrated design approach
where form and consumer judgments are strongly coupled.

The results of our case study show that consumer responses
evoked by coarse product impressions are strongly correlated with
those evoked by final production models. This correlation, in turn,
highlights the importance of early and frequent aesthetic evalua-
tions. Moreover, we discovered that not all consumer attributes
develop at the same rate through the design timeline. Certain at-
tributes solidify much earlier in the design cycle and may be diffi-
cult to alter later. Certain other attributes are stronger functions of
the brand, possibly due to historical associations.
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6 Appendix A: Analytic Hierarchy Process (AHP)
AHP [32] can be used in cases where the absolute significance

of a number of parameters needs to be determined solely from pair-
wise comparisons. AHP is analogous to one dimensional scaling in
that it calculates a projection of data points onto a single axis. In
AHP specifically, however, the pairwise comparisons are encoded
as ratios of importance values between the pairs of attributes. A
typical AHP matrix is formed as follows:

AHP =

 1 2 5
1/2 1 4
1/5 1/4 1

 (1)

Here, the off-diagonal values indicate the relative, pairwise
scoring of attributes. For instance, the first attribute is set to be
twice as important as the second attribute, and thus encoded as
AHP 1,2 = 2. Consequently, the second attribute, compared to the
first, attains AHP 2,1 = 1/2. The eigenvector that corresponds to the
largest eigenvalue yields the projection of each attribute in an ab-
solute scale within [0,1]. In this particular example, the absolute
scores are calculated as {0.82,0.56,0.15}.
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