
Semantic Shape Editing Using Deformation Handles

Mehmet Ersin Yumer∗ Siddhartha Chaudhuri† Jessica K. Hodgins∗ Levent Burak Kara∗
∗Carnegie Mellon University †Cornell University

Figure 1: Shapes edited using our system. Please refer to our supplementary video for real-time editing examples.

Abstract

We propose a shape editing method where the user creates geomet-
ric deformations using a set of semantic attributes, thus avoiding
the need for detailed geometric manipulations. In contrast to prior
work, we focus on continuous deformations instead of discrete part
substitutions. Our method provides a platform for quick design ex-
plorations and allows non-experts to produce semantically guided
shape variations that are otherwise difficult to attain. We crowd-
source a large set of pairwise comparisons between the semantic
attributes and geometry and use this data to learn a continuous map-
ping from the semantic attributes to geometry. The resulting map
enables simple and intuitive shape manipulations based solely on
the learned attributes. We demonstrate our method on large datasets
using two different user interaction modes and evaluate its usability
with a set of user studies.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Applications;

Keywords: semantic editing, semantic deformation, shape defor-
mation, shape sets, crowdsourcing.

1 Introduction

The ability to edit existing digital objects is central to many mod-
eling activities including shape design, shape exploration, and
product customization. Intuitive and fast editing methods en-
able digital artists to build upon prior work, designers to explore
shape variations, and engineers to respond to new product require-
ments. However, conventional shape design and editing technolo-
gies (e.g., Maya, ZBrush, AutoCAD, SketchUp) are difficult to
master because they require (1) expertise in the target product
domain to ensure meaningful alterations and (2) familiarity with
the geometric representation and operations to realize the intended
modifications. As a result, transforming high-level modeling in-
tentions into geometric directives is often challenging. Moreover,
while studies in product design demonstrate that attribute-based
user ratings can assist in consumer preference modeling [Orsborn
et al. 2009], it remains difficult to customize existing shapes to re-
flect such preferences.

In this work, we propose a shape editing method where users edit
3D shapes using a set of high-level semantic attributes (Figure 1 and
2). We focus on deforming an input shape rather than composing a
new shape through an assembly of existing shape parts [Chaudhuri
et al. 2013]. As such, our method extends to databases that were
not created using a part-based framework. Additionally, it allows
users to explore variations of an input shape while retaining the un-
derlying topological structure. Our approach is particularly useful
in scenarios where the user’s desires can be expressed using a set of
attributes relevant to the target product, but there is no immediate
means of transforming such intentions into geometric operations
(e.g., “Make this shoe more fashionable”). Our system provides
continuous deformations but does not add new components or re-
move existing ones from the model being edited. Hence, our ap-
proach complements existing part-based geometric modeling tech-
nologies (e.g., [Chaudhuri et al. 2013]) by enabling a semantically
driven interface amenable to shape exploration and customization.

Figure 2: Our system enables a continuous deformation space
where design variations are explored using semantic sliders.

To identify the relevant attributes, we survey a group of digital art
professionals, educators and students to compile a rich set of at-
tributes pertinent to the shape set. The initial set is then reduced to
a compact set by a second, non-expert group of participants. Next,
we crowdsource a large set of pairwise semantic comparisons be-
tween the models in the shape set and use this data to learn a con-
tinuous mapping from the attribute scores to the geometric space.
Our geometric representation builds on the abstraction handle space
proposed by Yumer and Kara [2014].

A direct mapping from the attribute to the geometry space is
rarely useful as geometrically distant objects may share similar at-
tribute values, causing highly discontinuous shape transitions when
traversing the attribute space. To address this gap, we formulate
shape deformation as a constrained path traversal problem in the
geometric space, using the models in the shape set as regression
points. Our formulation allows a shape database to be encoded as a
single continuous deformation space wherein we compute different
scalar functions, each for a different semantic attribute of interest.

The resulting formulation enables two modes of shape manipula-
tion based solely on semantic descriptors. In the first mode, an input
shape can be manipulated by adjusting the individual attribute lev-
els with a group of sliders. In the second mode, an input shape can
be embedded in a number of 2D scalar maps, each corresponding
to a different attribute.

Our main contributions are

• A formulation for mapping semantic attributes to geometry
for smooth shape editing using deformation handles without
the need for low-level mesh correspondence or topological
equivalence.

• A framework for learning such mappings for novel shape sets.

• Two intuitive, semantically driven shape manipulation user in-
terfaces.

• Demonstration of our techniques on four large data sets and
shape-semantic attribute data for the datasets (made publicly
available).

2 Related Work

Our approach is closely related to prior work on shape editing, data-
driven set analysis and attribute-to-geometry mapping. Below, we
discuss the works that form the foundation for our approach.

Shape deformation and editing. To date, several deformation
techniques have been proposed that aim for smoothness or detail
preservation through energy function minimization (see [Botsch
and Sorkine 2008] for a review). These methods primarily oper-
ate on polygonal models and take as input direct geometric direc-
tives, such as position constraints. These methods have been widely
demonstrated for organic shapes. However, these approaches are
not immediately suitable for man-made shapes where models of-

ten consist of many disconnected and overlapping sub-assemblies,
discontinuous features, and poor triangulation.

Botsch and Kobbelt [2004] allow the user to author constraints
on models and deform a region of interest using basis functions.
Kraevoy et al. [2008] present a method for axis-aligned, non-
uniform scaling of man-made shapes. Bokeloh et al. [2011] in-
troduce a pattern-aware deformation method where a set of sliding
dockers are extracted and selectively applied to suit the deforma-
tion. Gal et al. [2009] and Zheng et al. [2011] utilize an analyze and
edit approach to shape editing, where constraints extracted from
the original model are used during shape editing to produce glob-
ally plausible and logical deformations. The above methods facili-
tate shape deformation through information extracted from a single
model, and hence are not immediately amenable to constraints em-
anating from a set analysis.

With the increasing availability of digital repositories, data-driven
shape analysis and synthesis methods have been recently receiv-
ing a great deal of attention. A growing body of work has focused
on low-level segmentation and shape matching [Golovinskiy and
Funkhouser 2009; Sidi et al. 2011; van Kaick et al. 2013], part-
based dataset exploration [Ovsjanikov et al. 2011], and part-based
shape synthesis [Xu et al. 2012; Kalogerakis et al. 2012; Averkiou
et al. 2014]. Mitra et al. [2013] provide an extensive overview of
related techniques. More recent methods aim to decipher the ge-
ometric principles that underlie a product family in order to en-
able deformers that are customized for individual models, thereby
expanding data-driven techniques beyond compositional modeling.
Yumer and Kara [2012; 2014] present such a method for learning
statistical shape deformers in the form of meta-handles that enable
input models to be manipulated through abstract geometric proxies.

The above methods aim to establish a suitable abstraction between
the target geometry and the means for interacting with it. How-
ever, these methods remain purely geometric and are unsuitable for
modeling tasks involving semantic attributes as input.

Semantic attributes. Previous attribute-based shape manipulation
and synthesis systems require mesh correspondences among the in-
put data [Deng and Neumann 2008; Allen et al. 2003; Blanz and
Vetter 1999]. This constraint restricts the admissible geometric
variations in the input models, because the models must share a
common topology and vertex correspondences must be established.
In our approach, the topological and geometric variations among
the members in the shape set is higher, and we do not require low-
level mesh correspondence.

Attribute-based approaches have also been explored in recent ap-
plications, starting with binary attributes [Tao et al. 2009]. Relative
attributes, similar to ours, have been used in image search [Parikh
and Grauman 2011; Kovashka et al. 2012] and font search appli-
cations [O’Donovan et al. 2014], and semantic image color palette
editing [Laffont et al. 2014]. Our approach shares similar goals,
with a focus on 3D shape manipulation.

In a recent work, Chaudhuri et al. [2013] introduce a part-based
assembly method for content creation. The approach learns se-
mantic attributes for the parts that compose a shape. Each part
group (e.g., torso, head) is treated as an independent category of
discrete objects. A relative attribute-based search, similar to the
image-based applications mentioned above, lets users navigate the
list of parts sorted with respect to an attribute. The system then
constructs the final shape by assembling the individually chosen
parts (e.g., head, legs, arms, and torso are assembled to create an
animal). This approach relies primarily on discrete object search
within a prescribed set of parts, followed by part-based assembly of
existing components. Similar to the image-based applications, the

Figure 3: Editing modes in our system: (a) Direct attribute editing,
(b) Attribute map exploration for Sporty.

system is tailored toward choosing entities from a fixed set rather
than generating novel geometric variations.

Our approach is different from previous attribute-based systems in
that when the user queries a more [attribute] variant of an object, the
input object is geometrically altered to match the user’s intent rather
than being replaced by another more [attribute] object, without the
need for topological equivalence or low-level mesh registration.

3 End-user Experience

Our approach provides two interaction modes: direct attribute edit-
ing and attribute map exploration. In both cases, the user starts by
importing a polygonal mesh model that belongs to a semantically
processed category of shapes. The imported model need not have
been previously seen by our system.

Direct attribute editing. The interface for direct attribute editing
(Figure 3(a)) provides a 3D view of the input model with a track-
ball interaction. Attributes pertinent to the category are presented as
interactive sliders. As the user adjusts the sliders, the input shape
deforms in real-time to reflect the new shape dictated by the at-
tributes.

A geometric deformation frequently induces changes in many of
the attributes simultaneously. Therefore, when one attribute is ad-
justed in the interface and the geometry is deformed, the remain-
ing attributes also change from their original settings. The user
has the option to constrain such changes using the three buttons

Figure 4: Attributes for Cars (top-left), Shoes (top-right), Chairs
(bottom-left), and Airplanes (bottom-right) sets. Over 1000 users
were asked to select the most relevant five attributes for each cate-
gory. The horizontal axis shows the number of users who selected
that attribute. The highest ranking attributes shown in red.

associated with each attribute. When the [+ / - / =] button is acti-
vated underneath an attribute, that attribute is constrained to only
[increase / decrease / remain about the same] when other attributes
are adjusted. For instance, while increasing a car’s sportiness, the
system can be constrained such that its compactness can only in-
crease. This capability is made possible through a constrained path
traversal formulation (Section 6.1).

Attribute map exploration. This mode provides an exploratory in-
terface for shape deformation (Figure 3(b)). A color-coded 2D map
is displayed for the selected attribute, with the colors denoting vary-
ing attribute strengths (red: high, blue: low). The map is created by
smoothly embedding the high-dimensional shape space into 2D. It
allows the user to explore different styles of shapes with similar
attribute strengths, which is not possible with the 1D slider. Rep-
resentative shapes are displayed at various map locations to guide
the exploration. The user can grab-and-slide an input shape on the
map, and the shape is deformed in real time to match the attribute
strength at the corresponding location.

4 Attribute Collection

We conducted our user studies with two different kinds of users:
(1) Experts: product design professionals and visual artists, (2)
General public: Amazon Mechanical Turk (AMT) and in-person
participants.

4.1 Formative User Study I: Attribute Discovery

We asked fifty experts to each provide the ten attributes that they
believe are most relevant to the target product category. The overall
purpose of this study was also explained, encouraging the experts
to consider attributes that they think consumers would find useful
for product rating. We consolidated the attribute lists, filtered out

Figure 5: A user response from the attribute rating study.

synonyms, and used the resulting list to deploy an AMT study. We
asked 1000 participants to choose the five attributes they would find
relevant for themselves and for other consumers when rating prod-
ucts from each category. Figure 4 shows the resulting distribution of
attributes for Cars and Shoes. We followed the well-known strategy
of conflict by Schelling [1980] and asked users to evaluate others’
views as well: the experts were asked to provide attributes that the
general public would consider relevant, and the general public was
asked to select attributes that others would consider relevant.

4.2 Formative User Study II: Attribute Rating

In this study, we asked participants to compare pairs of models
rather than asking them to rate individual models on an absolute
scale (Figure 5). The user is asked to evaluate a pair of model im-
ages for each available attribute, where slider positions indicate the
relative magnitude of the user’s rating.

For a dataset of 100 shapes, there are nearly 5000 possible com-
parisons. To make the task manageable, our system selects 95 ran-
dom pairs for each task from a uniform distribution during runtime.
We aggregate all tasks performed by all users to arrive at the final
pairwise ratings separately for the general public (AMT) and the
experts. We limit each AMT participant to a maximum of 20 tasks
in order to prevent user domination in the data. The final data are
collected from more than 2500 unique AMT participants and from
more than 300 unique experts for the Cars and Shoes, and more
than 1300 unique AMT participants for the Chairs and Airplanes.
These exclude rejections per the criterion explained below. We de-
velop our system and report results primarily based on the larger
AMT dataset. User ratings are publicly available.1

User reliability. Crowdsourcing user studies require special care
when user ratings are subjective or qualitative [Kittur et al. 2008].
We use two methods to filter out unreliable responses: (1) Consis-
tency: For each task (95 pairwise comparisons), we duplicate five
randomly chosen questions by reversing the presentation order of
the models. The user sees the resulting set of 100 questions in ran-
dom order. The five control questions, with five sliders each, give
us 25 consistency checks. Each check requires the user to consis-

1Polygonal mesh models and associated semantic attribute ratings:
http://www.meyumer.com

Figure 6: (a) Examples from the Cars set. (b) Deformation han-
dles. Note the differences in topologies. (c) Correspondence com-
puted across the handles (matching handles colored similarly).

tently identify the shape with the higher attribute strength. Users
who fail five or more checks are discarded from the study. (2) Dili-
gence: We expect most AMT respondents to complete a task within
a similar period of time. We discard users who complete the tasks
more than ten times faster than the mean completion time.

5 Attribute Learning

After the attribute ratings are collected, we embed all of the train-
ing shapes in a common deformation space, compute an attribute
prediction function using the training data, and establish an inverse
map from the attributes to the geometric changes in the target shape.

5.1 Shape Features

We compute shape features on a set of abstract surfaces that rep-
resent each shape (Figure 6) instead of using low-level polygo-
nal mesh structures. This approach enables us to embed the input
shapes in a common feature space that facilitates continuous defor-
mation and shape synthesis. We first compute the co-constrained
abstraction of each shape using a previous method [Yumer and Kara
2014], which produces a set of deformation handles (Figure 6(b,c)).
A deformation handle can be an instance of the following surface
types: sphere, cylinder, cone, open quadric. Open quadrics are used
when deformation handles cannot be reliably represented by the
former primitives.

These surface types are parameterized as follows:

• Sphere: r, pi|i ∈ {x, y, z}

• Cylinder: r, pi, θi|i ∈ {x, y, z}

• Circular Cone: r, β, pi, θi|i ∈ {x, y, z}

• Quadric: k1, k2, pi, θi|i ∈ {x, y, z}

where r represents the radius associated with the type, β repre-
sents the conic angle, and k1, k2 represent orthogonal constant cur-
vatures. These parameters form the intrinsic parameters. (pi, θi)
represent the absolute position and orientation of the surface rela-
tive to the axis-aligned bounding box of the shape, and they form
the extrinsic parameters. A shape’s feature vector consists of each
surface’s intrinsic parameters followed by a set of relative fea-

Figure 7: Example shapes from the Cars dataset. Each shape
may consist of many surface patches (colored differently), and the
shapes may be topologically dissimilar.

tures computed between the extrinsic features of all surface pairs
(e.g., pmx − pnx , θmz − θnz , where m,n are two different handles).

We use a sparse vector encoding scheme to represent each feature
vector. In this representation, each entry into the vector is preceded
by an integer id uniquely demarcating the corresponding feature
value. Sparse encoding allows shapes with different numbers of
handles and handle types to be incorporated within the same for-
mulation (Figure 6(c)). Each deformation handle attains a unique
integer id based on the compatible segmentation used during shape
abstraction. With this, handles that are common between two or
more models attain the same id (e.g., the green engine hood in Fig-
ure 6), while a handle unique to a particular model attains a unique
id not shared by any other handle (e.g., the trunk in the first col-
umn of Figure 6). For each model, our sparse vector representation
thus encodes id-intrinsic parameter pairs for each of the deforma-
tion handles. The relative features between pairs of handles are en-
coded similarly by computing the integer id for each deformation
handle pair and record the corresponding feature value associated
with that pair. Note that if two or more models share similar han-
dles hA and hB , the id computed to represent the (hA, hB) pair
will be common across these different models.

Previously unseen shapes. Let K = {(Yi, Li)|i = 1, . . . , |K|} be
the set of handles (Yi) and corresponding types (Li) computed for
the set of input shapes (Figure 6(c)). These handles and their cor-
respondances across the shape set are computed using the prior for-
mulation [Yumer and Kara 2014]. Let d = {(yi, li)|i = 1, . . . , |d|}
be a previously unseen shape’s handles (yi) and handle types (li).
We train a polynomial-kernel SVM classifier [Cortes and Vapnik
1995] on K and use the resulting classifier to assign a handle type
(li) to each surface (yi) of the new shape. Lastly, based on the
acquired handle types, we compute the intrinsic and extrinsic pa-
rameters that results in the shape’s feature vector.

Discussion of shape features. Previous approaches such as
[Chaudhuri et al. 2013; Deng and Neumann 2008; Allen et al. 2003]
rely on features computed from the mesh representation. For geo-
metrically and topologically different shapes (Figure 7), such fea-
tures either restrict these approaches to ranking or search applica-
tions, or require that vertex-level correspondences are established a
priori. Our approach eliminates the need for low-level correspon-
dences, thereby allowing geometrically and topologically different
shapes to be used for learning (Figure 7).

5.2 Attribute Prediction

We learn a function to map the shape features to the predicted at-
tribute scores in a two-step process. First, the relative comparison
scores for the training shapes are converted to absolute attribute
scores with associated reliability estimates. Second, the absolute
scores are extended to a continuous scoring function for the entire

feature space. This approach is a slight departure from common
practice, where the scoring function is learned directly from non-
numerical relative comparisons (e.g. [Freund et al. 2003; Parikh
and Grauman 2011]). We found that our approach efficiently learns
to model the high nonlinearity of the collected data without requir-
ing a large number of training comparisons.

5.2.1 Absolute Attribute Scores for Training Shapes

We model the absolute attribute score aP i ∈ R for attribute a and
shape i as a normal (Gaussian) distribution:

aP i ∼ N(aµi, aσ
2
i) =

1

aσi
√
2π
e
−

(x−aµi)
2

2 aσ
2
i (1)

Because users compare shapes using a numerical scale, the relative
scores may also be represented as distributions. If the (unknown)
absolute scores are independently normally distributed, their pair-
wise differences can also be modeled as normal distributions [Steel
et al. 1960]: aP i − aP j ∼ N(aµij , aσ

2
ij), where aµij and aσ

2
ij

are the (known) mean and variance of user-provided relative scores
comparing shapes i and j. Our modeling assumption stands up to
sanity checks: the distribution moment-based skewness test [Thode
2002] shows that the pairwise comparisons conform well to nor-
mal distributions (with 9̃0% of the data for all datasets passing the
normality check). We observe that

aP i − aP j ∼ N(aµij , aσ
2
ij) = N(aµi − aµj , aσ

2
i + aσ

2
j) (2)

To compute the absolute attribute scores of all shapes, the overde-
termined system of linear equations given by all aµi − aµj = aµij

and aσ
2
i + aσ

2
j = aσ

2
ij pairs is solved in a least squares sense to

maximize the data likelihood.

5.2.2 Scoring Function

After we compute absolute attribute scores for the training shapes,
we map the set of features extracted from the shape deformation
handles to these scores. The mapping can be extended to the entire
feature space to yield a function that predicts attribute strengths for
previously unseen shapes.

We modify Shepard’s method [Shepard 1968; Lewis et al. 2010] to
map the sparse feature vector of an arbitrary shape, xs, to a pre-
dicted attribute strength:

f̃a(xs) =
∑
t∈T

wt(xs)∑
j wj(xs)

fa(xt) (3)

where f̃a(xs) is the predicted value of attribute a for a shape with
features xs, and T is the set of training shapes (i.e., shapes for
which the attribute strengths, fa(xt), are known). The weight func-
tion wt(xs) for data point t is

wt(xs) = art‖1s · 1t · (xs − xt)‖−p (4)

where 1i is the indicator function vector for the sparse feature vec-
tor of shape i and its elements are equal to 1 for the features of a de-
formation handle if the shape possesses that handle (as determined
by the id in the sparse vector representation) and 0 otherwise. p is
a positive real number. We choose p > 1, resulting in a globally

Figure 8: Conformal deformation: (a) initial deformation handles,
(b) a new attribute value alters the position in the feature space,
hence dictating new handle parameters, (c) modified handles are
optimized to establish watertight boundaries.

continuous prediction function [Lewis et al. 2010]2. Lastly, we also
augment the weight function with a reliability constant art defined
at known data points. Because we model the attribute score at a
known data point (each training shape) with a normal distribution
(Equation 1), we select the distribution mean as the corresponding
predicted value fa(xt) = aµt and define reliability proportional to
the inverse of the variance art = 1/ aσ

2
k.

For the sparse feature vector of an arbitrary shape, xs, and the fea-
ture vectors of the training shapes xt, (t ∈ T), the indicator func-
tion in Equation 4 allows only the handles in the training shapes
that also appear in xs to contribute to the attribute score of xs.

While RankSVM [Parikh and Grauman 2011; Chaudhuri et al.
2013] provide an alternative to our attribute scoring function, we
favor our approach because of the strongly multi-modal nature of
our problem. We show example shapes generated by the two meth-
ods in Section 7. Additionally, multi-modal, nonlinear approaches
(e.g., Gaussian Mixture Models (GMM), RankBoost [Freund et al.
2003]) could be used as an alternative to Equation 3. However, we
have found our approach to provide significantly faster (>100x)
training times over GMM. Further discussions regarding the ratio-
nale behind using our method over RankSVM and GMM can be
found in Section 7.1.

5.3 Deformation

The attribute prediction function in Equation 3 represents a contin-
uous scalar field over the shape space: the attribute is the potential,
and the shape features are the coordinates in this space. Given a
target attribute value, we use this space as a way to deform an input
shape. In this section, we describe our deformation algorithm.

For an input shape, we first compute its abstract deformation han-
dles (Figure 8(a)) using [Yumer and Kara 2014]. The intrinsic
and extrinsic parameters of these handles are combined to form the
shape’s feature vector as described in Section 5.1.

When users interact with our system, they use semantic attributes
as control parameters for deforming the shape. When an attribute is
modified, our model computes the corresponding change of shape
features. (This mechanism is detailed in the next section.) Re-
call that the features are simply parameters of handle surfaces (Fig-
ure 8(b)). We can use the updated parameters to determine new po-
sitions for all vertices of the handle surfaces, represented as polygon
meshes.

The new handle configurations, however, also necessitate the com-
putation of new handle boundaries because the feature vector does
not explicitly encode boundary information. To ensure connected,
watertight boundaries, we jointly optimize the final vertex positions

2p = 2.3 for all results presented in this paper

of all handle surfaces as follows:

minimize
pi

∑
{Vh,Eh}∈H

∑
i∈Vh

|pi − fi|+ λ
∑
j∈Eh

−log
(
βj

π

) (5)

where H is the set of deformation handles of the shape. Vh, Eh
are the vertices and internal edges of the surface mesh associated
with handle h. pi and fi are the current and target positions of
vertex i. βj is the dihedral angle between the polygons that share
edge j. λ is a constant that controls the contribution of the smooth-
ness term. We use the new positions of the surface handle vertices
as the boundary conditions for an anisotropic 3D cage deformation
method described in [Yumer and Kara 2014] (Figure 8(c)). The vol-
umetric deformations computed for the tetrahedral mesh associated
with the cage are then used to deform the embedded original mesh
geometry, thereby completing the deformation process.

A target shape contains deformation handles possessed by no other
training shape, those unique handles remain on the target shape and
deform only due to the compatibility constraints arising from Equa-
tion 5. Section 7 will show examples of such scenarios.

6 Semantic Editing Interfaces

Our system has two interaction modes: (1) direct attribute editing
(2) attribute map exploration. Both modes utilize the attribute pre-
diction function given in Equation 3 to deform the shape toward the
desired attribute value. However the underlying navigation mecha-
nisms differ for the two approaches.

6.1 Direct Attribute Editing

The continuous attribute prediction function given in Equation 3 is
not convex. However, by design, the local maxima and minima can
only occur at the data points (models in the user studies) used in
the construction of the function. For each attribute, this function is
defined over the same geometric space xs; thus, an input shape’s
location in this space is readily known. For direct attribute editing,
we compute a path for the shape in this space for each attribute in
real time and map these paths to the corresponding sliders.

Unconstrained attribute editing. We require a continuous path
between the shape variations with minimum and maximum at-
tribute value. We employ a relaxed solution as a tradeoff be-
tween deformation smoothness and attribute monotonicity. Let
(xs, fa(xs)) be the shape’s current position in the deformation
space and the corresponding attribute value for attribute a. Let set
T = {(xt, fa(xt))|k = 1, . . . , |T |} be the set of shapes (features
and corresponding attributes) used in the construction of Equa-
tion 3. Let set Tlow = {(xt, fa(xt))|fa(xt) < fa(xs), xt ∈ T }
be a subset of T that contains shapes with attribute scores less
than fa(xs), and Thigh = T − Tlow. We build two k-nearest
neighbor graphs; Glow = Tlow ∪ {(xs, fa(xs))} and Ghigh =
Thigh ∪ {(xs, fa(xs))}. We then use Dijkstra’s algorithm to find
the shortest path connecting the shape with the minimum attribute
value in Glow to xs, and subsequently xs to the shape with the max-
imum attribute value in Ghigh. Figure 9(a-b) illustrates the steps.
The resulting path thus only passes through a subset of the models
in T . Both Glow and Ghigh may consist of disconnected islands
(e.g., Glow, depicted in white edges in Figure 9(a), has two islands).
In such cases, the resulting path incorporates only the islands that
contain the current shape xs. The two ends of this path map to
the maximum and minimum slider positions of the corresponding
attribute in the user interface.

A literal traversal of the raw, shortest path in Figure 9(b) typically
results in sudden, visually discontinuous geometric changes. To

Figure 9: (a) Current shape, higher- and lower- attribute clus-
ters with resulting k-NN graphs (N = 3 for illustration purposes).
(b) Computed exact path. (c) Smooth spline path. (d-f): (a-c) for
constrained editing.

mitigate this effect, we replace this path with a G1 continuous
piecewise cubic spline regressed over the constituent points (Fig-
ure 9(c)). Because the traversal along this new path is still in the
geometric space, we traverse the identical path in all other attribute
prediction functions, read off the corresponding attribute scores,
and map the results onto the slider set in the user interface. This
approach helps the user explore a variety of deformations, with
real-time updates on all attributes. Please refer to our supplemen-
tary video for interaction examples. Note that the traversal path is a
function of the current attribute being edited as well as the current
coordinates of the target shape in the feature space. As a result,
the final deformation depends on the order in which the attributes
are adjusted. For instance, given the original target shape, sliding
AttributeA to its maximum and then sliding AttributeB to its
maximum may not result in the same end shape if AttributeB had
been maximized before AttributeA.

Constrained attribute editing. For constrained editing, we elimi-
nate the shapes that violate the constraints set by the user from Tlow
and Thigh. We then follow the same procedure explained above for
unconstrained attribute editing using the reduced shape set. For
example, if the user constrains attribute b to stay about the same
while he/she is editing the shape through other attributes, we elimi-
nate shapes from Tlow and Thigh whose b values are more than 10%
(determined empirically) lower or higher than the current shape’s b
value. If the user activates the + button for attribute b, we only in-
clude the shapes that have a higher b value then the edited shape’s
current configuration. Figure 9(d-f) illustrates this idea. Multiple
constraints can also be activated by the user.

6.2 Attribute Map Exploration

Our second editing mode involves a grab-and-slide approach where
the user explores variations of an input shape in a 2D height map
constructed for each attribute. The colors in the map dictate the
attribute’s level (red: high, blue: low, see Figure 3(b)).

Let X = {xi|i = 1, . . . , |X |} be the features of the shapes used
when constructing Equation 3. We first compute a 2D embedding
of X using locally linear embedding [Roweis and Saul 2000], re-
sulting in Y = {yi|i = 1, . . . , |Y|}, where yi is the 2D coordinates
of shape i with feature vector xi (Figure 10(a)). We compute a
scalar field in the embedded space Y (Figure 10(b)) using Equa-

Figure 10: (a) Shapes in the original feature space. (b) Shape
embedding and the resulting attribute map. Nearest neighbors are
preserved in the embedding.

tion 3, while replacing the feature vectors xi with yi in Equation 4.

For a new shape s imported by the user for editing, we first compute
the reconstruction weights of its k-nearest neighbors in the feature
space as follows:

minimize
Wi

∑
i∈K

(xs −Wixi)
2

subject to
∑
i∈K

Wi = 1

Wi > 0 ∀ i ∈ K

(6)

where K is the k-nearest neighbors of shape s and the Wi are the
reconstruction weights (Figure 10). The embedding of shape s is

ys =
∑
i∈K

Wiyi (7)

As the user slides shape s on the map attaining new embedded lo-
cation y′s, we compute the target feature vector x′s as follows:

x
′
s = (1− cs)xs + cs

∑
i∈K

||yi − y′s||
−p∑

j ||yj − y′s||−p
xi (8)

where p is a positive real number, cs = |y′s − ys| /C and C is
a normalization constant corresponding to the maximum distance
that the shape can travel on the map.

The map visualized by the user represents a 2D projection of a
much higher dimensional space. Hence, visually dissimilar models
might appear proximate. Although this might at times be confus-
ing for the user, the users have usually found it straightforward to
navigate this space as they explore (similar to the Design Galleries
[Marks et al. 1997]). Our user studies (Section 7) show that the
users found the map interaction useful and inspirational.

7 Results and Discussion

We present results from our system using AMT comparative user
studies with Cars (131 models), Shoes (127 models), Chairs (61
models), and Airplanes (53 models) shape sets. For each set, the
top five attributes shown in Figure 4 were used. In the Shoes set,
both the boots and sandals were contained in the same training pool
(i.e., they were not parts of different shape categories). Our sup-
plementary document contains further details of these shape sets
and noteworthy differences between experts’ and AMT subjects’
attribute ratings.

Given a shape set, we first compute the co-constrained abstractions
using [Yumer and Kara 2014]. This step takes less than a minute
per shape on an i7, 8-core machine and is performed only once for

Figure 11: Examples ranging from the least to the most sporty configuration. Top: Our system, Bottom: RankSVM. With RankSVM, the
transitions can be unexpected and abrupt as shown by the blue arrows (please see the video highlighting this phenomenon).

Figure 12: Unconstrained editing examples with two different cars and two different shoes as starting points. Color maps indicate the
amount of local deformation (normalized scale + normalized shear) for each variant: Min. deformation- 0 1 - Max. deformation.

Figure 13: (a) Original. (b) Unconstrained editing by increasing
Comfy value, resulting in 50% decrease in Fashionable. (c) Con-
strained editing by increasing Comfy value while keeping Fashion-
able about the same. Note the changes in the heel and the toe.

a dataset. Learning the mapping from the deformation space to the
attribute set takes two minutes for each dataset. For an unseen input
shape, we first compute its deformation handles (<1min per shape).
Once the deformation handles are computed, shape editing in our
system takes place at interactive rates.

Unconstrained and constrained editing. Figure 12 shows un-
constrained editing examples from the Cars and Shoes shape sets,
whereas Figure 18 shows unconstrained editing examples from the
Chairs and Airplanes. In these examples, the user is adjusting
the attribute noted for each variant. Figure 13 demonstrates how
constraining fashionable alters the result obtained when the user
changes the comfy attribute. Figure 14 shows a similar comparison
for a car model. Figure 19 shows further examples of constrained
shape deformation, where multiple constraints are also used.

Pairwise ranking quality. We compared the pairwise rating from
our system to the AMT data. For a pair of shapes (P,Q) with at-
tribute scores computed by our system to be fa(P) > fa(Q), our
system’s rating was marked successful if the same relationship held
for the mean AMT attribute scores fAMT

a (P) > fAMT
a (Q) for the

two shapes and unsuccessful otherwise. We used a leave-one-out
method: leaving one shape out from training, and testing all shape
pairs containing it. This test was repeated for all semantic attributes
and the results were averaged. The ranking error with our method
is 11.2% for the Cars, 9.5% for the Shoes, 9.7% for the Chairs and
10.4% for the Airplanes. The ranking error with the constrained
GMM method (Section 5) is 10.7%, 8.9% , 8.3%, and 9.1%, re-
spectively for the same datasets with more than 100 times longer
learning time.

7.1 Comparison of the Learning Approach

Our approach to learning an attribute prediction function as a con-
tinuous scalar field (Section 5.2.2) is decoupled from the initial esti-
mation of absolute attribute scores for training shapes from relative
comparisons (Section 5.2.1). We favor this approach over rank-
ing methods based on linear projections (e.g., RankSVM [Parikh
and Grauman 2011; Chaudhuri et al. 2013]) because of the strongly
multi-modal nature of our problem. In particular, significantly dif-
ferent geometric configurations may have similar attribute strengths
as demonstrated in our supplementary document and video. This
phenomenon is at least in part due to our choice of shape features,
which are exceptionally appropriate for deformations, but are not
linearly correlated with attributes. Chaudhuri et al. [2013] have
no such constraints for their application; hence, they use an ex-
panded feature space with additional nonlinear features to obtain
satisfactory results with RankSVM. In Figure 11, and in the supple-
mentary video, we demonstrate that the scoring function produced
by RankSVM produces less meaningful deformations than our ap-
proach.

Figure 14: (a) Unconstrained editing: decreasing Modern.
(b) Constrained editing: decreasing Modern + constrained increas-
ing of Sporty. (c) Unconstrained editing: increasing Sporty.

Table 1: Percent of participant responses that match our system’s
ordering.

Cars attribute Match Shoes attribute Match
Luxurious 79.4% Fashionable 86.2%

Sporty 89.3% Comfy 94.5%
Compact 94.2% Feminine 92.8%
Muscular 91.3% Active 87.3%

Modern 87.6% Durable 84.9%
Chairs attribute Match Airplanes attribute Match

Comfortable 74.5% Civilian 72.1%
Ergonomic 83.6% Sleek 77.8%

Elegant 73.9% Stealth 16.3%
Antique 27.3% Fighter 62.4%

Sturdy 86.2% Fast 81.4%

One could also argue that a multi-modal, nonlinear approach
(e.g., Gaussian Mixture Models (GMM), RankBoost [Freund et al.
2003]) could be used to learn an alternative prediction function to
Equation 3. We first experimented with a constrained GMM model
where the relative attribute ratings collected from the users were
used as constraints following the approach of Yumer et al. [2014].
We obtained results similar to our approach using constrained
GMM, but with significantly longer training times (>100x) due
to the large number of constraints, and the number of Gaussians
approaching the number of shapes. Additionally, because we col-
lected numerical relative comparisons, we did not need a recourse
to RankBoost with a loss function based on non-numerical com-
parisons. Our method is similar to Mixture of Experts approaches
[Yuksel et al. 2012] with a fixed number of Gaussian process expert
learners. This commonality explains the similarity of the results
with a GMM where the number of Gaussians approaches the num-
ber of shapes involved in the user study.

7.2 Evaluation User Study I

We conducted a user study on AMT to assess how well our sys-
tem’s shape scoring matches the scores given by the participants.
As shown in Figure 15, participants were presented with three ver-
sions of a shape and were asked to rank the shapes with respect
to the prescribed attribute (most to least). The three versions were
presented to the participant in a random order and corresponded
to the attribute’s maximum, minimum, and middle slider positions.
Each participant was presented with ten such questions. Eight of the
questions were unique, while the remaining two were duplicates,
with the triplets presented in a different order. We rejected a partic-
ipant if the participant did not pass the diligence criterion described
in Section 4.2 or if the participant’s responses to the two duplicate
questions did not match. After excluding 27% of the participants
based on the rejection criteria, we compiled the results from over
1200 questions for each of the five attributes of all four datasets.

Figure 15: A question in user study I and the participant’s correct
answer.

A match between our system and a participant was marked success-
ful only if the participant’s ordering of the shapes exactly matched
ours. The rate of successful matches is shown in Table 1, where the
baseline (chance) success rate is 1/6 = 16.7%

7.3 Evaluation User Study II

We administered a second, in-person study to evaluate how well
our system was received by the participants using the systems cre-
ated with the data from the two larger datasets (Cars and Shoes).
Each participant was given a brief description of the system. We
then asked the participants to explore variations of five different
shapes to arrive at final shapes to their satisfaction. We restricted
the participants’ interactions to one minute per shape. By doing so,
our primary goal was to measure participants’ satisfaction with the
models they generated in a time-restricted session. At the end, par-
ticipants were asked to complete a survey involving evaluations on
a Likert scale.

The results collected from 41 non-expert participants (i.e., no prior
professional experience or training related to shape modeling or de-
sign) are summarized in Figure 16. The majority of the participants
were satisfied with their models and did not find the system cum-
bersome despite their short interactions with our system.

7.4 Limitations and Future Work

Our approach produces variations of existing shapes rather than
discovering new solutions in the design space. During deforma-
tion, the maximum extent that a shape can be deformed using a
prescribed attribute depends on the training shapes that carry the
extreme value of the attribute. As new shapes are introduced to the
training set or existing ones are removed, the amount and nature

Figure 16: Results of user study II. 1 - strongly disagree, 3 - neu-
tral, 5 - strongly agree. Error bars indicate one standard deviation.

Figure 17: Examples of original shapes from the three semantic
attributes where our method exhibits limitations.

of the deformation an input shape undergoes may change. Addi-
tionally, during constrained editing, the user may overconstrain the
deformation such that no appropriate training shapes may remain
for the construction of the deformation path (Section 6.1). While
we have not encountered such a scenario, an insufficient number
of training shapes or an abundance of controllable attributes may
result in such failure modes. Further work is necessary to quan-
tify the probability of overconstraining as a function of these two
parameters.

Our method utilizes the deformation handles introduced by Yumer
and Kara [2014]. Hence, it can only capture and deform details that
are volumetrically significant in the shape’s geometry. Figure 17
shows that Antique chairs are mostly differentiated by finer details
they exhibit on the legs and backrest components. Our method fails
to capture these details as demonstrated in Figure 18 (making the
original chair more Antique does not significantly alter the geome-
try). Moreover, the clustering of deformation handle surfaces also
plays a key role in our system. For instance, Stealth airplanes (Fig-
ure 17) consist of unique abstraction surfaces not shared by other
airplanes in the database. Our system fails to cluster the abstraction
surfaces of such airplanes together with the corresponding defor-
mation handles of other airplanes. This results in insignificant de-
formations when the original airplane is made more Stealthy (Fig-
ure 18).

Our current attribute rating, learning, and deformation methods re-
quire that input shapes are deformed in their entirety without the
option to modify parts of the shape. For instance, although our
method does a fair job in deforming a civilian airplane into a fighter
(Figure 19), there are many additional parts on a fighter airplane
(Figure 17). Additionally, our approach only considers geometry
and ignores other semantically relevant information such as appear-
ance (e.g., color and texture). A formulation that incorporates such
channels of information may help establish a richer and more robust
mapping between product features and semantic ratings.

8 Conclusion

We introduce an approach for semantic shape editing using attribute
ratings learned from pairwise shape comparisons. Our approach en-
ables users to manipulate 3D shapes using a set of attribute sliders
or by navigating a set of attribute maps. The mapping from at-
tributes to geometry is dictated by ratings crowdsourced from the
general public. As such, our method can accommodate new shapes
and new user ratings, thereby allowing it to adapt to evolving shape
preferences, different user bases, and the availability of new seman-
tic attributes.

Figure 18: Unconstrained editing examples from the chairs and airplanes datasets. Color maps indicate the amount of local deformation
(normalized scale + normalized shear) for each variant: Min. deformation- 0 1 - Max. deformation.

Figure 19: Shapes semantically edited with our system. Blue: Edited semantic attribute. Red: Constrained attributes during editing.

Acknowledgments
We thank Niloy J. Mitra, Scott Hudson, Elizabeth Carter, and the
anonymous reviewers for the valuable discussions. This work is
partially funded by NSF CMMI - 1235427.

References

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2003. The space of
human body shapes: reconstruction and parameterization from
range scans. In ACM Trans. Graph., vol. 22, 587–594.

AVERKIOU, M., KIM, V. G., ZHENG, Y., AND MITRA, N. J.
2014. Shapesynth: Parameterizing model collections for coupled
shape exploration and synthesis. In CGF, vol. 33(2), 125–134.

BLANZ, V., AND VETTER, T. 1999. A morphable model for the
synthesis of 3d faces. In ACM SIGGRAPH, 187–194.

BOKELOH, M., WAND, M., KOLTUN, V., AND SEIDEL, H.-P.
2011. Pattern-aware shape deformation using sliding dockers.
In ACM Trans. Graph., vol. 30, 123.

BOTSCH, M., AND KOBBELT, L. 2004. An intuitive framework
for realtime modeling. ACM Trans. Graph. 23, 3, 630–634.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE TVCG 14, 1, 213–230.

CHAUDHURI, S., KALOGERAKIS, E., GIGUERE, S., AND
FUNKHOUSER, T. 2013. AttribIt: Content creation with se-
mantic attributes. In ACM UIST, 193–202.

CORTES, C., AND VAPNIK, V. 1995. Support-vector networks.
Machine Learning 20, 3, 273–297.

DENG, Z., AND NEUMANN, U. 2008. Data-Driven 3D Facial
Animation. Springer.

FREUND, Y., IYER, R., SCHAPIRE, R. E., AND SINGER, Y. 2003.
An efficient boosting algorithm for combining preferences. The
Journal of Machine Learning Research 4, 933–969.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D.
2009. iWires: an analyze-and-edit approach to shape manipu-
lation. In ACM Trans. Graph., vol. 28, 33.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. Consistent seg-
mentation of 3D models. Computers & Graphics 33, 3, 262–269.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Trans. Graph. 31, 4, 55.

KITTUR, A., CHI, E. H., AND SUH, B. 2008. Crowdsourcing user
studies with Mechanical Turk. In ACM SIGCHI, 453–456.

KOVASHKA, A., PARIKH, D., AND GRAUMAN, K. 2012. Whit-
tlesearch: Image search with relative attribute feedback. In IEEE
CVPR, 2973–2980.

KRAEVOY, V., SHEFFER, A., SHAMIR, A., AND COHEN-OR, D.
2008. Non-homogeneous resizing of complex models. In ACM
Trans. Graph., vol. 27, 111.

LAFFONT, P.-Y., REN, Z., TAO, X., QIAN, C., AND HAYS, J.
2014. Transient attributes for high-level understanding and edit-
ing of outdoor scenes. ACM Trans. Graph. 33, 4, 149.

LEWIS, J., PIGHIN, F., AND ANJYO, K. 2010. Scattered data
interpolation and approximation for computer graphics. In ACM
SIGGRAPH ASIA Courses.

MARKS, J., ANDALMAN, B., ET AL. 1997. Design galleries:
A general approach to setting parameters for computer graphics
and animation. In ACM SIGGRAPH, 389–400.

MITRA, N. J., WAND, M., ZHANG, H., COHEN-OR, D., AND
BOKELOH, M. 2013. Structure-aware shape processing. In
Eurographics STARs, 175–197.

O’DONOVAN, P., L ĪBEKS, J., AGARWALA, A., AND HERTZ-
MANN, A. 2014. Exploratory font selection using crowdsourced
attributes. ACM Trans. Graph. 33, 4, 92.

ORSBORN, S., CAGAN, J., AND BOATWRIGHT, P. 2009. Quanti-
fying aesthetic form preference in a utility function. Journal of
Mechanical Design 131, 6, 061001.

OVSJANIKOV, M., LI, W., GUIBAS, L., AND MITRA, N. J. 2011.
Exploration of continuous variability in collections of 3D shapes.
ACM Trans. Graph. 30, 4, 33.

PARIKH, D., AND GRAUMAN, K. 2011. Relative attributes. In
IEEE Conference on Computer Vision, 503–510.

ROWEIS, S. T., AND SAUL, L. K. 2000. Nonlinear dimensionality
reduction by locally linear embedding. Science 290, 2323–2326.

SCHELLING, T. C. 1980. The strategy of conflict. Harvard Univer-
sity Press.

SHEPARD, D. 1968. A two-dimensional interpolation function for
irregularly-spaced data. In ACM Nat. Conf., 517–524.

SIDI, O., VAN KAICK, O., KLEIMAN, Y., ZHANG, H., AND
COHEN-OR, D. 2011. Unsupervised co-segmentation of a set
of shapes via descriptor-space spectral clustering. ACM Trans.
Graph. 30, 6, 126.

STEEL, R. G., TORRIE, J. H., ET AL. 1960. Principles and proce-
dures of statistics. Principles and procedures of statistics..

TAO, L., YUAN, L., AND SUN, J. 2009. Skyfinder: attribute-based
sky image search. In ACM Trans. Graph., vol. 28, 68.

THODE, H. C. 2002. Testing for normality, vol. 164. CRC Press.

VAN KAICK, O., XU, K., ZHANG, H., WANG, Y., SUN, S.,
SHAMIR, A., AND COHEN-OR, D. 2013. Co-hierarchical anal-
ysis of shape structures. ACM Trans. Graph. 32, 4, 69.

XU, K., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2012. Fit
and diverse: Set evolution for inspiring 3D shape galleries. ACM
Trans. Graph. 31, 4, 57.

YUKSEL, S. E., WILSON, J. N., AND GADER, P. D. 2012. Twenty
years of mixture of experts. NNLS 23, 1177–1193.

YUMER, M. E., AND KARA, L. B. 2012. Co-abstraction of shape
collections. ACM Trans. Graph. 31(6), 166:1–166:11.

YUMER, M. E., AND KARA, L. B. 2014. Co-constrained handles
for deformation in shape collections. ACM Trans. Graph. 33(6),
187:1–187:11.

YUMER, M. E., CHUN, W., AND MAKADIA, A. 2014. Co-
segmentation of textured 3D shapes with sparse annotations. In
IEEE CVPR, 240–247.

ZHENG, Y., FU, H., COHEN-OR, D., AU, O. K.-C., AND
TAI, C.-L. 2011. Component-wise controllers for structure-
preserving shape manipulation. In CGF, vol. 30, 563–572.

