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ABSTRACT
Procedural modeling systems allow users to create high qual-
ity content through parametric, conditional or stochastic rule
sets. While such approaches create an abstraction layer by
freeing the user from direct geometry editing, the nonlinear
nature and the high number of parameters associated with
such design spaces result in arduous modeling experiences
for non-expert users. We propose a method to enable intuitive
exploration of such high dimensional procedural modeling
spaces within a lower dimensional space learned through au-
toencoder network training. Our method automatically gen-
erates a representative training dataset from the procedural
modeling rule set based on shape similarity features. We then
leverage the samples in this dataset to train an autoencoder
neural network, while also structuring the learned lower di-
mensional space for continuous exploration with respect to
shape features. We demonstrate the efficacy our method with
user studies where designers create content with more than
10-fold faster speeds using our system compared to the clas-
sic procedural modeling interface.
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INTRODUCTION
Procedural modeling (PM) allows complex phenomena and
geometry to be created using a set of parametric, conditional
or stochastic rules [31, 50, 29]. As such, procedural ap-
proaches in geometry modeling create an abstraction layer
between the user and the geometry that alleviates the need for
tedious direct geometric editing. A wide variety of object cat-
egories can be modeled using PM including organic shapes
such as trees and animated characters as well as man-made
shapes such as buildings, furniture, and jewelry [40]. Once a
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procedural model for an object category is available, it can be
used to create a rich set of unique instances by varying the pa-
rameters of the procedural rule set. However, often times the
underlying parametric space is very high-dimensional and its
mapping to geometry is complex, thus making the resulting
geometry difficult to control and explore using direct param-
eter editing.

We propose a method to enable an intuitive exploration of
such high-dimensional PM spaces using only a small num-
ber of parameters generated by an autoencoder learning algo-
rithm. Based on the underlying PM rules, we first use a cate-
gorization tree [14] to generate a set of representative shapes
to be used in training. This allows us to generate a training
dataset uniform in shape variety rather than in the rule set
parameters. We then use the generated samples to train an
autoencoder neural network. Our insight is that the conven-
tional autoencoder bottleneck [13] suitably reduces the large
number of original parameters into a much smaller set, which
we have found to greatly enhance shape control in PM.

A dimensionality reduction exclusively in the parametric
space, however, does not ensure a meaningful organization
with respect to shape similarity. In particular, a uniform sam-
pling of the reduced parametric space rarely produces geo-
metrically continuous variations; a problem similarly inher-
ent to sampling in the original parameter space [40]. To ad-
dress this issue, we augment our autoencoders with additional
nodes capable of encoding and reproducing geometric shape
features. This augmentation allows our autoencoders to gen-
erate a continuous geometric space with respect to the shape
features, resulting in an intuitive and predictable shape nav-
igation experience driven primarily by shape similarity (Fig-
ure 1).

Our main contributions are:

• A method to create a lower-dimensional and generative
representation of high-dimensional procedural models us-
ing autoencoders, continuous with respect to shape fea-
tures.

• A shape design system for generating novel procedural
models using an explore-and-select interaction, without the
need for direct parameter editing.

Our evaluations show that using our approach, end users can
complete targeted as well as open-ended modeling tasks on
average six to twelve times faster compared to a conventional
PM system.



Figure 1. Uniform sampling in a random direction from a procedural
rule set. Top: Original parameter space, Bottom: Our low-dimensional
space.

RELATED WORK
Procedural modeling. L-systems introduced by Linden-
mayer et al. [21] mark the first use of procedural models and
targets biological modeling. Current geometric applications
of PM [34] have been enabled by extended L-systems involv-
ing symbol strings that are interpreted as a sequence of com-
mands for higher topological structures [32]. Shape gram-
mars [43] are also used in PM with the recent introduction of
split grammars for urban modeling [52]. Applications of PM
in digital design span a wide variety of categories including
plants [33, 27], cities [31], buildings [29], furniture arrange-
ments [11], building layouts [28] and lighting design [36].
For an extensive survey of procedural modeling in computer
graphics refer to the recent survey by Smelik et al. [40].

Conventional PM interfaces require end users to adjust a set
of parameters that typically have complex, aggregate effects
on the resulting geometry. Solutions to this problem have pri-
marily focused on targeted design and exploratory systems.

Targeted design with procedural models. There exist a
body of PM work that circumvent direct interaction with PM
parameters by enabling a targeted design platform. Linter-
mann et al. [22] present an interactive PM system where con-
ventional PM modeling is combined with free-form geomet-
ric modeling for plants. McCrae and Singh [25] introduce an
approach for converting arbitrary sketch strokes to 3D roads
that are automatically fit to a terrain. Talton et al. [45] present
a method for achieving high-level design goals (e.g., city sky-
line profile for city procedural modeling) with PM by inverse
optimization of PM parameters that conform to the design
constraints. Inverse PM systems have also been shown to be
effective for urban facade design [47] and vegetation design
[42].

Although the methods for targeted design free the user from
directly adjusting PM parameters, the primary goal is to real-
ize high-level design goals. This choice results in a less user
control over the generated models. For instance, while the
user can prescribe the skyline silhouette in [45], their control
over the building geometries is at a minimum.

Exploration of procedural models. High number of para-
metric spaces that are difficult and often non-intuitive to ex-
plore are a common problem in computer graphics. Marks
et al. [24] introduced one of the earlier works in abstracting
the user from directly manipulating high-dimensional para-
metric spaces. Their interface provides the user automati-
cally organized, perceptually different options that can be cre-

Figure 2. Our procedural modeling exploration interface. Left: Naviga-
tion. Bottom-right: saved configurations and shape interpolation. Top-
right: design space visualization.

ated with a given input-parameter vector. Koyama et al. [18]
introduced a method where they learn better (i.e., human-
preferred) parameters of a procedural model using pairwise
parameter set comparisons resulting from a crowd-sourced
user study. They represent this preference as a goodness mea-
sure, which is then used to interactively guide users towards
better parameter sets during design exploration.

Exploratory systems such as [44, 20] provide the user with
previously computed and sorted exemplars that helps the user
study the variety of models and select the seed models they
wish to further explore. Talton et al. [44] organize a set of
precomputed samples on a 2D map, where the model distri-
bution in the map is established by a set of landmark examples
created by the expert users of the system. Lienhard et al. [20]
sort precomputed sample models based on a set of automati-
cally computed views and geometric similarity. They present
the results as rotational and linear thumbnail galleries. In both
systems, if the user wants to create a new model based on a
precomputed sample, they have to revert to the conventional
PM approach and tweak the parameters of the original proce-
dural model.

Generative shape and image design. Previous works that
studied generative shape [15, 16, 53, 46, 6, 54, 2, 1] and
image design [9, 38] systems have introduced modeling in-
terfaces similar to ours that help the user explore and syn-
thesize models more intuitively. These methods target non-
parametric models (e.g., polygonal shapes) and cannot be
readily extended to parametric models. Our method intro-
duces a generative dimensionality reduction method that au-
tomatically organizes the lower dimensional space tailoring
the learner towards intuitive user-interaction. This enables
us to learn complex parametric design spaces, independent
of the underlying geometry, while serving specific user cen-
tric tasks (such as intuitive shape modeling as demonstrated
in this paper), whereas the methods mentioned above are re-
stricted to learn from and process the shape geometry directly.

Deep neural networks and autoencoders. Deep neural net-
works model high-level abstractions in data using model ar-
chitectures composed of multiple non-linear transformations



Figure 3. Users can generate new models by interpolating between an
arbitrary number of existing (left: four, right three) models.

[10, 19]. Recent advances in training methods involving layer
by layer unsupervised training followed by supervised fine
tuning have made these approaches highly successful on large
datasets [12, 4]. These advances have led to applications
ranging from segmentation and object detection in images
and video [30, 37], to speech recognition [8].

An autoencoder is a special form of a neural network where
the goal is to reproduce the input layer at the output layer.
While autoencoders have been used primarily for unsuper-
vised deep feature learning [35], they have also been shown
to be superior to other dimensionality reduction methods [13].
Inspired by this outcome, we employ autoencoder networks
to reduce the dimensionality of the original parameter space.
Our formulation additionally organizes the distribution of the
objects in the reduced-dimensional space based on geometric
proximity using shape features.

END USER EXPERIENCE
Our user interface shown in Figure 2 consists of a shape nav-
igation, a shape interpolation, and a parametric positioning
pane.

Navigation. The model corresponding to the current parame-
ter configuration is shown in the center. The user can explore
the proximate models by pressing the arrows, each increasing
or decreasing one of the reduced dimensional procedural pa-
rameters. In our approach, we use a 3-dimensional reduced
parameter space (coded in red, green, and blue in Figure 2)
which we have empirically found to balance geometric rich-
ness with ease of navigation. Two small 3D thumbnails are
also shown associated with each arrow that reveal the imme-
diate next and the last models, respectively, along that para-
metric direction.

Shape interpolation. Users can save as many models as they
wish and generate new models by interpolating between the
set of saved models (Figure 3). As the user drags the current
model in the interpolation widget, a new model is computed
as a barycentric combination of the saved models. The inter-
polation is linear in the learned low-dimensional parametric
space and produces results that are geometrically continuous.

Parametric positioning. The reduced dimensional paramet-
ric coordinates of the current model are presented within a
3D frame to allow users to track the current model’s global
configuration.

LEARNING THE PROCEDURAL MODEL SPACE
Our approach to learning the procedural model space involves
first generating a robust model sample set followed by train-
ing a generative autoencoder network for dimensionality re-
duction.

Sampling the Training Data
Because learning a reduced dimensional representation of the
original PM space ultimately depends on the training data,
the quality of this data becomes an important consideration.
Specifically, it is desirable that the training set provides a uni-
form coverage of the input space with respect to the resulting
shapes rather than the underlying parameters. This is a non-
trivial problem as there exists no immediate mechanism to
ensure a uniform sampling of the shapes. To address this is-
sue, we use categorization trees [14] to sample shapes with
respect to a set of shape features followed by a uniform sub-
sampling from the resulting trees. We iterate between these
two steps until the final samples uniformly sample the shape
space.

Categorization tree. To generate the initial hierarchical cate-
gorization of samples, we use the categorization tree (C-tree)
approach introduced by Huang et al. [14]. A C-tree, inspired
by the evolutionary trees in bioinformatics [51], is a hierar-
chical tree structure (Figure 4) where each leaf corresponds
to a unique shape. The tree is constructed by assembling and
reorganizing quartets of shapes subject to topological con-
straints. A quartet is a tree of four leaves which forms the
smallest bundle that can express meaningful topological rela-
tions. C-tree construction begins by computing a set of quar-
tets from the input shapes which form the edges of a graph.
We apply the Quartets MaxCut algorithm [41] to this graph to
compute the resulting C-tree. However we use a set of shape
features that are different than those used in [14].

Subsampling. The next step is to sample the C-tree to obtain
samples uniformly distributed with respect to shape. We orig-
inally utilized uniform subtree sampling methods introduced
for evolutionary trees. However, the polynomial time com-
plexity[17, 5] renders them prohibitive when the desired sam-
ple size is in the thousands. We therefore adopt an approxi-
mate but fast method that uniformly samples from a proba-
bility distribution based on individual selection probabilities
computed for each leaf node as follows:

Pi =
(di × si)−1∑
i(di × si)−1 (1)

where di is the depth of the node starting from the root node
(center node in Figure 4) and si is the number of siblings
(i.e., shapes in the two-ring neighborhood). The probability
of selection decreases if: (1) the number of siblings increases,
or (2) the node is deeper in the tree. The first condition
helps distribute the probability of selection equally among the
nodes at the same depth between the immediate siblings. The
second condition favors the nodes at shallower depths thereby
concentrating on parts of the shape space that have not been
deeply explored.

Iterative C-tree subsampling. To construct a training set
that reliably captures the shape variation we iteratively: (1)



Figure 4. (a) Categorization tree computed for a small set of models
sampled from the Containers set. Subsampling performed on the cate-
gorization tree are shown in red.

add new samples to the models forming the C-tree, (2) com-
pute a new C-tree, (3) perform subsampling. We continue this
process until the following criterion is satisfied:

Et − Et−1 < w(Et−1 − Et−2) (2)

where we define Et to be the potential energy in the C-tree at
iteration t, and 0 < w < 1 is a weighting constant. We define
C-tree potential as

E =
1
|S|

∑
i∈S

ei (3)

where S is the set of shapes in the tree and ei is the potential
of shape i defined as:

ei = min |xi − x j| i, j ∈ S, i , j (4)

where xi and x j are the shape descriptors of shapes i and j re-
spectively. This formulation penalizes large geometric differ-
ences between a shape and the one most similar to it thereby
ensuring a homogeneous sampling of the design space.

Organized Low-Dimensional Shape Space
Autoencoder architecture. We use a five hidden layer sym-
metric autoencoder network illustrated in Figure 5. We use
three bottleneck neurons to facilitate design space visualiza-
tion. We determine the number of neurons for the hidden
layers h1 and h2 based on the number of input layer neurons.

Conventional autoencoders work to replicate input vectors at
the output layer. In the context of PM this means if the input

Figure 5. (a) Illustration of our symmetric autoencoder network. (b)
Our input/output vectors consist of parametric - p as well as shape de-
scriptor - f information. (c) Training is performed layer by layer, fol-
lowed by a fine tuning of the complete structure. While fully connected,
network edge weights are illustrated only for the first neuron of each
layer.

layer consists of the original PM parameters, the autoencoder
will aim to reproduce these parameters at the output layer, al-
beit with a reduced set of bottleneck neurons. However, using
this approach shape navigation in the reduced dimensional
space would remain cumbersome as no provision would exist
to ensure geometric continuity.

To mitigate this issue we augment our autoencoder with addi-
tional nodes (vector f in Figure 5) that incorporate shape fea-
tures, thereby simultaneously helping to organize the learned
reduced dimensional space. This structuring takes place with
respect to shape similarity and ensures geometrically similar
shapes to appear close together in the low-dimensional space.

Shape features. Our approach is applicable to both 3D and
2D geometries. For 3D shapes we utilize the light field de-
scriptor [7] with shape context [3]. In this formulation, a 3D
model is placed in a virtual sphere and multiple 2D renders
of the shape is computed using a set of camera placements on
this sphere. From each render, a silhouette-based histogram is
extracted and the results are concatenated to form the shape’s
feature vector. This formulation is size invariant but is sen-
sitive to rotations. However, because PM enables the gen-
eration of consistently oriented shapes, rotational sensitivity
does not impact our autoencoders. When the models are 2D
shapes (images) we similarly use shape contexts to encode
shape [3] and additionally augment the shape’s feature vector
with texton histograms [39] to encode appearance.



Shape feature weighted reconstruction error. We utilize
the popular layer by layer training scheme [12] (Figure 5(c))
followed by a fine-tuning pass over the network. We back-
propagate an error function designed to equalize the impor-
tance of the procedural model parameters and the shape de-
scriptors. We apply a nonuniform weighting scheme to the
conventional back-propagation function (mean-squared re-
construction error) of an output neuron, n, over all examples
as follows:

En =
1
I

wn

I∑
i=1

(ti − ri)2 where wn =

1 if n ∈ p
c |p|
| f | if n ∈ f

(5)

where I is the number of samples and ti and ri are the tar-
get and the reconstructed values at the output neuron, respec-
tively. p is the set of output neurons that correspond to pro-
cedural model parameters and f is the set of output neurons
encoding the shape features. The total network error is then:

Etotal =

|p|+| f |∑
n=1

En (6)

Parameter c enables control over the influence of parameters
versus shape features. As c increases, the formulation be-
comes more sensitive to feature nodes. For a given PM rule
set, we choose c that results in the smallest network error En
using a greedy search after a training of 1K epochs1. Note
that, c can be manually designed to force the network put
even more emphasis on the features but in our experiments
this resulted in relatively more error in PM parameter recon-
struction. We therefore opted to choose c based on total net-
work error minimization. This weighting scheme is required
only for the first hidden layer. For the remaining layers, the
training is carried out in the conventional way where the first
hidden layer’s neurons readily transmit the necessary weights
to the subsequent layers.

Denoising. For autoencoders, the denoising training scheme
introduced by Vincent et al. [48] has proven to be superior to
conventional training methods. The idea behind denoising is
to make learning robust to partial corruption in the input. For
each training sample, denoising works by providing as input
a set noise-added variations of the sample and engineer the
network to reconstruct the original, noiseless sample. This
works particularly well for feature learning in vision appli-
cations as the input image is often inherently noisy. Based
on this observation, we experimented with three alternatives:
(1) denoising applied to both to the PM parameters and shape
features, (2) denoising applied only to the PM parameters, (3)
denoising applied only to the shape features.

We have found the third option to work best for our applica-
tion. We evaluated all three options using separate training
and validation sets. Table 1 shows the average reconstruction

1In this paper, c = 3.1 for the Containers and c = 2.7 for the Trees.

Table 1. 10-fold cross-validation reconstruction error normalized by
the largest error in each category.

Containers Trees
Parameter + Shape feature denoising 0.94 0.91

Parameter denoising 1.00 1.00
Shape feature denoising 0.83 0.81

errors obtained for a 10-fold cross-validation study and nor-
malized against the reconstruction error in parameter denois-
ing setting. As shown, denoising applied only to the shape
features produces the best results. This outcome is due to the
fact that PM parameters p are generative and thus fully con-
trol the resulting shape (i.e., no hidden processes that intro-
duce noise) but the feature vector f is computed from the re-
sulting shape and is not generative (hence, sensitive to image-
level processing details and thus noise).

NAVIGATING THE PROCEDURAL MODEL SPACE
Once an autoencoder is trained, we use the decoding part of
the network to generate new models. Specifically, we use
the nodes at the bottleneck as input, generate the procedu-
ral modeling parameters at the output layer, and compute the
corresponding model using the procedural modeling rule set
(Figure 5(a)).

While the number of bottleneck nodes can be arbitrary, these
nodes dictate the dimensionality of the new parametric space.
For ease of end-user visualization and navigation in the user
interface (Figure 2), we have considered two- and three-
bottleneck neuron configurations. Based on our evaluations
with the autoencoder performance and the replication capa-
bility (Figure 12), we choose three bottleneck neurons for our
demonstrations and user evaluations.

It should be noted that we do not claim three degrees of free-
dom (DOF) are enough for reducing the dimensionality of
any procedural model. Our primary goal is to make the in-
teraction and understating of the interface and the modeling
space easier and intuitive for novice users. This is different
than a traditional dimensionality reduction problem where the
number of DOF of the reduced space can be optimized to
gracefully represent the original space. We fix the number of
DOF of the reduced space similar to other procedural model
exploration systems (e.g., [44]) to be able to create a conve-
nient and intuitive user experience. Although we are not op-
timizing for a maximum representation of the original space
in the reduced one, note that our replication (Figure 12, Fig-
ure 8) user study shows the reduced dimensional space en-
abled the users to replicate their models designed in the orig-
inal space gracefully. For more complex shapes where higher
dimensions for the learned space is necessary, the interface
can provide slices of the higher dimensional space in 3D with
our widget and an additional widget might be programmed to
jump between these slices.

In shape interpolation mode, the saved models are presented
at the corners of a multi-sided regular polygon. New mod-
els are computed as the barycentric combinations within the
convex space spanned by the saved models [23]. The result-
ing barycentric combination constitutes the low-dimensional



Figure 6. Normalized cumulative dissimilarity (DN ) as a function of
sampling density. DN =

D
Db

, where Db is the baseline cumulative dissim-
ilarity.

parametric coordinates of the new shape which is then ge-
ometrically realized through the autoencoder as explained
above. Figure 11 illustrates several interpolations. Please see
our supplementary video for further examples and user inter-
action.

EVALUATION AND RESULTS
Procedural models used in the experiments. We demon-
strate our method using two PM rule sets: (1) containers,
(2) trees. Both rule sets are built using the Deco framework
[26]. Containers set consists of 72 independent parameters
whereas Trees set consist of 100 parameters. The Containers
rule set generates 3D shapes using vertical rods, generalized
cylinders and trapezoids on the side walls, and a fractal geom-
etry at the base. Our supplementary video shows the interac-
tion with this model’s parameters. The Trees set is similar to
[49] in spirit and is currently available in Adobe Photoshop©.
It generates 2D tree renders which are processed similar to
the 3D shapes.

For the container rule set, Figure 9 compares our method (di-
mensionality reduction + space organization) against a base-
line method involving dimensionality reduction only on the
PM parameters. Our approach produces a shape space that
organizes the reduced dimensional space more favorably with
respect to shape similarity. For the Trees set, Figure 10
similarly compares our method against the baseline method.
While the autoencoder for the trees included three bottleneck
neurons, Figure 10 shows shapes uniformly sampled along
the vector

√
.25i,

√
.40j,

√
.35k, in the low-dimensional space

with the left- and right-most shapes corresponding to the two
extremes along this vector. In both examples, we quantify
the difference between our method and the baseline method
using a cumulative shape dissimilarity measure:

Table 2. Times and satisfaction outcomes for a design / replication user
study. (A): Users who designed using the conventional system, followed
by replication in our system. (B): Users who designed using our system,
followed by replication in the conventional system.

Group A Group B
Time to Design (min.) µ = 25, σ = 5.8 µ = 3.1, σ = 0.9

Time to Replicate (min.) µ = 4.1, σ = 1.2 µ = 37, σ = 9.6
Satisfied with replica (%) 91.1 42.2

Figure 7. Conventional procedural modeling interface.

D =
∑
i∈S

∑
j∈Ni

∣∣∣ fi − f j

∣∣∣ (7)

where S are the samples generated in the low-dimensional
space. Ni is the set of neighbors of i along the axes of the
low-dimensional space2. fi and f j are the feature vectors of
sample i and j, respectively. The resulting dissimilarity mea-
sure depends on the sampling density of the low-dimensional
space. Figure 6 reports the cumulative dissimilarity measure
as a function of sampling density using our method, versus
the baseline method of dimensionality reduction only on the
PM parameters.

User Study: Comparative Evaluation
To compare our system with the conventional PM approach,
we conducted a user study with the Containers dataset in-
volving 90 users. All users of the system were non-experts:
they did not have educational or professional experience with
shape design, 3D modeling, or procedural modeling. First,
to familiarize the users with the variety of models in this
space, we provided them with a catalog of 1000 models ran-
domly sampled from the original parameter space. We then
asked each user to design a container of their liking using
our system and the conventional procedural modeling system
2The number of neighbors is six for the Containers and two for the
Trees except for the boundary models.

Figure 8. Survey response collected from all 90 participants of the user
study (1: strongly disagree, 3: neutral, 5: strongly agree). Red: re-
sponses about our system. Blue: responses about the conventional pro-
cedural modeling system. Error bars indicate one standard deviation.



Figure 9. Top: Shape sampling and the resulting container space using our approach. Both PM parameters and shape features are encoded in the
autoencoder. Bottom: Same approach, without using shape features. Navigation is much more challenging without the shape features.



Figure 10. Uniform sampling of trees. Top: Uniform sampling in the low-dimensional space learned with autoencoders using only the PM parameters.
Bottom: Uniform sampling in our organized low-dimensional space.

(Figure 7). Half of the users started with our interface, and
the other half started with the conventional interface. Both
groups were given the following instructions:

You will be using two applications for creating a container
model similar to the ones you saw in the catalog. Please de-
sign a container to your liking with the first application. Once
finished, please try to replicate your first model using the sec-
ond application.

To preserve neutrality, we referred to the two applications as
#1 and #2 based on the order they were presented to the users.
Table 2 summarizes the results. Users who started with the
conventional modeling system (Group A) took on average 25
minutes to arrive at a model of their liking. They were then
able to replicate it to their satisfaction using our system in 4
minutes on average. 91% of the users in this group reported
that they were satisfied with their replication. On the other
hand, users who started with our system (Group B) took 3
minutes on average to arrive at a model of their liking while
taking 37 minutes to replicate it with the conventional mod-
eling system. Only 42% of the users in this group reported
that they were satisfied with their replication results. This
mismatch is also reflected in the visual differences between
the designed and the replica models (Figure 12). We believe
these results highlight the efficacy of our approach.

Following the modeling session, we asked each user to com-
plete a survey about their experience with the two systems on
a Likert scale (Figure 8). The results indicate that the users
seem to have had an overall better modeling experience using
our system.

Limitations and Future Work. Our method aims to enhance
ease of shape exploration by transforming the original para-
metric space into a potentially much smaller set of parame-
ters. Such a transformation will invariably result in certain
parts of the original shape space to be eradicated, making
some of the shapes enabled by the original parameters to be
no longer accessible. While this can be mitigated by increas-
ing the number of bottleneck neurons, such an alteration will
have an impact on user experience as exploration may be-
come cumbersome therefore, future work will require more
studies in the design space visualization techniques.

CONCLUSION
We introduced a method to enable an intuitive exploration of
procedural modeling spaces within a low-dimensional space
using autoencoder neural networks. We demonstrated that a
combination of shape features with PM parameters as the in-
put to autoencoder networks can automatically generate and
organize a low-dimensional shape space primarily driven by
shape similarity. We showed that users can create content
with our system six to twelve times faster compared a con-
ventional procedural modeling system.

REFERENCES
1. I. Alhashim, H. Li, K. Xu, J. Cao, R. Ma, and H. Zhang.

2014. Topology-varying 3d shape creation via structural
blending. ACM Trans. Graph. 33, 4 (2014), 158.

2. Melinos Averkiou, Vladimir G Kim, Youyi Zheng, and
Niloy J Mitra. 2014. Shapesynth: Parameterizing model
collections for coupled shape exploration and synthesis.
In Computer Graphics Forum, Vol. 33. 125–134.

3. Serge Belongie, Jitendra Malik, and Jan Puzicha. 2000.
Shape context: A new descriptor for shape matching and
object recognition. In NIPS, Vol. 2. 3.

4. Yoshua Bengio, Pascal Lamblin, Dan Popovici, and
Hugo Larochelle. 2007. Greedy layer-wise training of
deep networks. Advances in neural information
processing systems 19 (2007), 153.

5. A. Bhattacharjee, Z. Shams, and K. Z. Sultana. 2006.
New Constraints on Generation of Uniform Random
Samples from Evolutionary Trees. In CCECE. 115–118.

6. S. Chaudhuri, E. Kalogerakis, S. Giguere, and T.
Funkhouser. 2013. Attribit: content creation with
semantic attributes. In UIST. 193–202.

7. D. Chen, X. Tian, Y. Shen, and M. Ouhyoung. 2003. On
visual similarity based 3D model retrieval. In Computer
graphics forum, Vol. 22. 223–232.

8. George Dahl, Abdel-rahman Mohamed, Geoffrey E
Hinton, and others. 2010. Phone recognition with the
mean-covariance restricted Boltzmann machine. In
Advances in neural information processing systems.
469–477.



Figure 11. Interpolation results from our system.

Figure 12. Group A: Users first designed models using the conventional system system, followed by a replication of their models using our system. Note
the similarity of the replicas to the original models. Group B: Users first designed models using the our system, followed by a replication of their models
using the conventional system. Note that the replicas are markedly different than the originals.

9. Alexey Dosovitskiy, Jost Tobias Springenberg, and
Thomas Brox. 2014. Learning to generate chairs with
convolutional neural networks. arXiv preprint
arXiv:1411.5928 (2014).

10. Kunihiko Fukushima. 1980. Neocognitron: A
self-organizing network model for a mechanism of
pattern recognition unaffected by shift in position.
Biological cybernetics 36, 4 (1980), 193–202.

11. T Germer and M Schwarz. 2009. Procedural
Arrangement of Furniture for Real-Time Walkthroughs.
In Computer Graphics Forum, Vol. 28. 2068–2078.

12. Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh.
2006. A fast learning algorithm for deep belief nets.
Neural computation 18, 7 (2006), 1527–1554.

13. Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006.
Reducing the dimensionality of data with neural
networks. Science 313, 5786 (2006), 504–507.

14. S. Huang, A. Shamir, C. Shen, H. Zhang, A. Sheffer, S.
Hu, and D. Cohen-Or. 2013. Qualitative organization of
collections of shapes via quartet analysis. ACM Trans.
Graph. 32, 4 (2013), 71.

15. Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and
Hans-Peter Seidel. 2012. Exploring Shape Variations by
3D-Model Decomposition and Part-based
Recombination. In Computer Graphics Forum, Vol. 31.
631–640.

16. Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne
Koller, and Vladlen Koltun. 2012. A probabilistic model

for component-based shape synthesis. ACM Trans.
Graph. 31, 4 (2012), 55.

17. P. Kearney, J. I. Munro, and D. Phillips. 2003. Efficient
generation of uniform samples from phylogenetic trees.
In Algorithms in Bioinformatics. 177–189.

18. Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi.
2014. Crowd-powered parameter analysis for visual
design exploration. In UIST. 65–74.

19. Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. 1989. Backpropagation applied to
handwritten zip code recognition. Neural computation 1,
4 (1989), 541–551.

20. Stefan Lienhard, Matthias Specht, Boris Neubert, Mark
Pauly, and Pascal Müller. 2014. Thumbnail galleries for
procedural models. In Computer Graphics Forum,
Vol. 33. 361–370.

21. Aristid Lindenmayer. 1968. Mathematical models for
cellular interactions in development. Journal of
theoretical biology 18, 3 (1968), 280–299.

22. Bernd Lintermann and Oliver Deussen. 1999. Interactive
modeling of plants. Computer Graphics and
Applications 19, 1 (1999), 56–65.

23. Charles T Loop and Tony D DeRose. 1989. A
multisided generalization of Bézier surfaces. ACM
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