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Fig. 1. We present a method for lightweight structure design for scenarios where external forces may contact an object at a multitude of locations that are
unknown a priori. For a given surface mesh (grey), we design the interior material distribution such that the final object can withstand all external force
combinations capped by a budget. The red volume represents the carved out material, while the remaining solid is shown in clear. Notice the dark material
concentration on the fragile regions of the optimum result in the backlit image. The cut-out shows the corresponding interior structure of the 3D printed
optimum.

We introduce a lightweight structure optimization approach for problems in
which there is uncertainty in the force locations. Such uncertainty may arise
due to force contact locations that change during use or are simply unknown
a priori. Given an input 3D model, regions on its boundary where arbitrary
normal forces may make contact, and a total force-magnitude budget, our
algorithm generates a minimum weight 3D structure that withstands any
force con�guration capped by the budget. Our approach works by repeatedly
�nding the most critical force con�guration and altering the internal struc-
ture accordingly. A key issue, however, is that the critical force con�guration
changes as the structure evolves, resulting in a signi�cant computational
challenge. To address this, we propose an e�cient critical instant analysis
approach. Combined with a reduced order formulation, our method provides
a practical solution to the structural optimization problem. We demonstrate
our method on a variety of models and validate it with mechanical tests.
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1 INTRODUCTION
With the emergence of additive fabrication technologies, structural
optimization and lightweighting methods have become increasingly
ubiquitous in shape design [Christiansen et al. 2015; Lu et al. 2014;
Stava et al. 2012; Wang et al. 2013]. In many such methods, a common
approach is to model the external forces as known and �xed quanti-
ties. In many real world applications, however, the external forces’
contact locations and magnitudes may exhibit signi�cant variations
during the use of the object. In such cases, existing techniques are
either not directly applicable, or require the designer to make overly
conservative simpli�cations to account for the uncertainty in the
force con�gurations [Choi and Park 2002].

We propose a new method for designing minimum weight objects
when there exists uncertainty in the external force locations. Such
uncertainties may arise in various contexts such as (i) multiple force
con�guration problems where the object experiences a large set
of known force con�gurations such as those arising in machinery,
(ii) unknown force con�guration problems where the location of the
contact points may change nondeterministically such as consumer
products that are handled in a multitude of ways, or (iii) moving
contact problems where a contact force travels on the boundary
of an object; such as automated �ber placement manufacturing or
cam-follower mechanisms.

Our approach takes as input (1) a 3D shape represented by its
boundary surface mesh, (2) a user-speci�ed contact region; a subset
of the boundary where external forces may make contact, and (3) a
force-budget; a maximum cap on the total summed magnitude of the
external forces at any given time instance, and produces a minimum
weight 3D structure that withstands any force con�guration capped
by the budget (Figure 1).
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For structural optimization with force location uncertainties, a
seemingly reasonable approach would be to compute an optimal
structure for every possible force con�guration and select the best
structure at the end. However, this strategy fails to guarantee that
the �nal structure (or any other optimum structure computed along
the way) is safe under any force con�guration other than the one it
was computed for [Banichuk 2013]. Therefore, at a minimum, �nd-
ing the best structure requires validating each optimum structure
against all possible force con�gurations. Unfortunately, even this
strategy does not guarantee that a solution exists within the set of
computed optima.

Our approach overcomes these challenges using a critical instant
analysis which e�ciently determines the most critical force con-
tact location responsible for creating the highest stress within the
current shape hypothesis. This capability enables each step of the
shape optimization to e�ciently determine the maximum possible
stress that can be generated under the force budget and accordingly
design the material distribution against failure. Our approach pre-
serves the outer shape through an ingrown boundary shell while
optimization removes material from the inside. We do not permit
structural alterations to the exterior of the object for strengthening.
Hence, our approach is clearly not useful in cases where material
failure occurs even in the fully solid version of the object.

Our main contributions are:

• a novel formulation for structural optimization problems
under force location uncertainty,

• a method we call critical instant analysis that identi�es the
critical load instant quickly,

• a practical reduced order lightweighting method using the
above two ideas.

2 RELATED WORK
Our review focuses on studies that highlight fabrication oriented
design, lightweight structure synthesis, and structural analysis, with
an emphasis on approaches involving additive fabrication.

Fabrication oriented design. A large body of work has investigated
automatic techniques for 3D shape design and additive fabrication
subject to a variety of functional requirements. Recent examples
include designing for prescribed deformation behaviors [Bickel et al.
2010; Panetta et al. 2015; Schumacher et al. 2015; Skouras et al. 2013],
balancing models [Prévost et al. 2013], spinnable objects [Bächer
et al. 2014] and broader methods that can handle multiple require-
ments [Chen et al. 2013; Christiansen et al. 2015; Musialski et al.
2015]. Our problem falls under the general category of weight-
optimal structure design subject to external forces [Bendsøe 1989;
Christiansen et al. 2015; Lu et al. 2014; Wang et al. 2013]. However,
our approach addresses a more general class of problems in which
the precise force locations cannot be prescribed apriori, or the struc-
ture experiences forces that can contact its surface at a multitude of
locations.

Lightweight structure synthesis. Cellular structure [Medeiros E Sá
et al. 2015], honeycomb-like structure [Lu et al. 2014], truss ele-
ment based skin-frame structure [Wang et al. 2013], beam element
based tree-like structure [Zhang et al. 2015] generation methods

and topology optimization methods [Bendsøe and Sigmund 2003;
Christiansen et al. 2015] are among the recent lightweight internal
structure synthesis techniques that consider durability as one of the
primary constraints. However, these methods assume a prescribed
static force con�guration for structural design. Although driven by
similar motivations, our work addresses a more general problem
of structural design under force location uncertainty. On the other
hand, our formulation is also complementary in that it may facilitate
the extension of these previous methods to problems involving force
uncertainties.

Langlois et. al. [Langlois et al. 2016] performs structural optimiza-
tion by predicting the failure modes of objects in real world use.
Their stochastic �nite element model uses contact force samples
generated by rigid body simulations to predict failure probabili-
ties. They perform weight minimization while limiting the failure
probability below a prescribed threshold. While their method is
applicable to scenarios where loading is stochastic in nature (such
as dropping and collisions), it is not streamlined for deterministic
scenarios where the set of possible force con�gurations are known
and no failure is tolerated for any of them. However, their method
is extremely well-suited to automatically generating our contact
regions, thereby allowing stochastic scenarios they consider to be
addressed using structural guarantees our approach enables.

Model reduction has been used for material [Xu et al. 2015] design,
with a primary emphasis on controlling deformation behavior. Our
approach is similar to traditional topology optimization methods
[Bendsøe and Sigmund 2003; Lee et al. 2012] in that we optimize the
material distribution using a �xed volumetric mesh as the parame-
terization. However, structural optimization under force location
uncertainties introduces computational challenges that make a full
dimensional analysis using the original shape parameterization to
be prohibitively expensive. We are thus inspired by the above reduc-
tion method for shape synthesis, and use this in our implementation
in conjunction with our new critical instant analysis.

Musialski et al. [2015] introduce the idea of o�set surfaces for
hollowing out a solid object. This method serves as another shape
parameterization for functional optimization. In our work, we use
this method to form a �xed, ingrown boundary shell, and use the
remaining internal volume for shape optimization.

Structural analysis. In structural optimization, stress and defor-
mation analysis using Finite Element Analysis (FEA) often introduce
expensive computational bottlenecks. Simple elemental structures
such as trusses [Rosen 2007; Smith et al. 2002; Wang et al. 2013] and
beams [Zhang et al. 2015] have been used to alleviate this issue. For
cases where the structure cannot be represented by these simple
elements, Umetani and Schmidt [2013] simplify the problem into 2D
cross-sections and extend the Euler-Bernoulli model into free-from
3D objects to facilitate analysis.

Zhou et al. [2013] extend modal analysis used in dynamic sys-
tems (such as vibrations) to static problems to identify the potential
regions of a structure that may fail under arbitrary force con�gura-
tions. Our critical instant analysis builds upon this approach; we use
modal analysis to determine the weak regions in a similar manner.
It allows our method to determine possible failure points based
purely on geometry, i.e. independent of the loading. We incorporate
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the weak region analysis into our structural optimization to focus
on only a small region in the object to monitor the stress, thereby
helping the convergence.

In bridge (tra�c load) and building (wind load) design, an equiva-
lent uniformly distributed static load can be used to perform simple
approximate analysis to account for force location uncertainty [Choi
and Park 2002]. However, this approach is limited to simple geome-
tries, making it unsuitable for our purposes.

3 PROBLEM FORMULATION
Our design problem aims to �nd an optimal material distribution in-
side the boundary surface mesh S0 parametrized by the discretized
volumetric mesh. Similar to topology optimization [Bendsøe and
Sigmund 2003], material design [Skouras et al. 2013; Xu et al. 2015]
and microstructure design [Schumacher et al. 2015] approaches,
each element in the discretized domain is associated with a de-
sign variable ρe representing whether element e is full (ρe = 1) or
void (ρe = 0). To overcome the computational barriers introduced
by binary variables, we adopt the common approach of allowing
ρe ∈ [0, 1] and penalize the intermediate values during optimiza-
tion [Bendsøe 1989]. We assume linear isotropic materials and small
deformations. The elemental sti�ness matrix Ke can be related to
ρe and the sti�ness matrix for base material Ksolid

e as

Ke = Kvoide + ρ
β
e (K

solid
e −Kvoide ). (1)

Here, β is a penalization factor and Kvoide = ϵKsolid
e is the sti�-

ness matrix assigned to the void regions to avoid singularities in
FEA. We use ϵ = 10−8 and β = 3. In (1), Ksolid

e is constant for each
element and is computed as

Ksolid
e = VeB

T
e C

solid
e Be , (2)

where Ve is volume of the element, Be is the strain-displacement
matrix that depends only on the element’s rest shape and Csolid

e
is the elasticity tensor constructed using the Young’s modulus and
Poisson’s ratio of the base material. Given a volumetric mesh V
with m elements, one can assemble ρe into vector ρ ∈ Rm and
construct the global sti�ness matrix K (ρ) in order to determine the
displacements u from Ku = f , where f is the nodal force vector.
Then, the stress-displacement relationship can be written as

σ = CдBu, (3)

whereσ ∈ R6m captures the unique six elements of the elemental
stress tensor and B is the assembly of Be matrices. Block-diagonal
matrix Cд ∈ R6m×6m is constructed with elemental elasticity ten-
sors Ce (ρ) on the diagonal. For each element, Ce can be computed
analogous to Ke in (1). While applicable to di�erent element types,
we use linear tetrahedral elements makingK (ρ) ∈ R3n×3n ,u ∈ R3n ,
f ∈ R3n and B ∈ R6m×3n for a volume mesh having n nodes.

The approach formulated in (1)-(3) is useful because it preserves
the same discretization through out the optimization. Additionally,
it is amenable to model reduction presented in Section 5 for more
e�cient iterations (at the expense of reduced degrees freedom).

Force Model. External forces are allowed to make contact within
a user-speci�ed union of contact regions SL ⊆ S0. To avoid stress

Fig. 2. The point force on node i is spread in a circular area Ap . Nodal forces
are computed using (4). Highlighted nodes, including i and j , have non-zero
nodal forces.

singularities (i.e. unbounded stresses under a point force), we distrib-
ute the force to a small circular area Ap (with radius rp ) around the
contact point. Then, we construct the force vector f by computing
the nodal forces as

p j = −P (Aj/3Ap )ni , (4)

wherep j is the force vector at node j when a force with magnitude
P is applied to node i . The area Aj is the portion of Ap covered
by triangles adjacent to node j and ni is the surface normal at
node i (Figure 2). Our approach approximates Ap by intersecting
the boundary mesh with a sphere of radius rp centered at node i .
Congruent with our earlier problem description of normal contact
forces only, (4) assumes the force is applied compressively along the
surface normal direction. This formulation thus neglects friction and
excludes forces that pull on the surface. Note, however, that most
real-world contact scenarios such as handling a part or the contacts
within an assembly can be modeled with compressive normal forces
developing between interacting bodies.

To anchor the object in space, we require that the mesh is �xed at
three or more non-collinear boundary nodes. Boundary constraints
remain unchanged during optimization.

In this work, we use the von Mises failure criterion. For linear
elastic structures, the stress is a linear function of dispacement
and the displacement at any given point is a linear function of
the force vector. Similarly, the force vector is a linear combination
of point normal forces in the contact region. Thus, the stress at a
point within the structure can be determined by a superposition of
each point force’s contribution [Hibbeler and Kiang 2015], thereby
making the von Mises stress convex in the applied force. For the
force budget fB , the space of allowable forces is de�ned by ‖p j ‖ > 0
and

∑
‖p j ‖ < fB , i.e. a simplex C with vertices of the form fB

for j’th coordinate and zero for the rest and the coordinate origin.
By Rockafellar’s Theorem 32.2 [Rockafellar 2015], supremum of a
convex function on a convex set C is attained at one of the points in
the set enclosed by the convex hull C. Therefore, von Mises stress at
a point will be maximized by spending the entire force budget at a
speci�c point. The same principal holds for the maximum of the von
Mises stress over the whole object as a maximum of a set of convex
functions is convex. As a result, at the heart of our approach is the
search for this most critical contact point given a shape hypothesis
(Section 4.2)
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Fig. 3. Given a contact region (green in a), our algorithm optimizes the interior material distribution (b-c) to find the smallest weight structure (d) that can
withstand all possible force configurations. In (b-c), we show the material distribution in two steps of the optimization. Inset figures illustrate the stress
distributions for the most critical force instants in (b-c) and the removed material in (d).

Optimization problem. We tackle the following stress-constrained
mass minimization problem

minimize
ρ

M (ρ) =
m∑
e=1

ρeVe

subject to K (ρ)ui = f i ∀i ∈ SL ,

σcr (ρ) ≤ σy ,

0 ≤ ρ ≤ 1.

(5)

Here, f i and ui represent the nodal force and displacement vec-
tors when the external force is applied to surface node i . The object
fails if the maximum stress ever exceeds the yields strength σy .
Hence, we de�ne the critical stress σcr as

σcr = max
i

(max
e

( σvme )) ∀i ∈ SL and ∀e ∈ V, (6)

where σvme is the von Mises stress computed for element e .

4 ALGORITHM
For force instant i , all elemental von Mises stresses σvme (hence the
maximum) within the object can be computed using (3) with a single
linear solve. However, �nding the maximum across all possible
instants require as many FEA solves as the number of instants. This
number can be large, especially for structures where SL consist
of many nodes. In such cases, computing the critical stress can be
costly, making shape optimization prohibitively expensive. We next
describe our approach to addressing this problem.

4.1 Overview
Figure 3 illustrates our approach. From an input 3D shape and
prescribed contact regions (Figure 3(a)), we optimize the material
distribution. At each step governed by the current material distribu-
tion, we compute the critical stress by e�ciently �nding the most
critical force instant. We call this process critical instant analysis.
In this analysis, we reduce the search space by computing a set of
force regions (FR) over the contact region SL and weak regions (WR)
within the entire structureV . FRs are a subspace of the surface that
are likely to contain the critical force instant. Likewise, WRs are the

regions where the maximum stress is likely to occur. We e�ciently
�nd the critical force instant within FRs using a reduced number
of FEA evaluations dictated by the number of vertices within FRs.
Then, optimization updates the material distribution to minimize
mass (Figure 3(b-c)). At the end, a minimum weight structure satis-
fying the imposed constraints is obtained (Figure 3(d)). Algorithm 1
summarizes our approach. Note that the material distribution is
updated only once at each optimization step based on the computed
gradients.

ALGORITHM 1: Our structure optimization algorithm
Input :S0 and SL
Output :Optimized structure
while Mass is reduced do

Compute force regions (FRs);
Compute weak regions (WRs);
for each FR do

Perform a hierarchical search to �nd largest stress at WRs;
end
Choose the maximum stress across all FRs as the critical stress σcr ;
Update material distribution ρ ;

end

4.2 Critical Instant Analysis
Critical instant analysis �nds the most critical force instant and the
corresponding stress σcr with an order of magnitude fewer FEA
evaluations compared to a brute-force approach.

Force Regions. For a structure represented by material distribution
ρ, certain force con�gurations will cause the largest stresses in
the body. We compute these critical force locations as our force
regions and restrict the search space for σcr in (6) to a smaller space
Sf r ⊂ SL .

Figure 4 illustrates our approach to compute FRs. We start by
estimating a criticality map on SL , which captures the severity of
the force instants. The higher stress a force instant creates, the more
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Fig. 4. Given a structure represented by the material distribution, we uniformly sample a number of force instants on SL (a) and perform FEAs to obtain
corresponding the stress distributions (b). We then use quadratic regression to estimate the stress distributions for the remaining force instants and construct
the criticality map (c). Areas with high criticality constitutes our force regions (d). The blue regions in (a) represent the fixed boundary condition and the
remainder of the boundary surface forms SL .

Fig. 5. Criticality maps as a function of the number of samples. With more
samples, the estimated criticality map converges to the actual map, but at
an increased cost.

critical it is deemed. Thus, the criticality of a force instant is simply
the maximum stress it creates in the object.

To e�ciently acquire the entire criticality map, we perform FEAs
only for a small number of force instants and estimate the stress
distributions for remaining force instants by learning a mapping
between the nodal forces and the resulting stress distributions. We
sample the force instants across SL by performing k-means clus-
tering using the farthest-�rst traversal initialization and selecting
the center points of the resulting clusters as our sample instants.
We use approximate geodesic distances [Crane et al. 2013] as the
distance metric in clustering.

Suppose we have l training samples and the boundary mesh S0
consists of s nodes. In its original form, the sample force instant fi
is represented as a sparse vector of size 3n and the corresponding
von Mises stress forms a vector of sizem. With a small number of
training samples (l � 3n and l �m), it is not possible to represent
the relationship between two high dimensional data using a simple
mapping function. Moreover, in its sparse form, fi is devoid of
any spatial information relevant to the corresponding force instant.
Hence, in this representation, two spatially proximate force instants
that likely create similar stress distributions can be as distinct as
two spatially distant force instants. To reduce the dimensionality of
the force space and establish proximity, we transform and project
the sparse force vectors using the surface Laplacian. We stack the
magnitudes of forces on boundary surface nodes (i.e. ‖p‖ in (4))

into row vectors f ′
i

of length s . We assemble the mean centered f ′
i

into a (l × s ) matrix F so that each row is f ′
i
− f̄ where f̄ is the

average of { f ′
i
}. We then compute the Laplacian basis functionsψj

as the eigenvectors of the surface graph Laplacian Ls ∈ R
s×s . We

assemble the �rstq eigenvectors to form our lower dimensional basis
matrix Ψ = [ψ1,ψ2, . . .ψq ]. The lower dimensional representation
of the force instants can then be written as

FL = FΨ, (7)
where FL becomes an (l × q) matrix.
Similarly, we use principal component analysis (PCA) to project

the stress data onto a lower dimensional space. We assemble the
mean centered stress vectors into an (l ×m) matrix T . A PCA on
T yields (l − 1) principal vectors of size m. Then, each stress vec-
tor can be approximated by (l − 1) PCA weights through a linear
combinations of the principal vectors

T L = TΦ (8)
whereT L is (l × l − 1) matrix storing the PCA weights for each

sample in its rows and Φ is the assembly of principal vectors.
Lower dimensionality in FL andT L allows us to learn a simple

mapping between the two spaces with a reasonable computational
cost. We have found that quadratic regression with L2 regularization
performs su�ciently well for capturing the relationship between
the PCA weights of the stress vectors and the reduced dimensional
force vectors such thatT L = F̂LW . Here, F̂L is (l × (q2 + 3q + 2)/2)
matrix including the quadratic terms for FL . In matrix form, the
coe�cient matrix can be computed as

W = (F̂L
T
F̂L + rI )

−1 (F̂L
T
T L ) (9)

where r is a small number controlling the importance of the
regularization term. Using this map, we estimate the criticality of
a new force instant by computing the stress distribution it creates
through the quadratic map, and extracting its maximum. Note that
the estimated stress vectors are only an approximation of the actual
values, thus cannot be used directly for σcr . However, they provide

ACM Transactions on Graphics, Vol. 36, No. 4, Article 158. Publication date: July 2017.



158:6 • Ulu, E. et al

Fig. 6. Force regions computed for two fully solid models. We take connected
components in high criticality regions as our FRs (red-white areas).

strong guidance in estimating the location of the most critical force
instant. We thus use the synthesized criticality map to determine
the force regions (Figure 4(d)). The connected components of high
criticality areas in SL comprise our force regions.

The accuracy of the criticality map depends on the number of
training samples l . While a large number of samples increases accu-
racy, the computational cost also increases proportionally. Figure 5
illustrates the criticality maps obtained with di�erent number of
training samples. We observed that using 5% of the nodes in SL
for training produces an acceptable approximation of the criticality
map such that in all of our examples, after the criticality values are
estimated, top 10% of the nodes with the largest criticality values
always contain the ground truth critical instant. Figure 6 illustrates
the force regions we obtained for two di�erent models.

Weak Regions. For a structure with material distribution ρ, we
need to �nd the maximum stress produced by each force instant to
determine σcr in (6) and solve (5). However, failure often occurs at
certain regions of the object leaving the remainder safe at all times.
WRs help us constrain the regions of the structure where we seek
the maximum stressVwr ⊂ V .

In our algorithm, we use an approach similar to [Zhou et al. 2013]
to determine the possible failure locations as our weak regions.
We determine WRs using modal analysis that involves solving the
generalized eigenvalue problem

λjMд (ρ)u j = −K (ρ)u j , j = 1, 2, . . . ,m (10)

where u j is j’th eigenmode, λj is the corresponding eigenvalue
and Mд (ρ) is the mass matrix for the tetrahedral mesh. Note that
WRs are structure dependent, hence need to be updated at each step
of the optimization. To reduce computational cost, we use a lumped
mass matrix and distribute each element’s mass to its nodes equally,
thus creating a sparse diagonal matrix Mд ∈ R

3n×3n .
WRs can be extracted by computing the low frequency eigen-

modes in (10) and identifying the nodes that experience large stresses
under these deformations. In our examples, we use the �rst 15 vibra-
tion modes and 2.5% of the most stressed nodes to form our WRs.
Di�erent from [Zhou et al. 2013], we combine all unique nodes
obtained from modal analysis to construct the WRs. Figure 7 shows
the WRs we obtained for two fully solid models (ρe = 1 ∀e). Note

Fig. 7. Weak-regions are found around thin parts or sharp edges where
stress concentration is likely to occur. Both are fully solid models and are
fixed at the bo�om.

that WRs are found around possible stress concentration points
such as thin parts and crease edges.

Critical Instant. We solve (6) for σcr in a much smaller domain
de�ned by the FRs Sf r ⊂ SL and WRs Vwr ⊂ V . In particular,
only the force instants captures with FRs are used, and maximum
stresses are only sought in WRs.

We use a simple greedy hierarchical search to �nd the force
instant creating the largest stress in the structure. For each FR island,
we partition it into four segments and perform FEA by applying the
force to their central nodes. We then further select and partition the
segment that produces the highest stress within WRs, and repeat
this process until converging to a single node. After repeating this
process for all FR islands, we choose the maximum stress across all
FR islands as σcr for that particular optimization step. The sti�ness
matrix K and Cд need to be computed only once during these
evaluations as the structure remains unchanged. We thus factorize
K once for each optimization step, and determine displacements
and stresses using e�cient forward and backward substitutions.

4.3 Stress Singularity
Stress constrained mass minimization problems are prone to singu-
larity issues [Kirsch 1990; Lee et al. 2012; Sved and Ginos 1968]. For
instance, in (5), the global optimum is obtained when ρ = 0, making
all elements void. To mitigate this problem, we establish a layer
of fully solid boundary shell that is excluded from optimization.
This approach overcomes the singularity problem by coercing the
optimization to employ material in the remaining inner volume as
a way relieve the high stresses generated on the boundary shell.
Enforcing a boundary shell also preserves the original outer surface.

All elements that contribute one or more vertices to the outer
boundary S0 could serve as the boundary elements. For an arbitrary
volumetric mesh, however, forming a solid shell using only these
elements may introduce stress concentrations (Figure 8(a)). To create
a smooth and uniform thickness shell, we �rst generate an inner
o�set surface Si using the method presented in [Musialski et al.
2015]. Then, we tetrahedralize the entire domain, which results in a
smooth shell layerVs ⊂ V sandwiched by Si and S0 (Figure 8(b-
c)). We use a uniform shell thickness prescribed by the user, which
can be adjusted based on a 3D printer’s minimum print thickness.
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Fig. 8. To prevent undulations in the shell (a), we use o�set surfaces to
create a smooth boundary shell with prescribed thicknesses (b-c). In all
three cases, the volumetric mesh has 29k elements.

Although we do not optimize the shell thickness, we discuss its
e�ects in Section 6.

5 MODEL REDUCTION
The optimization problem (5) is typically very high-dimensional
as the number of design variables is equal to the number elements
in the volumetric mesh V . This, in turn, has a signi�cant impact
on the computational performance. To accelerate optimization, we
compute a set of material modes [Xu et al. 2015], which helps control
the material distribution using only a small number of variables.
Material modes can be computed as the eigenvectors of the element-
based graph Laplacian L ∈ Rm×m de�ned on V by solving the
generalized eigenvalue problem

µ jVγ j = −Lγ j , j = 1, 2, . . . ,m (11)
where µ j are non-negative eigenvalues, γ j are corresponding

eigenvectors and V ∈ Rm×m is a diagonal matrix composed of Ve s.
Eigenvectors γ j are orthogonal and smooth scalar functions that
spectrally decompose the material distribution [Zhang et al. 2010;
Zhou et al. 2005]. The �rst mode represents the homogeneous mate-
rial distribution and while the level of detail control increases with
higher frequencies (Figure 9). We assemble the �rst k eigenvectors
to form the reduced order basis Γ = [γ1,γ2, . . .γk ] so that the
material distribution can be written as

ρ = 1 + Γα , (12)
where α = [α1,α2, . . . αk ]T is the design vector for the reduced

order problem. This formulation allows us to trivially enforce fully
solid material on the boundary shell elements by by setting the
corresponding rows in the reduced basis matrix Γe to be 0. This
way the entries in α can take on any value during the optimization
without violating the geometrical constraints.

Logistic Function. In our reduced order formulation, we use a
logistic function G (x ) to penalize the intermediate values of ρe by
modifying (12) as

ρ = G (Γα ) (13a)

G (x ) = 1/[1 + e (κ (x−x0 ))]. (13b)

Here, κ and x0 determine the steepness and in�ection point of the
logistic function. Note that x0 should be adjusted to satisfyG (0) ≈ 1
to ensure that the elements on the boundary shell are solid. While

Fig. 9. Le� to right: material distributions corresponding to 1st , 5th, 25th
and 50th modes. Lower modes control global material distribution while
higher modes enable local details.

increasing κ intensi�es binarization by pushing the intermediate
densities toward 0 and 1, it also hampers convergence. We use κ = 5
for all of our examples.

In addition to binarizing the intermediate densities, the use of
logistic function in (13a) guarantees ρe ∈ [0, 1] ∀e ∈ V for −∞ <
α < ∞. This allows us to remove a large number of constraints
0 ≤ ρ ≤ 1 from our reduced order optimization problem.

5.1 Reduced Order Problem
Applying (13) to our optimization formulation (5), the reduced order
optimization problem can be stated as

minimize
α

M (α ) = G (Γα ) ·V

subject to K (α )ui = f i ∀i ∈ Sf r ,

σcr (α ) ≤ σy ,

(14)

where

σcr = max
i

(max
e

( σvme )) ∀i ∈ Sf r and ∀e ∈ Vwr , (15)

for Γe = 0 ∀e ∈ Vs .
A bene�t of the reduced order formulation is that the number

of new design variables k can be markedly small compared to the
number of original variablesm in (5). This number is independent
of the input mesh and needs to be prescribed by the user. Because
the structural optimization algorithm involves a large number of
costly FEA evaluations per iteration, we found k ≤ 15 to provide
a favorable tradeo� between speed and expressiveness. Hence, we
use 15 material modes in all of our examples, unless otherwise
stated. The optimization starts with a fully solid model (α = 0). Our
approach is predicated on the assumption that this starting solution
is feasible, hence amenable to lightweighting through optimization.

At the end of the optimization, the resulting material distribution
may still contain elements with intermediate densities. In such cases,
we threshold the gray scale material distribution to obtain a fully
binarized solution. In our examples, we use ρ = 0.5 as the threshold;
elements with lower densities are set to void. Nonetheless, there
exists more sophisticated thresholding methods [Hsu and Hsu 2005].
Another positive byproduct of the reduced order approach is that the
resulting material distribution after binarization typically does not
su�er from a checkerboard e�ect, as the reduction leads to smooth

ACM Transactions on Graphics, Vol. 36, No. 4, Article 158. Publication date: July 2017.



158:8 • Ulu, E. et al

Fig. 10. Critical force instants are shown on estimated criticality maps. All
models are fully solid and are fixed at the bo�om.

material modes in V , especially for k � m. This, in turn, helps
alleviate exhaustive post-processing.

Note that the material modes are precomputed as they depend
only onV . Because only the �rst k modes are used in the reduced
order formulation, they can be computed e�ciently using iterative
methods. We use ARPACK for this purpose [Lehoucq et al. 1998].
In order to solve (14), we use sequential quadratic programming
[Nocedal and Wright 2006]. Our code solves linear systems using
the Eigen library’s SimplicialLDLT sparse solver [Guennebaud et al.
2010].

Our hierarchical search method and density based shape repre-
sentation allow us to compute gradients analytically. We compute
gradients of the critical stress with respect to the design variables
using the adjoint method [Paris et al. 2010]. We use p-norm ap-
proximations (p = 15) for the max functions. Details are given in
Appendix A.

6 RESULTS AND DISCUSSION

6.1 Criticality Analysis
Figure 10 illustrates the results of our critical instant analysis on a
collection of fully solid models. In all cases presented in this paper,
our approach involving criticality map estimation followed by a
hierarchical search is able to determine the true critical force instant
(yellow arrows). We veri�ed this match using an expensive brute
force search method. As shown in Figure 10, our estimated criticality
map captures the true critical instant quite well in that it �nds the
most critical force to be at the point with the highest estimated
criticality (dark red). Nonetheless, our analysis can tolerate inaccu-
racies in the estimated criticality map. Figure 11(a) shows such a
case. Although the criticality map estimates the most critical point
to be on the arm closer to the baby (dark red), our algorithm subse-
quently �nds the true critical instant in that vicinity by searching
an expanded area forming the force region.

Figure 11 illustrates the critical instants for two di�erent material
distributions. Because we construct the criticality map for each step
of the optimization, the force regions are updated and the change in
the critical instant is captured well. In all of our examples, the critical
force instant is always contained in the identi�ed force regions.

Comparison. Figure 12 compares our critical instant analysis with
the worst-case structural analysis of Zhou et. al. [2013]. The worst-
case structural analysis method is designed to predict the critical

Fig. 11. Critical instant can change significantly during optimization. While
forces around the arms are critical for the fully solid model (a), the critical
instant shi�s to the mother’s temple as the structure is hollowed (b).

Fig. 12. A comparison between worst case structural analysis [Zhou et al.
2013] and our method. While worst case analysis predicts the critical forces
well for handling scenarios, it may miss contextually relevant critical instants
during actual use cases. Our analysis, with delineated contact regions and
boundary conditions, predicts the critical instants to be around the seat of
the rocker.

force con�gurations that develop during handling an object. Thus,
it may have a tendency to overpredict the weakness, resulting in
overengineered solutions if used for structural optimization. In our
method, because we delineate the contact regions and the displace-
ment constraints to re�ect the knowledge of actual use, our approach
captures the critical forces that are more likely to be encountered
during a product’s nominal use. For instance, the region encircled in
Figure 12 for our analysis shows the high stress region worst-case
analysis fails to capture. The boundary conditions and the contact
regions used in our analysis are shown in Figure 13.

6.2 Structural Optimization
Figure 13 illustrates the results of our method on various 3D models.
The displacement-constrained regions are shown in blue. The con-
tact regions are shown in green. Our reduced order optimization
detects the parts of the objects where high stresses may develop
and distributes material accordingly. For objects with small weak
regions such as the fertility and penguin models, our optimization
allows us to preserve the same structural strength that their fully
solid versions possess, while shedding a large portion of the mass.
Similarly, our algorithm performs well for models with thin ele-
ments such as the chair by utilizing mass around the stress carrying
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Fig. 13. Structural optimization results. Le�-to-right, problem setups with
fixed boundary conditions (blue) and contact regions (green), our optimized
structures and 3D printed cut-outs of optimal results. Red shows the re-
moved material.

regions of the object. Notice the arms supporting the seat in the
rocking chair and the back support in the chair model.

In these examples, we achieved 50% to 90% mass reduction. Ta-
ble 1 summarizes the weight reduction together with various other
metrics relevant to these models.

Comparison. In Figure 14, we compare our approach with the
build-to-last method [Lu et al. 2014]. We impose a force budget of
20N applied anywhere on the surface of the shark. Our optimum
result weighs 33% less than the build-to-last structure that takes a
prescribed force location as input1. Unlike build-to-last, our algo-
rithm hollows the �ns and the nose where high stresses cannot be
generated in any force con�guration. Also, our method generates a
three-pronged rib structure at the base, possibly to accommodate
the forces that can be applied laterally in all arbitrary directions.

Number of Material Modes. Figure 15 illustrates the e�ect of the
number of material modes. We optimized the bracket using 15, 50
and 100 modes for the same force budget and boundary conditions.

1In [Lu et al. 2014], we could not identify the force magnitude being used.

Fig. 14. A comparison between build-to-last [Lu et al. 2014] and our method.
Our optimization approach produces a lighter structure while sustaining
any possible force applied on the boundary. Build-to-last optimizes the
structure for a single static force.

As shown, higher material modes allow for a �ner local shape con-
trol. Hence, a larger mass reduction is obtained with increasing
number of material modes (see Table 1). Although larger number
of modes allow our algorithm to remove more material through
local control, computational cost also increases. In Table 1, per it-
eration computation times are given for the bracket model using
di�erent number of material modes. As the number of modes in-
creases, computational cost increases signi�cantly, while only a
minor improvement in further mass reduction is achieved.

Convergence. Figure 16 shows the convergence pro�les for the
bracket model. While convergence is achieved after a similar number
of iterations, the smaller number of material modes tend to leave
more intermediate density elements in the optimized distribution,
resulting in a larger mass when binarized.

One might worry that in a symmetrical object, the critical point
could jump from side to side, with every incremental improvement
to one side causing a symmetric worsening of the other side, and
convergence never being reached. We attempted to trigger this
potential failure by creating a test case with a carefully-constructed
perfectly symmetric boundary and tetrehedral mesh (Figure 17).
Our algorithm nonetheless converged in 124 steps. We conjecture
that the homogenous (�rst) material mode tends to absorb enough
of the change to avoid oscillation; though it could also be that low-
level numerical asymmetries, e.g. ordering e�ects in linear algebra
routines, account for the convergence.

Boundary shell thickness. There is a trade-o� between the shell
thickness and the �exibility of our algorithm in generating an inter-
nal structure. As the boundary shell gets thicker, its contribution to
the structure’s strength becomes more prominent, thereby shrink-
ing the design space for our algorithm. On the other hand, too thin
boundary shells can lead to large local compressive stresses that
renders optimization infeasible. In such cases, our method fails to
converge to a varied solid versus void material distribution (Fig-
ure 18(a)). The main reason is that high local compressive stresses
encourages the optimization to perform local thickening around
the force application points. However, low frequency modes can
alter the material distribution only in large chunks. Therefore, �ne-
level local modi�cations cannot be achieved unless a large number
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Fig. 15. Bracket model (le�) is optimized using three di�erent number of material modes. As the number of material modes increases, optimization can
perform more localized alterations resulting in smaller mass structures at a cost of higher computational complexity.

Fig. 16. Convergence plot for the bracket model using three di�erent mate-
rial modes. Binarized values are also shown.

Fig. 17. Evolution of material distribution throughout the optimization
process for a symmetrical slingshot model. Optimization is initialized with
fully solid object. Le� to right material distribution converges to the resulting
state. The model is fixed at the bo�om.

of material modes are used. Figure 18 illustrates the e�ect of the
shell thickness on the resulting material distribution. With a proper
choice of the thickness (Figure 18(b)), our method is able to reduce
mass by 72% compared to fully solid model, while the reduction was
only 17% and 54% for (a) and (c), respectively.

6.3 Validation and Performance
Fabrication. We 3D printed our optimum results on an OBJET

Connex printer using inkjet printing technology. We use VeroWhitePlus
material with a yield strength of 50MPa, a Young’s modulus of
2.1GPa, and a Poisson’s ratio of 0.3 [PolyJet 2017].

When soluble support material is used, the boundary shell can
be pierced by small holes to empty the internal support material.
We observed that our reduced order method has a tendency to
create only a small number of inner void regions (especially for a
small number of material modes) and thus the support material can
be removed with minimal alterations. To avoid trapping support
material, resulting models can be printed in several pieces and glued
together after cleaning.

Physical Tests. We performed compression tests on our optimized
cactus model to physically evaluate the strength of the 3D printed
models, as shown in Figure 19. We used an INSTRON universal
testing machine and ran compression tests on the optimized cactus
model. For comparison, we chose an identically weighing uniform
thickness cactus. We performed the same compression test on the
long arm and measured the failure load. For our optimized model,
we measured the failure force to be 36.82N . The uniform thickness
model snapped at 20% less force of 29.69N .

For our optimized model, we measured the failure force of 39.62N
for the short arm, and 74.22N for the trunk. The test results agree
well with our critical instant analysis in that the tip of the long
arm turns out to be physically the most critical force point in the
optimum model and there is no need to add material to either the
short arm or the trunk. Figure 20 illustrates the stress distribution
when a 35N force is applied to the same three points as the physical
tests. It can be observed that the short arm and the trunk are quite
safe, while very high stresses are present on the long arm.
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Table 1. Performance of our algorithm on a variety of models. The number of FEAs and analysis times in columns 4 and 6 are average and given per step of
critical instant analysis. Performance of the brute force approach is also shown for benchmarking. Columns 7 and 8 are number of iterations to fully optimize
the structures and average times per iteration of our structural optimization, respectively.

Model Elements # of FEA Analysis Time [s] Iteration Time[s] Volume [cm3]
Brute Force Our Method Brute Force Our Method Initial Optimized

Cactus 25229 1658 216 17.69 4.35 49 39.61 68.990 18.800
Slingshot 54290 2192 148 89.02 10.66 124 72.52 17.822 9.451
Fertility 57006 3914 248 131.85 20.68 122 83.33 54.023 16.350
Test (Small Force) 58555 822 69 26.53 7.52 180 59.15 4.443 1.216
Test (Large Force) 58555 822 69 26.53 7.52 223 59.15 4.443 1.300
Chair 58848 663 52 27.96 13.28 104 75.32 17.076 6.192
Penguin 68615 3035 304 149.80 45.13 31 132.06 91.643 10.211
Shark 70397 4282 273 178.93 18.10 72 115.07 66.454 14.997
Rocking Chair 78025 1531 103 85.48 11.17 160 154.32 13.015 6.709
Bracket (k = 15) 111498 408 55 70.85 48.87 39 301.01 462.520 194.434
Bracket (k = 50) 111498 408 55 70.85 48.87 38 382.49 462.520 167.552
Bracket (k = 100) 111498 408 55 70.85 48.87 37 487.44 462.520 163.581

Fig. 18. E�ect of boundary shell thickness on material distribution. From
(a) to (c), shell thickness is increased while all other parameters are kept
constant. For very small thickness values, our algorithm fails to converge to
a binary material distribution using only few material modes due to high
local compressive stresses. Close-up images show the shell thickness for
each case.

Figure 21 illustrates a test model we designed to observe the e�ect
of the force budget. The model has two thin regions with slightly
di�erent dimensions. We set the contact region to be the entire top
surface while �xing it only at the bottom right and left edges to
simulate a simply supported beam. We then optimized the structure
for two di�erent force budgets of 4N and 5.5N . For the smaller force
budget, the optimization focuses material around the thinnest part
only. However, for the larger force budget, material is distributed
around both of the failure prone regions. Notice that only a portion
of the thinnest neck is �lled for the small force budget while it is
entirely �lled for the larger force budget. To validate the optimiza-
tion results of the test model, we performed a set of three-point
bend tests. For benchmarking, we also tested a completely empty
shell model (full-void). Figure 22 shows the experimental setup to-
gether with the force plots we obtained. The test model optimized
for the larger force budget performs best while the empty model
breaks at the smallest force magnitude. Our structural optimization
method strengthens the model up to 46% while increasing its mass

Fig. 19. Compression tests on the optimized cactus. Le� and middle images
show the resulting model and a 3D printed cutout.

Fig. 20. Stress distributions when the same magnitude force is applied to
three di�erent locations on the optimized cactus. Analysis results match
the compression tests in that failure occurs on the long arm, short arm and
trunk, in order.

by only 15%. The discrepancies between the input force budget
and the measured failure forces can be due to the FEA modeling of
the problem as well as the possible anisotropic behavior of the 3D
printed material [Ulu et al. 2015].

Performance. Table 1 shows the performance of our algorithm.
We tested our method on a 3.2GHz Intel Core i5 computer with 8GB
of memory. We selected various 3D models and optimized under
di�erent force con�gurations. Although the major computational
cost comes from the critical instant analysis, we achieve 5× accel-
eration on average over a brute force approach. This acceleration
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Fig. 21. A model with two failure-prone regions optimized for two di�erent
force budgets. For a force budget of 4N (a), material is only placed around
the thinnest region while both critical regions are beefed up for a larger
force budget of 5.5N (b).

becomes more signi�cant as the contact region (hence the number
of force instants) grows in relation to the total boundary surface.
Shark (large contact region) vs. Bracket (small contact region) in Ta-
ble 1 highlights this di�erence. The main reason is that the sti�ness
matrix is assembled and factorized only once at each optimization
step and σcr is computed by only performing a back-substitution for
each force instant. For a large number of force instants, the cost of a
single assembly and factorization becomes much smaller compared
to the number of linear solves performed.

6.4 Limitations and Future Work
Our critical instant analysis is based on an approximation to the
relationship between input forces and resulting stresses. We found
this approximation to work well when stresses due to bending and
torsion are dominant compared to local compressive stresses. For
shapes where local compressive stresses play a dominant role in fail-
ure, an e�cient approximation of stress and an accurate estimation
of the criticality map remains an open problem. For models with
many small protruding features, our geodesic force instant sam-
pling may fail to sample such features, thus causing the estimated
criticality map to miss potential critical instants.

In our approach, we bene�t from the boundary shell in preserv-
ing the external shape and solving the singularity problems in the
optimization. However, it can also serve as a main structural compo-
nent as its thickness is increased. In this paper, we do not optimize
the boundary shell thickness. A natural extension of our approach
would be to e�ciently determine the boundary shell thickness as a
preprocessing step to our algorithm.

In the future, our analysis could be extended nonlinear and/or
anisotropic material models. One of the advantages of using mate-
rial modes is that the resulting density is smoothly varying, which
makes the results easier to fabricate. This work focuses on making
objects as safe at all times, but in some cases one may want to incor-
porate weak points to enable fail-safe designs. Our critical instant
analysis might be able to handle this case by using a criticality map
construction that takes into account a spatially-varying thresholds.

7 CONCLUSION
We present a lightweight structure optimization method for 3D ob-
jects under force location uncertainty. We propose a novel critical

Fig. 22. Three point bend tests on optimized test models. The model opti-
mized for larger force budget performs best while empty model breaks at a
small force value.

instant analysis method to e�ciently determine the force instant
creating the highest stress in the structure. With this method, we
show that an approximation to the relationship between the force
con�gurations and resulting stress distributions can be captured
using only small number of FEA evaluations. Combined with a re-
duced order formulation, we demonstrate that our method provides
a practical solution to this computationally demanding optimization
problem. We evaluate the performance of our algorithm on a variety
of 3D models. Our results show that signi�cant mass reduction can
be achieved by optimizing the material distribution while ensuring
that the object is structurally sound against a wide range of force
con�gurations capped by a force budget.

A ANALYTIC GRADIENTS
Following the �nal formulation in (14), the gradient of mass with
respect to the reduced order design variables α can be calculated as

∂M

∂α
=
∂M

∂ρ

∂ρ

∂α
(16)

where the �rst term is simply the elemental volume vectorV and
the second term can be obtained by following (13) as

∂ρ

∂α
=
∂G

∂x

∂x

∂α
. (17)

Here, x = Γα and its derivative with respect to α is simply the
reduced order material basis matrix Γ.

The gradient of the critical stress σcr with respect to α can be
obtained following the formulation in (15) as

∂σcr
∂α

=
∂σcr
∂ρ

∂ρ

∂α
. (18)

We use p-norm approximations (p = 15) for the max functions. For
H (σvm ) = ‖σvm ‖p where σvm is composed of σvme ∀e ∈ Vwr ,
the derivative of σcr with respect to ρ can be computed as

∂σcr
∂ρ
=
∂H

∂σvm
∂σvm

∂σ

(
∂σ

∂u

∂u

∂ρ
+
∂σ

∂ρ

)
(19)

where the derivative of u with respect to ρ can be obtained from
the equilibrium equation Ku = f as

∂u

∂ρ
= K−1

(
−
∂K

∂ρ
u

)
. (20)

Applying the adjoint variable method, (19) can be re-written as
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∂σcr
∂ρ
= ξT

(
−
∂K

∂ρ
u

)
+
∂H

∂σvm
∂σvm

∂σ

∂σ

∂ρ
(21)

where ξ is the adjoint variable and de�ned as

ξT =
∂H

∂σvm
∂σvm

∂σ

∂σ

∂u
K−1. (22)

All the terms in equations (18) and (21) can be directly obtained
and the adjoint variable can be computed by solving the system of
linear equations in (22).
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