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Metals-additive manufacturing (MAM) is enabling unprece-
dented design freedom and the ability to produce signifi-
cantly lighter weight parts with the same performance, offer-
ing the possibility of significant environmental and economic
benefits in many different industries. However, the total pro-
duction costs of MAM will need to be reduced substantially
before it will be widely adopted across the manufacturing
sector. Current topology optimization approaches focus on
reducing total material volume as a means of reducing mate-
rial costs, but they do not account for other production costs
that are influenced by a part’s structure such as machine time
and scrap. Moreover, concurrently optimizing MAM process
variables with a part’s structure has the potential to further
reduce production costs. This paper demonstrates an ap-
proach to use process-based cost modeling in MAM topol-
ogy optimization to minimize total production costs, includ-
ing material, labor, energy, and machine costs, using cost
estimates from industrial MAM operations. The approach
is demonstrated on various 3D geometries for the electron
beam melting (EBM) process with Ti64 material. Concur-
rent optimization of the part structures and EBM process
variables are compared to sequential optimization, and to
optimization of the structure alone. The results indicate that,
once process variables are considered concurrently, more
cost effective results can be obtained with similar amount of
material through a combination of (1) building high stress re-
gions with lower power values to obtain larger yield strength
and (2) increasing the power elsewhere to reduce the num-
ber of passes required, thereby reducing build time. In our
case studies, concurrent optimization of the part’s structure
and MAM process parameters lead to up to 15% lower esti-
mated total production costs and 21% faster build time than
optimizing the part’s structure alone.

1 Introduction
Metals-additive manufacturing (MAM) has the poten-

tial to offer unprecedented design freedom by allowing com-
plex geometries to be created that are impossible or cost pro-
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hibitive to produce through traditional manufacturing meth-
ods [1]. It is also enabling the production of significantly
lighter weight parts with the same performance, offering the
possibility of significant environmental and economic ben-
efits in many industries, including aerospace, medical, and
energy [1–3]. However, relatively high production costs of
MAM are preventing widespread adoption across many man-
ufacturing sectors [1,4]. Studies have demonstrated that opti-
mizing the structural design of MAM parts can help decrease
material usage, and therefore material costs, while maintain-
ing part performance [5–7]. The classic topology optimiza-
tion formulation minimizes compliance or stress subject to a
constraint on the total volume [8–11], representing a proxy
for material costs [12–16]. However, a part’s topology also
influences production costs through means other than the
costs associated with the material contained in the final part.
For example, scrap and energy costs depend on where ex-
actly material in the machine build envelope is added to a
part and where it is not [4]. Furthermore, MAM process vari-
ables, such as laser/beam power and speed, influence pro-
duction costs associated with machine time and energy as
well as material properties [17]. Concurrent optimization of
MAM process variables and a part’s topology therefore has
the potential to further reduce the production costs. While
the potential to optimize AM process parameters and part
topology has been discussed in the literature [18,19] and em-
pirical case studies have been presented to optimize process
parameters given a fixed topology [20–25], no previous lit-
erature has concurrently optimized a part’s topology as well
as process variables. Moreover, no existing methodologies
have been developed to minimize total production costs in a
topology optimization, which, as we discuss, can lead to sig-
nificantly different part designs than the standard topology
optimization formulation.

In this paper, we demonstrate a production cost mini-
mization approach for MAM that concurrently optimizes the
part structure and process variables, including beam power
and velocity (Figure 1). The approach is developed by inte-
grating efficient topology optimization, process-based cost
modeling (PBCM), and MAM process/solidification map-



Fig. 1. Cost minimization framework. The dashed lines contain the
elements included in the concurrent optimization but not the optimiza-
tion of structural design alone.

ping between process variables and microstructure. The
main focus of the paper is to present the methodology and
demonstrate that accounting for the influence of both struc-
tural design and MAM process parameters on total produc-
tion costs can lead to different design topology solutions that
have similar material usage but lower total production costs
compared to solely optimizing the structure.

2 Related Work
We draw on three different methods to develop the

methodology presented in this paper: topology optimiza-
tion, process-based cost modeling, and process mapping for
MAM. This section describes these methods and reviews
past work relevant to additive manufacturing (AM).

2.1 Topology Optimization
Due to the unique capabilities of AM, new methods and

tools are needed to improve design for AM (DFAM) to max-
imize product performance [26]. One class of methods ripe
for adaptation for DFAM is topology optimization—a pow-
erful technique in structural design that optimizes the shape
and material connectivity of a domain through the use of
finite element methods together with various optimization
techniques [8, 27]. Topology optimization has been exten-
sively applied for designing AM parts [13, 14, 19, 28]. Re-
cent adaptations of topology optimization for DFAM include
considering the constraints of support structures [15], inter-
nal patterns [29], as well as applications in design of cellu-
lar structures [30], heat sinks [16], and tissue scaffolds [7].
However, these approaches do not consider the influence of
structural design on total AM production costs or the signif-
icance of process variables in reducing these costs.

Density-based topology optimization approaches are
one of the well studied methods in the literature [11, 31, 32].
These methods approach the design problem in a way that the
structure is defined by optimizing the material distribution

in the domain. Since each finite element within the design
domain is defined as a design variable, these methods pro-
vide extensive flexibility in allowing the resulting geometry
to be highly complex. The objectives of most existing topol-
ogy optimization approaches for AM, however, are limited
to minimizing the compliance, or maximizing the strength of
the structure [33]. In this paper, on the other hand, we focus
on minimizing the overall production cost with respect to the
element densities as well as the MAM process variables.

2.2 Cost Modeling
A variety of studies have been conducted to identify the

main factors that influence AM production costs. Thomas et
al. performed a literature review of economic studies and
cost models of polymeric and metallic AM processes [4].
Hopkinson and Dickens analyzed the costs of polymeric AM
and compared them with the cost of injection molded parts
[34]. Similarly, the economic efficiency of MAM methods
including selective laser sintering and selective laser melt-
ing have been compared against conventional manufacturing
methods [35, 36]. Ruffo et al. developed an AM cost model
that estimated different cost drivers for powder based selec-
tive laser sintering processes [37]. Other AM cost models
and prediction tools have been developed by Lindemann et
al. [38, 39], Baumers et al. [17, 40], Dinda et al. [41], and
Rickenbacher et al. [42]. In these studies, material usage,
build time, laser power, scan speed, hatch spacing, and pro-
duction volume have all been found to significantly influence
production costs.

Despite this work identifying the major factors that drive
AM costs, studies that incorporate cost assessment to sup-
port DFAM are limited. Yim and Rosen developed an AM
selection tool based on cost estimation [43]. Barclift et al.
introduced a CAD integrated cost estimation method that
provides feedback to the user while they design the parts
in a solid modeling program [44]. Yao et al. developed a
cost-driven design methodology for AM platforms in product
families [45]. These studies guide the selection of different
AM techniques based on the lower-cost methods or provide
feedback for manual design changes, but none of them offer
an optimization approach to select AM designs that minimize
production costs.

Process-based cost modeling (PBCM) was developed
for assessing the economic performance of new technologies
under changing design specifications and manufacturing op-
erations [46]. The method is based on simulating production
process parameters (e.g., cycle times, yields, scrap rates) de-
pending on the physical design of a part (e.g., geometry, ma-
terial selection) and the process design (e.g., manufacturing
steps and equipment) to highlight the implications of chang-
ing design variables and operating conditions on production
costs. PBCM has been applied to analyze the production
costs of new technologies or designs such as composite auto-
mobile body production [47], electronic semiconductor chip
design [48] and optoelectronic transceiver assembly [49].
Laureijs et al. demonstrated the potential of using PBCM
for MAM by analyzing the cost competitiveness of an MAM



engine bracket compared to a comparable design produced
by forging [50]. Because PBCM is focused on analyzing the
production costs associated with alternative design solutions,
we chose PBCM as the methodology to account for produc-
tion costs in a MAM topology optimization in this study.

2.3 Process Mapping
The process variables of MAM machines not only in-

fluence the production costs, but also determine the process
characteristics (e.g., melt pool dimensions) [51], material
microstructure (e.g., grain size, porosity) [52], and material
properties (e.g., strength, fatigue) [53,54]. Process and solid-
ification mapping were developed by Gockel et al. [51, 55],
Beuth et al. [56, 57], Montogomery et al. [58], and Seifi
et al. [53] to predict and control the desired MAM pro-
cess outcomes through melt pool and microstructure forming
through production. The absorbed power and the laser/beam
moving speed determines the local cooling rate of the ma-
terial, which directly influences the melt pool geometry, the
grain morphology and grain size. For Ti64 material, stud-
ies demonstrate that higher power or lower laser/beam speed
leads to larger melt pool area and larger grain size, which re-
duces the yield strength of the material [59–62]. We use the
results of these studies to represent the relationships between
MAM process variables and material properties in order to
minimize production costs subject to a part’s performance
constraints.

3 Method
Our design problem aims to find an optimal material dis-

tribution inside the design envelope as well as the process
parameters to additively manufacture this structure for the
minimum production cost. We formulate this problem as a
compliance-constrained cost minimization problem

minimize
θ

C(θ)

subject to c0(θ)≤ cmax
o (θ)

θmin ≤ θ≤ θmax.

(1)

Here, C is the total production cost and θ is a set of design
variables representing the current topology and the process
parameters including the beam power and velocity. c0 is the
compliance of the structure for the given parameter set and
cmax

o represents the maximum allowable compliance.

3.1 Production Cost Model
In order to minimize production cost of MAM pro-

cesses, a general mathematical representation of MAM pro-
duction cost is developed based on the typical PBCM ap-
proach. We consider production costs that are influenced
by structural and/or process variables in two categories:
material-based costs and time-based costs [4]. The material-
based costs include the material required for printing the part,
and material scrap that is lost during powder recovery and re-
cycling. On the other hand, the time-based costs include the

Table 1. Formulation of the constituent factor costs

Coefficient
Description

Unit Formulation

A1 Material cost $/mm3 cmρ(1−η)

A2 Manufacturing cost $/h
cinvest + cmaintainL

LH
+ clabor

A3 Energy cost $/Wh celec

A4
Scrap and idle
electricity cost

$ cmρηVenv + celecP0t

machine cost amortized by the production time necessary to
produce the required throughput yield, the energy cost, and
the labor cost. We ignore the costs that are not affected by
structural or process variables, such as management over-
head costs, and thus do not include these cost factors in our
cost formulation. Based on the these assumptions, we for-
mulate the total production cost as

C =
1

(1−R)

{
A1V +A2t +A3

∫ t

t0
Pdt +A4

}
. (2)

Here, V is the volume of the part, P is the power required for
printing, and t is the total production time required for the
part. R is the reject rate representing the percentage of the
product rejected due to quality control and destructive test-
ing. Ai’s are coefficients that characterize MAM machines
and factor input costs such as labor and electricity. Formu-
lations of these coefficients are provided in Table 1 where ρ

represents the material density, L is the life time of the ma-
chine and H is the annual working time.

The constituent factor costs applied in this cost model—
material price, cm, machine price, cinvest , maintenance cost,
cmaintain, labor cost, clabor, energy cost, celec, and scrap rate,
η—are based on the PBCM data presented in [50]. The data
are collected from 14 companies for the EBM process with
Ti64 material produced in the United States with an annual
production volume of 13,500 or greater. The detailed deriva-
tion of the cost model is documented in Appendix A.

3.2 Process Mapping
Total required production time is one major driver of

production costs in the formulation given in (2). The time is
composed of the setup time, sintering time, powder delivery
time, and cooling time [17]. For simplicity, we assume that
the setup time and cooling time are the same for any print
jobs as the geometry has limited influence on these factors.
Additionally, we assume that powder delivery time is con-
stant and the same for each layer. Therefore, the production
time can be represented as

t = tbuild + t0 (3)

where t0 is the constant term, and tbuild varies with the design
and process parameters.
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Fig. 2. Influence of beam power on the number of passes (left)
and the melt pool size (right). As the beam power is reduced, the
melt pool size becomes smaller and consequently a larger number
of passes are required to cover the build area. Blue and orange indi-
cates high and low power cases, respectively.

As discussed in Section 2.3, process-solidification maps
have been developed for different MAM processes and can
be applied in controlling or predicting melt pool geometry
with certain process parameters (e.g., absorbed power, αP,
and velocity, v) [51]. The approximate analytical characteri-
zation of the process-solidification map can be derived from
the Rosenthal equation [63,64]. Following this approach, the
melt pool area, A, can be estimated as

A =
a1αP+a2

v
(4)

where a1 and a2 are constants that relate to the material and
α is the absorption ratio. Here, α is an experimentally deter-
mined property [65, 66]. Assuming semi-circular melt pool
area led by the Rosenthal model [67], the melt pool width,
w, can be computed as

w =

√
8A
π
. (5)

In order to ensure full melting and bonding, we assume
half overlap between melt pools in two consecutive passes
during the building process (Figure 2). Therefore, the total
build time can be formulated as

tbuild =
∫

N
1
vh

dVenv (6)

where N = 2/w represents the number of passes required to
cover the unit distance in the y direction, h is the layer thick-
ness and Venv is the full building envelope volume. As both
speed and power affect the melt pool size directly, they in-
fluence the number of passes of the beam that are required
to build a single layer. Figure 2 illustrates how beam power
affects the number of passes required of the beam path under
the same beam velocity.

In addition to the influence it has on production costs,
melt pool dimension directly influence the microstructure of
a material and thus the mechanical properties of a part. Stud-
ies have found that the grain size of Ti64 in MAM is ap-
proximately linear to the melt pool width [59], and the yield

Fig. 3. Demonstration of process mapping of MAM processes for
Ti64. The process variables at the same line leads to the same yield
strength. Data is obtained from [55].

strength of the metal is approximately linear to the inverse
square root of grain size by the Hall-Petch strengthening re-
lationship [62]. Hence, the yield strength can be formulated
as

σy = a3

[
2(a1αP+a2)

πv

]− 1
4
+a4. (7)

The parameters a3 and a4 are experimentally determined co-
efficients for the specific material. Figure 3 illustrates how
the yield strength of the Ti64 material varies with the pro-
cess parameters (absorbed power, αP , and velocity, v).

3.3 Structure and Process Optimization
In order to find an optimal material distribution, the de-

sign envelope is discretized by a volumetric mesh. Simi-
lar to topology optimization, each element in the discretized
domain is associated with a density variable xi representing
whether element i is full or void. In addition, we assign beam
power Pi and velocity vi to each element to determine the
set of process parameters minimizing the overall production
cost. Following the modified SIMP method [68], heuristic
relationships between the design parameters (θi = [xi,Pi,vi])
and the element Young’s modulus Ei and yield strength Yi
can be given by

Ei = Emin + xp
i (E0−Emin), (8)

Yi = Ymin + xp
i (σy−Ymin)

= Ymin + xp
i

{
a3

[
2(a1αPi +a2)

πvi

]− 1
4
+a4−Ymin

}
.

(9)

Here, E0 represents the Young’s modulus of the base material
and p is the penalty factor to ensure binary solutions. Emin



and Ymin are very small elastic modulus and yield strength
assigned to the void regions in order to avoid numerical
instabilities (e.g. the stiffness matrix becoming singular).
The modified SIMP approach improves the classical SIMP
method by adding the term Emin (and similarly Ymin in our
case) to prevent zero-stiffness elements and allow the use of
straightforward filters [69].

In order to avoid numerical difficulties such as the
checkerboard issue [70], we use a basic density filter given
in [71] as

θ̃i =
∑ j∈Ni

Hi jVjθ j

∑ j∈Ni
Hi jVj

Ni = { j : dist(i, j)≤ r},
Hi j = r−dist(i, j)

(10)

where Ni is the neighborhood of element i, r is the filter size,
Vj is the volume of element j, Hi j is the weight factor, and θ̃i
represents the updated design variables. In addition to densi-
ties, we use the same filtering approach for power and veloc-
ity parameters to avoid drastic changes between neighboring
elements.

Using hexagonal elements with size lx × ly × lz, build
time given in (6) can be reformulated in the discretized do-
main as

tbuild = ∑
i

Ni
lx
vi

lz
h
. (11)

Here, we assume that the build direction is z and Ni is the
number of passes required to cover in-layer area of the el-
ement i. Naively, Ni can be approximated as Ni = 2ly/wi.
However, this approach does not take the element density
into consideration and results in artificial increase in power
values associated with void elements based on equation (5).
To address this problem, we formulate Ni as

Ni = 1+G(xi)

(
2ly
wi
−1
)

(12)

where G(xi) = 1/(1+ e(−κ(xi−x0))) is a logistic function that
enforces Ni = 1 for void elements while keeping Ni = 2ly/wi
otherwise. For large κ values, the logistic function provides
a smooth approximation to the step function while still being
differentiable. In this paper, we use κ = 100 and x0 = 0.1.
The cost function in (2) then becomes

C(x,P,v) =
1

(1−R)

{
A1lxlylz ∑

i
xi

+A2
lxlz
h ∑

i
Ni/vi

+A3
lxlz
h ∑

i
PiNi/vi

+A4 +A2t0

}
.

(13)

Similarly, compliance of a structure with material distri-
bution x can be calculated in the discretized domain as

co(x) = ∑
i

EiuT
i k0ui (14)

where k0 is the element stiffness matrix for an element with
unit Young’s modulus. We compute the upper bound for the
compliance (i.e. the maximum compliance allowed within
the candidate structure) as

cmax
o (x,P,v) = ∑

i

1
k2Ei

ViYT
i (C0

−1)T Yi (15)

where k is the safety factor, C0 is the unit constitutive matrix
and Yi is 6×1 vector of yield strengths. Tensile components
of Yi are computed using (9) while shear components are
assumed to be 50% of the yield strength value according to
the maximum shear theory [72] for conservative estimates.
Detailed derivation of (15) can be found in the Appendix A.

Optimization Problem Applying (13)-(15) to our opti-
mization formulation (1), the mathematical formulation of
the optimization problem can be stated as

minimize
x,P,v

C(x,P,v)

subject to KU−F = 0,
V (x)/V0− f ≤ 0,
c0(x)− cmax

o (x,P,v)≤ 0,
0≤ x≤ 1,
Pmin ≤ P≤ Pmax,

vmin ≤ v≤ vmax

(16)

where U and F are the global displacement and force vectors
and K is the global stiffness matrix. x, P, v are the struc-
ture and process design variables, specifically density, beam
power and velocity, respectively. V (x) and V0 are the ma-
terial volume and design domain volume, and f is the pre-
scribed volume fraction. Based on the data provided in [55],
we set the limits for power and velocity as [Pmin,Pmax] =



Table 2. Input parameters to the algorithm

Parameter Description Unit Value

cm Material unit cost $/kg 250

cinvest
Machine investment

cost
1000$ 1100

cimaintain Maintenance cost 1000$ 50

clabor Labor unit cost $/h 26

celect Electricity unit cost $/kWh 0.03

η Scrap rate % 1

L Life time year 7

H Annual working time h/year 7000

R Reject rate % 3.5

α Absorb ratio − 0.9

a1 P-V coefficient in3/Wmin 0.000302

a2 P-V coefficient in3/min -0.08941

a3 Property coefficient MPa µm0.5 1643.44

a4 Property coefficient MPa 772.2

ρ Density g/cm3 4.5

ν Poisson’s ratio − 0.3

E0 Young’s modulus GPa 100

Emin
Young’s modulus of

void material
GPa 10−9

Ymin
Yield strength of void

material
MPa 10−6

p Penalty factor − 3

P0 Idle power W 2000

h Layer thickness mm 0.2

[1000,5000] W and [vmin,vmax] = [10,100] in/min. It has
been reported in the literature that structural defects such
as pitting and porosity can be observed for certain scanning
speeds and beam power values [73]. Although our formu-
lation does not attempt to resolve such defects directly, the
bounds can be arranged to avoid some of these problems dur-
ing the manufacturing process.

4 Results and Discussion
We demonstrate the developed methodology and the de-

sign improvement enabled by the concurrent optimization for
EBM process with Ti64 alloy material. Table 2 summarizes
the process and material dependent parameters required in
the algorithm.

The optimization algorithm is implemented in C++
based on the framework provided by Aage et al. [74]. The
framework is modified to incorporate our additional design
variables P and v, cost based objective function and compli-

Fig. 4. Change in the production cost with respect to the density
and power values for a cubic object with size 2.5mm. The plot on the
right illustrates the cost change for xi = 1 ∀i.

ance based constraint function. Additionally, we improved
the current algorithm to handle free-form 3D geometries.
The solution is determined using the method of moving
asymptotes (MMA). Derivatives of the objective and con-
straint functions are analytically derived and incorporated in
the algorithm to reduce the computational cost.

4.1 Trade-offs
As the velocity vi increases, the melt pool width wi re-

duces in size, resulting in an increase in the number of passes
Ni proportional to

√
vi (as formulated in (4)-(5)). On the

other hand, time required to complete a single pass decreases
linearly with increasing beam velocity. As a result, build
time, and consequently the total production cost, are im-
proved. Similarly, yield strength Yi increases with increasing
beam velocity, thereby relaxing the compliance constraint
with larger maximum compliance value, cmax

o . As the ob-
jective and the constraints are not conflicting in vi in the op-
timization problem (16), beam velocity needs to be maxi-
mized for optimal production cost. For this reason, we set
vi = vmax for all elements in the discretized domain and do
not optimize the beam velocity for all examples reported in
this paper.

Similar to the velocity parameter, increasing power Pi
creates a larger melt pool and thus leads to reduction in build
time and manufacturing cost because fewer passes are nec-
essary. Conversely, energy cost increases with larger beam
power. However, as demonstrated in Figure 4, this increase
is very small compared to the change in the manufacturing
cost. In addition, larger Pi results in weaker material strength
by increasing the grain size (Figure 3). Hence, more material
is likely to be necessary to satisfy the compliance constraint.
We optimize both the material distribution xi and the power
Pi concurrently to solve these trade-offs for minimum cost
MAM.

4.2 Optimization
Figure 5 demonstrates the concurrent optimization re-

sults for various 3D design problems. Both density and
power distributions are given. In all of the examples, we use
Pi = P0 and xi = f ∀i for initialization and we set the volume
fraction to be f = 0.4. The convergence is obtained in less
than 400 iterations for all the examples.



Table 3. Comparison of optimum designs considering different design variables. Columns [P|x] and [x,P] correspond to sequential opti-
mization (first x, then P) and concurrent optimization (ours), respectively.

Cantilever Beam L Beam Bracket Table

[x] [P|x] [x,P] [x] [P|x] [x,P] [x] [P|x] [x,P] [x] [P|x] [x,P]

Build time [h] 2.8 2.6 2.6 33.4 30.1 27.9 8.7 8.2 6.9 8.0 7.3 6.5

Mat. cost [$] 61.7 61.7 60.8 828.3 828.3 828.3 191.8 191.8 193.1 197.0 197.0 197.0

Manuf. cost [$] 154.8 143.5 143.8 1854.2 1673.0 1551.3 482.8 457.9 381.5 446.8 403.4 363.7

Energy cost [$] 0.2 0.2 0.2 2.0 2.4 2.5 0.5 0.6 0.6 0.5 0.6 0.6

Total cost [$] 216.7 205.4 204.8 2684.5 2503.7 2382.1 675.1 650.3 575.2 644.3 601.0 561.3

Fig. 5. Concurrent optimization results for various problem settings (a). Optimum material and power distributions are given in (b) and (c),
respectively. Top to bottom, models are referred to as the cantilever beam, L beam, bracket and table. The bracket model (third row) is fixed
to the ground from the four screw holes.

In our solutions, we observe variations in beam power
spanning the entire allowable range from Pmin to Pmax. High
stress regions are assigned lower power values for higher
yield strength whereas less critical regions are assigned
larger power values to reduce the build time and conse-

quently the manufacturing cost as much as possible. Figure 6
illustrates how number of passes N varies for the bracket
model on two different slices. Note that smaller number of
passes indicates larger scan spacing and shorter build time.

For some applications, users might want to enforce cer-



Fig. 6. Number of passes N computed for two different slices of
the optimum bracket designs using (a) x and (b) [x,P] as design
variables.

tain parts of the object to be solid during the optimization,
such as screw housings in the bracket model or the top sur-
face of the table. In such situations, our approach allows op-
timization to keep those regions solid while still reducing the
production cost by adjusting the beam power. In the bracket
model, it can be observed that certain parts of the screw hous-
ings are assigned larger power values to reduce build time
and the production cost. Similarly, in the table model, re-
gions of the top surface that do not carry large stresses can
be 3D printed faster with larger beam power.

4.3 Comparison
Structural [x] vs Concurrent [x,P] Figure 7 shows the
comparison of the optimum designs obtained using two dif-
ferent sets of design variables, [x] and [x,P]. In former, we
set P = P0 and in both cases, the objective is set to be the
same – total production cost. The solutions in Figure 7(a)
are obtained by optimizing the structure only, whereas in
Figure 7(b) both the structure and process variables are op-
timized. As illustrated in Figure 7(c), there are slight dif-
ferences in how the material is distributed. The difference
is more significant in the cantilever beam model where the
resulting design includes an additional beam structure at the
right corner in the x only optimization compared to the [x,P]
design. Such differences in the material distribution result
in a compelling decrease in build time (Table 3) by allow-
ing larger power at certain regions and compensating for the
resulting decrease in the yield strength.

Further numerical comparisons for various problems are
reported in Table 3. The comparisons indicate that concur-
rent optimization allows further reduction in total produc-
tion cost by balancing the trade-off between time dependent
and material dependent costs. We obtained up to 15% lower
total production costs and 21% faster build times with the
concurrent optimization compared to optimization that does
not consider process variables. It can be observed that the
cost improvements are majorly driven by shorter build time,
which leads to savings of up to 20% in manufacturing costs.
Note that amount of material used might slightly increase
in some parts such as the bracket, leading to an increase in
material cost compared to the design result from solely opti-

Fig. 7. Comparison of optimum designs using (a) x and (b) [x,P]
as design variables. Differences in element densities (i.e. xa− xb)
are illustrated in (c).

mizing the structure, although total production costs are still
lower. The reason behind this is that the cost minimal design
is to increase power to reduce the build time. Resulting re-
duction in compliance is then compensated by adding extra
material to certain regions of the part.

The cost savings are sensitive to the unit material cost
and the annual operation hours for MAM machines used in
the model. The reduction in total MAM production costs ob-
tained by using the concurrent optimization of structural and
process variables found in this study is likely a lower bound
for the following reasons: (1) Ti64 powder is a relatively
expensive material (∼$250/kg) so the cost improvement is
likely to be significantly larger for lower cost materials; (2)
the annual operating hours (∼7000 hours/year) for the MAM
machine is assumed as the maximum suggested by the ma-
chine supplier [75], and the cost difference could be larger
for cases where annual operating hours are limited to a lower
value. In fact, our experiments with the L beam model indi-
cate that cost savings from concurrent optimization increases
from 12% to 15% and 14% respectively when the material
cost is assumed to be $80/kg and annual operating hours are
assumed to be 2000 hours/year as suggested by [76]. Such
cost differences could be enough to determine whether AM
or conventional manufacturing methods are the most cost-
effective option for production of a part [75]. Therefore, the
results imply that it may be important to consider process
parameters concurrently with a part’s structural design when
considering whether to manufacture a part with MAM.

Sequential [P|x] vs Concurrent [x,P] Additionally, we
performed a set of experiments to compare performance of
our algorithm against a sequential optimization approach.
The structure is optimized first and then process variables
are optimized. For the initial structural optimization, we
set P = P0 and for sequential power optimization we fix the
structure. The objective is set to be the same – total produc-
tion cost. Expectedly, this kind of a sequential approach per-
forms better than the structure optimization only. However,
it is outperformed by our concurrent optimization approach
by up to 12% in total production cost and up to 16% in the
build time (Table 3).



Compliance Cost Improvement

Build time [h] 2.80 2.58 7.86%

Material cost [$] 60.75 60.75 0.00%

Manuf. cost [$] 155.65 143.84 7.59%

Energy cost [$] 0.17 0.18 -5.55%

Total cost [$] 216.56 204.76 5.45%

Fig. 8. Comparison of optimum designs using compliance and cost
as objectives.

Compliance vs Production Cost Objectives We also
compare our concurrent optimization approach with the con-
ventional topology optimization for minimum compliance.
Figure 8 illustrates the difference between two approaches.
Although both approaches use the same amount of material,
they converge to solutions with significantly different ma-
terial distributions. The comparison also demonstrates that
using a total production cost model as the objective function
results in a∼5% improvement in the overall production cost.
For more complicated problem configurations, this improve-
ment can be larger as the build time might play an important
role in the resulting cost.

5 Limitations and Future Work
The approach developed in the paper is a proof of con-

cept, and there are several aspects to be improved in the fu-
ture. Our cost model only considers the economic difference
of the manufacturing stage and not other life cycle stages,
such as cost benefits brought by light-weighting in the use
phase, which may cause changes in the design solutions.
Similarly, our cost model does not include post-processing
components as required post-processing steps might signif-
icantly vary based on functional/geometrical requirements
(e.g. geometrical tolerances) and these relationships have
not yet been characterized. A natural extension of our ap-
proach would be to consider total life cycle costs as well as
post-processing costs and their implications in the design so-
lutions. Additionally, our approach does not include opti-
mization of tool path, orientation, packing, production vol-
ume, or batch size, which could all be influential factors in
the production costs and resulting optimization solutions.

Our cost model assumes that a portion of the unused
powder can be recovered and reused in the future prints with-
out any depreciation. We model this using a constant scrap
rate parameter. Although our cost model can result in a con-
servative cost estimate for a large scrap rate, more accurate
cost estimates can be obtained using a financial depreciation
model for reused metal powders as presented in [77].

In this study, we assume isotropic material properties.
For materials with significant anisotropy in their mechanical
properties, the final production cost as well as the resulting
structure might be inaccurate as the process map could be af-
fected differently in different orientations. Our optimization
workflow can easily be extended to cover anisotropy in ma-
terial properties by modifying the finite element model and
the process map accordingly. In the future, the relationship
between process variables and material properties could be
captured through thermal and microstructure simulations to
increase accuracy. In this study, we use a simple first-order
approximation to represent this relationship.

6 Conclusion
This paper demonstrates a cost-minimization approach

for MAM topology design that concurrently optimizes the
structure and process parameters. The approach demon-
strates the capability to reduce total production costs by in-
corporating a process-based cost model into a topology op-
timization framework. Our formulation including material,
labor, energy, and machine costs reveals the trade-offs be-
tween these components for varying structure and process
parameters. We demonstrate our approach on various 3D
geometries for EBM process with Ti64 material using cost
estimates from industrial MAM operations. Concurrent opti-
mization of structural design and process parameters is com-
pared against optimization with respect to structural param-
eters only as well as sequential optimization of structure and
process parameters. Results show that more cost effective
results can be obtained with similar amount of material by
(1) building high stress regions with lower power values to
obtain larger yield strength and (2) increasing the power else-
where to reduce the build time. The results highlight the
potential significance of incorporating process design with
topology design in order to reduce production costs and build
time.
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Appendix A: Derivations of Cost and Allowable Compli-
ance Equations
Production Cost We break the production cost into mate-
rial based costs and time based costs. The material based
costs include the material required for printing the design of
the part and material scrap that is lost during powder recov-



ery and recycling. The time based costs include the machine
cost allocated to the production time, the energy cost and
other costs depending on the production time such as labor
cost.

C =
1

(1−R)
(Cmat +Ctime)

=
1

(1−R)
(Cmat,part +Cmat,waste

+Ctime,machine +Ctime,labor +Ctime,energy)

(17)

where Cmat,part is the material cost of the part, Cmat,waste is
the cost of the waste material, Ctime,machine is the amortized
cost of the AM machine, Ctime,labor is the cost of labor, and
Ctime,energy is the cost of energy. Individual components of
the cost can be formulated as

Cmat,part = cmρV

Cmat,waste = cmρη(Venv−V )

Ctime,machine = cmacht =
cinvest + cmaintainL

LH
t

Ctime,labor = clabort

Ctime,energy =
∫ t

t0
celec(P+P0)dt

(18)

where descriptions of the parameters and values used in this
work is reported in Table 2. The cost formulation can be
further reduced to

C =
1

(1−R)

{
cmρV + cmρη(Venv−V )

+
cinvest + cmaintainL

LH
t + clabort

+
∫ t

t0
celec(P+P0)dt

}
=

1
(1−R)

{
cmρ(1−η)V

+

(
cinvest + cmaintainL

LH
+ clabor

)
t

+ celec

∫ t

t0
Pdt + cmρηVenv + celecP0t

}
=

1
(1−R)

{
A1V +A2t +A3

∫ t

t0
Pdt +A4

}
.

(19)

Allowable Compliance The maximum compliance of the
structure is derived as

cmax
o (x,P,v) = ∑

i
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(20)
where Yi = [Yi, Yi, Yi, Yi/2, Yi/2, Yi/2]T and Yi is given in
(9).


