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Reconstruction of a Deformed Tumor
Based on Fiducial Marker Registration:
A Computational Feasibility Study
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Abstract
Interstitial photodynamic therapy has shown promising results in the treatment of locally advanced head and neck cancer. In this
therapy, systemic administration of a light-sensitive drug is followed by insertion of multiple laser fibers to illuminate the tumor
and its margins. Image-based pretreatment planning is employed in order to deliver a sufficient light dose to the complex locally
advanced head-and-neck cancer anatomy, in order to meet clinical requirements. Unfortunately, the tumor may deform between
pretreatment imaging for the purpose of planning and intraoperative imaging when the plan is executed. Tumor deformation may
result from the mechanical forces applied by the light fibers and variation of the patient’s posture. Pretreatment planning is
frequently done with the assistance of computed tomography or magnetic resonance imaging in an outpatient suite, while
treatment monitoring and control typically uses ultrasound imaging due to considerations of costs and availability in the operation
room. This article presents a computational method designed to bridge the gap between the 2 imaging events by taking a tumor
geometry, reconstructed during preplanning, and by following the displacement of fiducial markers, which are initially placed
during the preplanning procedure. The deformed tumor shape is predicted by solving an inverse problem, seeking for the forces
that would have resulted in the corresponding fiducial marker displacements. The computational method is studied on spheres of
variable sizes and demonstrated on computed tomography reconstructed locally advanced head and neck cancer model. Results
of this study demonstrate an average error of less than 1 mm in predicting the deformed tumor shape, where 1 mm is typically the
order of uncertainty in distance measurements using magnetic resonance imaging or computed tomography imaging and high-
quality ultrasound imaging. This study further demonstrates that the deformed shape can be calculated in a few seconds, making
the proposed method clinically relevant.
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Introduction

Clinical studies have reported success in using interstitial

photodynamic therapy (I-PDT) for the purpose of palliative

treatment of refractory locally advanced head and neck squa-

mous cell carcinoma (LAHNC).1-6 Interstitial photodynamic

therapy is a binary treatment consisting of a systemic admin-

istration of a light-sensitive drug (photosensitizer [PS]) that

is activated to generate reactive oxygen species to destroy
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the tumor.7,8 The light is delivered through an array of laser

fibers embedded in transparent catheters, which are inserted

into the target tumor under image guidance. The number

and location of the fibers are typically determined by the

tumor size and location. In I-PDT, the challenge is to ensure

that all regions of the tumor and its margins receive a pre-

scribed light dose.

Treatment planning and dosimetry systems have been

developed and used to administer I-PDT in the treatment of

prostate cancer.9-13 Davidson et al presented a system known

as “TOOKAD vascular targeted photodynamic therapy for

prostate cancer.”9 Swartling et al presented a somewhat sim-

ilar system (known as iDose) for the same cancer treatment.10

Both systems were tested in clinical studies. Li and Zhu pre-

sented a dosimetry system and treatment planning for calcu-

lating light fluence in a heterogeneous prostate.14 However,

this model applies only to a single heterogeneous and nonde-

formed geometry. Karakullukcu et al used modified bra-

chytherapy techniques for treatment planning of I-PDT in

patients with LAHNC.5,6 The plan has been shown useful in

assisting physicians in decision-making related to the number

of fibers to be used, but it does not calculate the light fluence

distribution. Baran and Foster developed a treatment planning

that uses a graphics processing unit–enhanced Monte Carlo

simulations to model the delivery of light in near real time, in

tissue volumes representing head and neck (HN) tumors.15,16

Oakley et al recently presented a treatment planning using

finite element method (FEM), designed specifically to simu-

late light propagation in geometries that accurately mimics

LAHNC.17

The common I-PDT treatment approach combines 2 ima-

ging modalities in subsequent stages. In the first stage, the

tumor shape is reconstructed by means of diagnostic computed

tomography (CT) or magnetic resonance imaging (MRI). The

3-dimensional (3-D) imaging data are utilized for evaluation of

the extent of the disease. The reconstructed shape is then used

for treatment preplanning, which could be assisted by compu-

tational means. The ultimate goal of the preplan is to maximize

illumination within the tumor and its margins, also known as

the clinical target volume. In the second stage, light sources

(laser probes) are localized under ultrasound (US) imaging

according to the preplan. Here, US imaging is further used for

intraoperative monitoring and control. These 2 stages are typi-

cally performed days apart, which create 2 inherent challenges:

(1) registration of the US image with the CT- or MRI-

reconstructed shape, which was used for preplanning, and

(2) tumor deformation between the 2 stages associated with

patient posture variations, possibly with tumor growth if the

2 stages are performed too far apart, and deformation due to the

insertion of the laser probes.

In previous studies, clinicians and researchers combined

FEM and a diffusion model of cancer growth in order to predict

the evolving tumor shape after CT or MRI.18-20 Such routines

assume the mechanical properties of materials to be constant in

the interstitial environment, which may be unrealistic in many

cases due to the geometric complexity of the tumor and

nonuniform mechanical properties of the tissues surrounding

the tumor. Pure geometric approach based on data mining and

regression analysis has also been proposed21; however, such

methods may not well represent the physics of the problem.

Thus, an approach that can capture the mechanical interaction

between the tumor and its interstitial environment will likely

produce preferable predictive results.

One possible approach to register the intraoperative US

image with the image-based preplan for HN cancer is to inte-

grate fiducial markers (FMs), similar to those used to guide

radiotherapy in prostate cancer treatment.22-24 Prior works in

medical imaging have demonstrated the viability of automated

FM tracking methods with high computational efficiency,

robustness, and accuracy.25 Thus, in our context, it is reason-

able to assume more than 10 FMs could be traced robustly and

accurately in real-time settings. The relative orientation (posi-

tioning) and relative displacements of FMs would then be

available through the observed FM locations. Here, the relative

orientation of the FMs could be used for shape registration,

while the relative displacement between the FMs can be used

to evaluate the shape deformation. In the absence of tumor

deformation, FM-based registration is essentially a geometric

minimization problem. The outstanding question is which

mathematical model was used to evaluate shape deformation

when significant relative displacement between FM is also

present. The current study addresses this question for the ben-

efit of I-PDT in patients with LAHNC.

Methods

Our goal is to predict the deformed shape of the tumor given

(1) an initial shape of a tumor, (2) a set of initial FM locations,

and (3) measured displacements of FMs due to tumor deforma-

tion between 2 imaging events. Toward this goal, we use a

physically based computational model where we first predict

the external force field on the tumor surface using the observed

FM displacements as displacement boundary conditions

(Integration of FMs Constraints into FEM section). Using the

predicted force field, we then compute the deformed shape of

the tumor using an FEM.

The problem of determining the external force field from the

FM displacements leads to an underdetermined set of equa-

tions. Hence, there exists no unique force field solution that

produces the observed FM displacements. To regularize the

problem, we impose a smoothness term to our force field cal-

culations using the bi-Laplacian operator that minimizes the

variation of the force field over the tumor surface (Force-

Field Smoothness section). With this formulation, computing

the deformed shape of the tumor becomes a quadratic con-

strained optimization problem (Optimization Formulation

section).

Integration of FMs Constraints Into FEM

We developed our solution based on a linear FEM with linear

tetrahedral elements and an isotropic material model. However,
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hyperelastic and heterogeneous elastic material model may

potentially result in a better outcome in deformation prediction,

if one would only know the most appropriate constitutive law

and all its properties. Given the available information and as a

proof of concept, the chosen FEM scheme is deemed adequate.

Although these choices facilitate the development of the fol-

lowing mathematical model, our approach can be readily used

with other element types and high-order blending functions as

well as anisotropic materials. Only the construction of the stiff-

ness matrix (described below) would be altered in those cases.

Given a tetrahedral mesh model O of the tumor, the local

stiffness matrix ke for element e is constructed as26:

ke ¼ VeB
T
e cBe; ð1Þ

where Ve is volume of the tetrahedron, Be, is the 6� 12 strain

matrix computed from the rest positions of the tetrahedron’s

vertices, and c is the 6� 6 material constant matrix derived

from the Young modulus and Poisson ratio of the material.

Suppose O has n vertices with each vertex v 2 R3 encoding

the x, y; and z position coordinates. We obtain a 3n� 3n sparse

global stiffness matrix K by assembling the local stiffness

matrices ke. A system of linear equations mapping the nodal

displacements x 2 R3n�1 to the corresponding external forces

f 2 R3n�1 is then established as follows:

Kx ¼ f : ð2Þ

In our context, the primary cause of tumor deformation is the

change in human posture between lying on the imaging device

table and the operation table during I-PDT. The deformation of

the tumor is thus caused primarily by the change in the interface

forces between the tumor and its surrounding tissues. As such, we

model the tumor to deform only due to the external forces on its

surface nodes. All interior nodes are set to have unconstrained

(free) displacements with no external forces. Hence, their corre-

sponding entries in f is equal to 0, while their displacements are to

be computed. We rearrange the rows of the global stiffness matrix

K into 2 submatrices Ku 2 R3u�3n (upper stiffness matrix) and

Kl 2 R3l�3n (lower stiffness matrix):

Ku

Kl

� �
x ¼ fu

0

� �
; ð3Þ

where the nonzero entries in Ku and Kl pertain to the surface

nodes and interior nodes of the tumor, respectively. Note that if

K and f are row-shifted consistently, x remains unaltered. In

our problem, we aim to predict the tumor’s deformation using

the final positions of several FMs. Suppose we have FMs on

t nodes of the mesh model (these can be on the surface, in the

interior of the tumor, or in both regions). Let D 2 R3t�3n be a

binary indicator matrix. Each row of D encodes one of the FMs

by placing a value of 1 for the corresponding x, y, and z column

indices of the node having the FM, and a 0 value otherwise. The

corresponding FM displacement constraints are given by:

Dx ¼ d; ð4Þ

where d 2 R3t�1 is the measured (known) displacement vector

of the FMs. By concatenating Equations 3 and 4, we obtain the

system of linear equations governing our model:

Ku

Kl

D

2
4

3
5x ¼

fu
0
d

2
4

3
5: ð5Þ

Force Field Smoothness

Both x and fu are unknown in Equation 5. In order to obtain a

unique solution in this underdetermined system, we regularize

the problem by preferring a smooth solution to fu such that

local variations in fu are minimized. Instead of assuming uni-

formity of surrounding tissue material in previous litera-

tures,18-20 our approach focuses on the interstitial forces

between the tumor and its surrounding tissue. This choice is

based on the observation that a tumor’s surrounding tissues

would generally induce pressure areas on the tumor, rather

than inducing discrete force points. We formulate this prefer-

ence by minimizing the bi-Laplacian27 of fu, computed over

the surface nodes of the tumor model O. We employ the

cotangent-weighted discretized Laplacian operator as

described by Crane et al.28 By following the sequence of

nodal indices in K, the discretized Laplace operator can be

assembled into a symmetric matrix L with high sparsity.

To account for the size variations across the surface trian-

gles, we normalize each row of the Laplacian matrix L by the

corresponding vertex’s area29:

Ai ¼ 1
3

X
j

aj; ð6Þ

where aj is the area of triangle j adjacent to vertex vi. We prefer

the per-vertex area in Equation 6 because the per-triangle area

is more efficient to compute than Voronoi region created in the

dual graph.30 Additionally, the distributed force field on the

edges and faces of the elements in the pressure will be con-

verted to per-vertex forces in our finite element formulation,

and thus, the choice of per-vertex area normalization is also

consistent with the finite element discretization.

To facilitate conversion between pressure area and nodal

forces in FEM computation, we assemble an inverse mass

matrix Mj such that when Mj is multiplied by a column vector

of the computed Laplacian, where the Laplacian is normalized

correspondingly. Assume that there are u nodes on the tumor

surface, Mj is a u� u diagonal matrix, with diagonal entries

equal to the inverse of corresponding per-vertex area:

fMjjMj½i; i� ¼ A�1i ; Mj 2 R�g: ð7Þ

Optimization Formulation

The interstitial forces on the surface of the tumor can be

conveniently decomposed into 3 scalar functions fux, fuy, and

Han et al 3



fuz over the surface nodes. The Laplacian of fux is

calculated as:

Lx ¼ MjLjfux ¼ MjLjKuxxx; ð8Þ

where fux, Kux; and xx are the x components of the force vector,

stiffness matrix, and displacement vector of surface nodes, and

Mj and Lj are the corresponding inverse mass matrix and

cotangent-weighted Laplacian matrix operating on fux.
Using the bi-Laplacian term LTx Lx, the smoothness of fux can

be enforced by minimizing the following functional:

LTx Lx ¼ ðMjLjKuxxxÞTMjLjKuxxx ¼ xTx K
�
uxxx: ð9Þ

Note that in this form, the explicit dependency on fux has been

removed by replacing fux with Kuxxx. This allows xx to be the

only unknown to be computed. In a similar way, the smoothness

of fuy and fuz can be encoded in xyK�uyxy and xzK�uzxz. We con-

catenate and rearrange Mj and Lj into a global inverse mass

matrix M 2 R3u�3u and a Laplacian matrix L 2 R3u�3u by fol-

lowing the pattern of how fu is assembled from fux, fuy, and fuz.
Finally, we formulate our deformation prediction process as

a quadratic programming optimization problem as:

argmin
x

xTK�x subject to
Dx ¼ d
Klx ¼ 0

;

�
ð10Þ

where K� ¼ ðMLKuÞT ðMLKuÞ. In this formulation, the displace-

ment vector x is the only unknown variable. The constraints

ensure that (1) the displacements of FMs exactly match the

measured FMs using imaging technology and (2) there are no

external forces on the internal nodes. A key advantage of this

formulation is that the solution can be achieved quickly by using

the interior point algorithm31 for a quadratic programming prob-

lems, as K� is a symmetric matrix with high sparsity.

Evaluation Approach and Performance Metrics

To evaluate our method, we use the following methodology:

1. Given a 3-D digital tumor model (synthetic or real),

place FMs randomly on its surface/inside its volume.

2. Apply point forces to the surface nodes based on a

known continuous force field.

3. Using a commercial FEA package (Abaqus in our case),

solve the full-scale solid mechanics deformation problem

according to the applied forces and displacement bound-

ary conditions and compute the FMs’ displacements—

we call this deformed model the benchmark.

4. Use the computed FM displacements as input to our

algorithm to predict the applied force field and the tumor

deformation—we call the outcome the prediction model.

5. Compare the prediction against the benchmark using

several performance metrics as explained below.

6. Repeat the above process for a varying number of FMs

and their placements and report outcomes over multiple

runs.

We tested our approach on 2 spherical models with dia-

meters of 3 and 8 cm and a diagnostic CT scanned tumor model

acquired from the Roswell Park Cancer Institute. The dimen-

sions of the spherical models are reflective of the typical range

of tumors encountered in HN cancers, which is taken from the

minimum of and maximum dimension of our CT scanned

tumor model. Table 1 lists the parameters used in our evalua-

tions, which were selected for the purpose of demonstrating a

proof of concept for our method. Note that the tumor properties

in 32 are given for a brain tumor and are used here in the

absence of LAHNC-specific properties. We will explore para-

meter optimization in future studies.

The number of vertices and elements in the sphere and

tumor models are chosen such that (1) the shapes possess

appropriate degrees of freedom for realistic deformations and

(2) the 2 models exhibit differences in complexity to allow a

comparison of the computational cost. For the 2 sphere models

(3 and 8 cm), the topology is identical, which allows an iden-

tification of the impact of geometric size on our approach.

Sphere Model

To create the benchmark deformations, we sample each com-

ponent of the interstitial force vector on a node from a sinusoi-

dal force field:

fij ¼ SjAmsinovij; j ¼ x; y; z; ð11Þ

where the 3 components of force fi on vertex i are sine functions

defined on the node’s position vector vi, Sj is a sign term

2 fþ1;�1g that controls the direction of the force component

in the j direction; Am is the force amplitude (N), and o is the

spatial frequency (m�1). A sinusoidal force distribution model

is infinitely differentiable, which ensures continuity with

respect to the change in nodal positions, while the resulting

forces are well bounded. Additionally, the frequency term

allows us to control the spatial rate of change of the force field,

thereby allowing us to simulate different levels of pressure

undulations over the tumor surface.

Ideally, we desire to create benchmark deformations with

smoothly varying external forces on the surface nodes.

Table 1. Geometric Parameters of the Tetrahedral Mesh Models Used

in the Current Study.

Model Sphere Tumor

Number of vertices 737 1825

Number of tetrahedral

elements

3343 8520

Number of vertices on

surface

330 760

Number of triangles on

surface

656 1516

Size 3 and 8 cm (diameter) 22 � 39 � 70 mm3

Young modulus32 21 kPa 21 kPa

Poisson ratio32 0.45 0.45
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However, this is hard to achieve due to the difficulty in con-

trolling the reaction forces on the nodes that have been

anchored (ie, zero displacements) to prevent rigid body

motions. If 3 surface nodes are anchored and a sinusoidal

force field is applied on the remaining surface nodes, the

reaction forces on the fixed nodes are likely to be far different

from the forces on their immediate neighbors. This discre-

pancy would result in unrealistic forces around the anchor

nodes. To mitigate this possibility, we randomly select 3

internal nodes to be anchored in our benchmarks. Although

this choice may induce discontinuities in the deformation

gradient inside the tumor (hence adversely affecting the pre-

dicted accuracy), it nonetheless allows the creation of a

smooth force field over the tumor surface.

Tumor Model

We use an HN tumor model reconstructed from MRI (Figure 1).

In this study, we aim to simulate a bending of the tumor

by first applying the forces on 3 surface nodes as shown in

Figure 2A. We apply 0.1 N on each of the 2 ends and �0.2

N in the middle—along the x axis. To create a force field, we

Figure 1. Original tumor model (blue) reconstructed from magnetic resonance imaging (MRI) and the resulting finite elements tumor model

created for testing.

Figure 2. Scaled initial force and smoothed force fields.

Han et al 5



apply implicit fairing on the initial forces as described in the

study by Desbrun et al.33 The final force field for this bench-

mark is shown in Figure 2B. Given the material properties, this

force model and the magnitudes simulate a realistic bending

behavior representative of real tumors.

Performance Metrics

As discussed below, we use the following 3 metrics to compare

our predictions against the benchmarks: (1) absolute and rela-

tive forces, (2) absolute and relative displacement, and (3) dis-

placement offset.

Absolute and relative force difference over the tumor

surface (fadiff and frdiff , respectively)

ðfadiff Þi ¼ kfpred � fbenchki; ð12Þ

ðfrdiff Þi ¼
fadiff
jjfbenchjj

� �
i

; ð13Þ

where ðfadiff Þi and ðfrdiff Þi are the absolute and relative difference

in the force vectors computed at node i, respectively. These force

vectors are defined over the surface nodes of the tumor only.

Here, jj � jj is the L2 norm operator. frdiff is fadiff normalized by

the scale of the benchmark force at the same vertex.

Absolute and relative displacement difference over the

tumor (xadiff and xrdiff , respectively)

ðxadiff Þi ¼ kxpred � xbenchki; ð14Þ

ðxrdiff Þi ¼
xadiff
jjxbenchjj

� �
i

; ð15Þ

where ðxadiff Þi and ðxrdiff Þi are the absolute and relative differ-

ence in the displacement vectors at node i. These displacement

vectors are computed over all the nodes of the tumor (surface

and interior combined).

Displacement offset over the tumor surface (Oi)

Oi ¼ siðjjxpred � xbenchjjÞi; ð16Þ

where Oi is the signed displacement offset at node i, which

encodes the difference between the deformed nodal positions

for the benchmark and our prediction, while si determines

whether the predicted vertex position falls inside or outside

of the benchmark surface. This is a conservative approach to

how much the predicted model deviates from the benchmark,

since it tends to overestimate the actual offset, as it computes

the difference per corresponding vertex pairs rather than point-

to-surface distance.

Modeling the Impact of Tumor Deformation on the Light
Dose

We employed our previously published FEM approach to

calculate light distribution within an LAHNC model generated

from CT scanning of a patient amenable to I-PDT.17 The

respective simulations and analyses were conducted with Com-

sol 5.2a (Comsol Inc, Burlington, Massachusetts). A detailed

description of this computation method is provided in the study

by Oakley et al. In the current study, we utilized our model to

compute the light dose distribution in the tumor models as

shown in Figure 2. The light propagation simulations were

performed for laser settings of 630 nm and 400 mW/cm, which

are typical setting for I-PDT with a PS that is being used in

clinical settings in the United States.

Results and Discussion

Sphere Model

We induce a deformation that squeezes the sphere around

z ¼ 0 plane and stretch it at its 2 poles along the z axis.

Thus, the sign term in Equation 11, Sj, is set to be þ1 on

the z axis and �1 on the other 2, simulating tension in the z
direction and compression in the x and y directions. The

resulting force vector field is shown in Figure 3A for the

3-cm sphere subject to o ¼ 10 m�1 and Am ¼ 0:1 N. The

FMs are randomly chosen from the internal nodes. Because

we apply the same loading model (Equation 11), the shape of

the force field for the 8-cm case sphere is very similar to that

of the 3-cm case sphere. Any discrepancies are due to the

differences in the size of the spheres, which affect the vertex

positions on the spheres, hence the force magnitudes.

The predicted force distribution on the 3-cm sphere is shown

in Figure 3B for 10 FMs, for example. A comparison between

the tumor deformation for the benchmark (green) and our pre-

diction (red) is shown in Figure 4.

The absolute and relative differences in the nodal force

vectors (sorted) are shown in Figure 5.

The absolute and relative differences in displacements

(sorted) for the 3 cm case are shown in Figure 6. The displace-

ment offsets are shown in Figure 7.

The difference between the benchmark and predicted

forces on certain nodes can be relatively large (maximum

relative force difference of around 40% in Figure 5). How-

ever, a close inspection of the nodal displacements (Figure 6),

especially the surface offset (Figure 7), reveals that the defor-

mation differences between the benchmark and the prediction

are in fact quite small. As a point of reference, the maximum

offset in the prediction model is about 0.5 mm, while the

typical US imaging resolution is of the order of 1 mm. The

results are encouraging as we are primarily concerned about

the final deformed shape rather than the actual forces that

caused that deformation.

Our formulation computes the deformed shape of the tumor

by ensuring that the FMs are matched perfectly (equality con-

straints in Equations 4 and 5) by assuming the presence of a

smoothly varying—but unknown—external force field. In our

approach, the true recovery of the benchmark force field is not

critical, as there could be arbitrarily many different force fields

giving rise to the same FM displacements. Our approach,

thus, computes a unique force field that enables the FM
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displacements to be matched perfectly, while ensuring the

Laplacian of the force field, which can be thought of the

second-order spatial derivative of the force field, vanishes giv-

ing rise to a smooth force field. Although the benchmark force

fields we applied as well as the force fields that would normally

be encountered in reality would not necessarily exhibit this

precise property, the Laplace energy minimization helps our

approach to produce a viable force field that ensures the FM

displacements are matched perfectly. In fact, the displacement

field is rather only weakly sensitive to the precise values of the

force field as evidenced with our results (very good match in

displacement prediction even with large force prediction

errors). Therefore, the 10% to 40% nodal force error is quite

tolerable with minimal impact on the nodal displacements.

The model could be improved with more FMs or by opti-

mizing the placement of the FMs in our approach (Summary

and Conclusion section). Beyond this improvement, and with-

out any additional input to the system, any shape recovery

method has to make assumptions about the force field, thereby

likely resulting in deviations from the benchmark forces.

To the best of our knowledge, there exists no prior informa-

tion regarding the magnitudes of the forces that develop in the

real interstitial environment of tumors. Hence, to gain a better

understanding of the robustness of our approach to the varia-

tions in the force field as well as to the variations in tumor size,

we test our algorithm on the 2 sphere models with varying force

fields that can induce significant deformations under US ima-

ging. For each pair of diameter and Am, we average the results

of 10 independent runs to mitigate the error induced by the

selection of FMs. The results are shown in Table 2 for experi-

ments involving 10 FMs for each case. Among all the test

cases, the 8-cm sphere model with Am ¼ 0:1 N yields the

Figure 3. A, Benchmark model: Force vectors on the surface nodes (green arrows) and fixed nodes with their reaction forces (black) for a 3 cm

sphere. B, Prediction model: Force prediction result of a 10 fiducial markers (FMs) case with predicted forces (red arrows), 10 FMs (blue

circles), and reaction forces (black). Note that the prediction force field matches the benchmark force field well.

Figure 4. Visualizing the deformed models for the benchmark (green)

and prediction (red) with fiducial marker (FMs, blue circles) in 3 cm

case. Note that the predicted deformation matches the benchmark

deformation well.

Figure 5. Sorted absolute (blue) and relative (orange) difference (fadiff

and frdiff) in the forces between the benchmark and prediction on

surface nodes for the 3 cm case.

Han et al 7



largest prediction error. Thus, the increase in the tumor size and

the force field magnitude may result in a lower prediction

accuracy. Nonetheless, the maximum offset (0.7 mm) is still

smaller than the typical US imaging resolution of 1 mm.

We conduct parametric studies on the key factors that may

affect the accuracy of our prediction algorithm: the number of

FMs and the spatial rate of force distribution.

Number of FMs. Figure 8 shows how the number of FMs affects

the prediction accuracy of our algorithm in the 3-cm sphere

case (o ¼ 10 m�1; Am ¼ 0:01N). The mean relative differ-

ence in displacements descends quickly from over 40% to less

than 3% when the number of FMs increases from 5 to 10.

Although future clinical studies will be necessary, we believe

10 to 20 FMs will be satisfactory (and physically feasible) in

the vast majority of real treatment procedures. For test cases

with more than 10 FMs, the mean relative difference in dis-

placements vanishes, as desirably more constraints are

imposed by the FMs.

For a given number of FMs, the error bars in Figure 8

indicate the 1 standard deviation (SD) in xrdiff over 10 runs

of our algorithm with random placement of the FMs. The

results for the lower number of FMs indicate that the variation

can be significant. This observation implies an opportunity for

a strategic placement of the FMs on the tumor rather than a

random placement. However, we defer FM placement optimi-

zation to a future study. As the number of FMs increases, the

variation in the results vanishes, which means that a strategic

placement is no longer critical in these cases.

The current study focuses on a proof of concept for a newly

developed algorithm, while leaving an optimization scheme for

practical applications to a later stage. An advanced optimiza-

tion stage would naturally include the best FM placement, such

that a minimal number of FMs can be used. Recall that a ran-

dom initial placement strategy for FMs is applied at this stage,

which may result in a large number of FMs. Nonetheless, it can

be observed from Figure 8 that the mean relative difference

error in the current nonoptimized system decreases below 2%

Figure 6. Sorted absolute (blue) and relative (orange) difference in

displacement (xadiff and xrdiff) for the 3 cm case.

Figure 7. Displacement offset O of surface nodes for the 3 cm case.

Table 2. Quality of the Tumor Shape Prediction Results, Averaged Over 10 Runs for Each of Randomally Distributed 10 FMs.a

Case Am 0.1 N 0.05 N 0.01 N

3 cm fadiff , N ðfrdiff ; %) Mean 3:97� 10�3. (26.5%) 1:83� 10�3. (24.5%) 3:60� 10�4. (24.0%)

Max 6:26� 10�3 (41.8%) 3:35� 10�3 (44.8%) 4:80� 10�4 (32.0%)

xadiff ; mm (xrdiff , %) Mean 1:33� 10�1 (1.5%) 1:18� 10�1 (3.0%) 9:33� 10�3 (1.3%)

Max 1:86� 100 (38.7%) 1:34� 100 (107%) 1:55� 10�1 (41.2%)

O, mm Max 5:32� 10�1 6:01� 10�1 3:98� 10�2

x, mm Max 3:02� 101 1:51� 101 3:02� 100

8 cm fadiff , N (frdiff , %) Mean 1:01� 10�2 (25.6%) 4:22� 10�3 (21.5%) 5:48� 10�4 (13.9%)

Max 1:87� 10�2 (48.0%) 9:70� 10�3 (48.9%) 1:19� 10�3 (30.1%)

xadiff ; mm (xrdiff , %) Mean 2:00� 10�1 (2.3%) 1:29� 10�1 (2.93%) 1:57� 10�2 (1.6%)

Max 1:92� 100 (56.0%) 9:47� 10�1 (79.6%) 8:12� 10�2 (20.9%)

O, mm Max 6:89� 10�1 4:37� 10�1 5:61� 10�2

x, mm Max 2:98� 101 1:49� 101 2:98� 100

Abbreviations: FM, fiducial marker; max, maximum.
aThe performance metrics are computed as described in section “Performance Metrics.”
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for 10 FMs or more. This 2% error is translated, on average, to

0.015 mm in tracing the tumor contour in an absolute scale. In

general, a lower number of FMs may be used for applications

that permit even lower accuracy.

Spatial rate of change of the force field. This study aims to under-

stand the effect of the force field frequency on the prediction

results. Higher frequencies represent rapidly changing forces

over the tumor model, whereas lower frequencies represent

small rates of spatial changes in the force field. By varying the

spatial frequency o of the sinusoidal function (ie, the pressure

area), the spatial rate of change in the force field can be

adjusted. As shown in Figure 9, the prediction results are more

accurate for small o value, which reflects a slow rate of force

changes. In I-PDT, the rate of change of the force field on the

tumor surface is expected to be low, as the deformation is

generally caused by the simple motion of the patient.

Tumor Model

The results of our force prediction method with 10 FMs are

shown in Figure 10A. In the benchmark, we model the force

field to have only an x component (Figure 2). As our algorithm

enforces smoothness on the predicted force field and is una-

ware of the benchmark force model, the prediction results in a

force field with all 3 components (dominant magnitudes in x
and minor magnitudes in y and z, as expected). We visualize the

benchmark and the predicted force field with a color map on

their x components as shown in Figures 11 and 12. By com-

parison, the predicted force field differs considerably compared

to the benchmark. This discrepancy is due to the slender nature

of the specific tumor analyzed, where pushing on the tumor

from the right side will produce qualitatively similar results as

pulling it from its left side, hence creating a duality in the

solution. Thus, in our prediction, the force field points in the

negative x direction on both sides of the middle part and

the opposite on the 2 ends. Despite the difference between the

predicted force field and the benchmark, the prediction of the

displacement field is quite accurate, with the maximum offset

on the surface still being within the US imaging resolution as

shown in Table 3. It follows that our approach is able to predict

the tumor deformation with high accuracy.

Our computational benchmark and prediction methods are

decoupled except for the fact that: (1) we use FEA with linear

elements in both cases and (2) the material properties are

assumed to be known and identical in the benchmark and the

prediction models. This model could readily be extended quad-

ratic or higher order shape functions, but the level of depen-

dency would remain the same. During prediction, our method

has no knowledge of the force field used for the benchmark

creation and only takes as input the displacement of the FMs.

This study has been performed on a �64 machine with

2.7 GHz Intel i7 processor and 16 GB of 1600 MHz DDR3 L

onboard memory. Our algorithm is implemented with Matlab

R2015a. The average run time for our algorithm is 1.3 seconds

for the sphere model (coarse-mesh) and 5.5 seconds for the

tumor model (fine-mesh). These run times indicate that our

algorithm can be clinically relevant.

Light dose distributions. Figure 13 Illustrates the effect of 10%
tumor deformation on light dose distribution for the optical

properties listed in Table 4. Consistent with the locations of

the applied forces, we evaluated the impact of deformation on

the dose–volume histograms (DVHs) in 3 different regions.

Dose–volume histograms representative of the percentage of

the tumor volume and surface area that receives at least

Figure 8. Mean relative difference xrdiff (%) in nodal displacements

versus the number of fiducial markers (FMs, 3 cm, o ¼ 10 m�1;
and Am ¼ 0:01N). The error bars indicate one standard deviation

among results of 10 runs subject to similar conditions and randomly

distributed FMs.

Figure 9. Average relative difference in nodal displacements xadiff

with respect to change in spatial frequencies o (3 cm, fiducial marker

[FM] ¼ 10, Am ¼ 0:1N). The error bars indicate the one standard

deviation of the results from 10 runs.
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100 J/cm2 were calculated for PDT with Photofrin, which has

an excitation at 630 nm. The maximum differences in the

DVHs between the nondeformed and the deformed tumor are

listed in Table 5.

It is well established that it is critical to treat tumor margins

for disease control in HN cancer,34,35 where its surface is a part

of these margins. The simulated light dose distributions for

deformed tumor varies by up to 5.4% from its predeformed

shape (Table 5). Closer inspection of Figure 13B and D indi-

cates how the effect on local margins may far exceed these

regional values, where the dashed red line display the prede-

formed tumor contour on the specific plane. For example, the

Figure 10. A, Predicted force field. B, Comparison of deformed shapes of the benchmark (green) and prediction (red).

Figure 11. View of the force field’s x component in benchmark (left) and prediction (right) looking down þy direction.

Figure 12. View of the force field’s x component in benchmark (left) and prediction (right) looking down �y direction.
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lower light probe in region 3 has shifted 5 mm to the left due to

tumor deformation, which means an increase in internal mar-

gins of 5 mm right to the same light probe, which is a signif-

icant undertreated area. Consistently, this deformation caused

an increase in 5 mm to the external margins left to this light

probe, which may cause undo damage to surrounding tissues,

such as blood vessels. A similar effect is displayed in region 1.

If the deformed shape could be predicted in real time, which

would facilitate intraoperative plan modifications, the I-PDT

effect to the tumor margins could be improved.

It is noted that the tumor model was deformed by a

modest rate of 10% and only in 1 plane. More significant

deformations in 2 or more directions, including twisting as

the neck is positioned for easy light probe insertion, may

increase the global values listed in Table 5. The effect of

such more complex deformations on the tumor’s margins is

now under investigation.

Finally, while tumor deformation is assumed due to posture

change and anatomy constraints in the current study, this study

did not take into account possible additional deformation due to

the insertion of light fibers into the target area. The reason for

the latter assumption is that the light fiber is small in diameter,

has a sharp pointed tip, and is inserted into the target region

through an x–y placement grid after the tumor has already been

deformed due to posture changes. Nonetheless, additional

tumor deformation due to fiber insertion may be taken into

account without affecting the proposed method, computation

framework, or the validity of the proof of concept.

Summary and Conclusion

We propose an optimization method that uses the tracked posi-

tions of a set of FMs for reconstructing the deformed shape of

HN tumors. In addition to the constraints imposed by the FMs,

the smoothness of the force field on the tumor’s surface is used

as an objective as a way to compute a unique force field and

hence tumor deformations. The force field smoothness is for-

mulated as a bi-Laplacian term in objective function, and thus

the prediction can be achieved at interactive rates by using

sparse quadratic programming solver. Despite the relative large

error in the prediction of the nodal forces, the prediction accu-

racy in terms of nodal displacements is highly encouraging

Table 3. Averaged Prediction Results on Tumor Case (10 Runs).a

fadiff , N (frdiff ;%) Mean 3:23� 10�4ð< 102%Þ
Max 1:19� 10�3ð< 105%Þ

xadiff , mm (xadiff , %) Mean 1:18� 10�1ð1:3%Þ
Max 1:42� 100ð26:4%Þ

O, mm Max(abs) 4:97� 10�1

x, mm Max 3:06� 101

Abbreviation: max, maximum.
aThe performance metrics are computed as described in section “Performance

Metrics.”

Figure 13. Illustration of the effect 10% tumor deformation on light

dose distribution: (A) region break down for the tumor model before

deformation consistent with the applied forces, (B) light dose distri-

bution according to preplan on the undeformed tumor, (C) deformed

regions, and (D) light dose distribution calculations after the tumor has

been deformed while maintaining the preplan light probes layout; the

dashed line represents the tumor contour before deformation.

Table 4. Optical Properties.

Free space wavelength 630 nm

Absorption coefficient 20 (1/m)

Scattering coefficient 2777 (1/m)

Reduced scattering coefficient 500 (1/m)

Tissue optical anisotropy factor, g 0.82

Tissue refractive index 1.37

Optical diffusion coefficient 1.4 � 105 m2/s

Table 5. Maximum Difference Between the Pre- and Postdeformation

Tumor Model Dose–Volume Histograms.

Percent of Surface Area That

Receives >100 J/cm2
Percent of Volume That

Receives >100 J/cm2

Region 1 1.47% 5.43%
Region 2 2.19% 0.99%
Region 3 3.11% 1.94%
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(below typical US imaging resolution) in both the sphere and

the real tumor cases. Future work will involve extending our

formulation to nonlinear FEM and validating our approach

against physical experiments. Additionally, an interesting area

of investigation includes optimizing the placement of the FMs

given the 3-D tumor model. We have shown that FM placement

optimization may be particularly useful when only a handful of

FMs are available.

The simulation of light dose distributions in the pre- and

post-deformed tumor showed that the tumor surface is likely

to receive a light dose that is up to 5.4% different than the

planned dose (see Table 5). It is well established that it is

critical to treat tumor margins for disease control in HN

cancer.34,35 The tumor surface is part of the margin. Thus, it

would be important to assure that the prescribed light dose is

delivered to the surface of the deformed tumor.

Our current results indicate that a real-time computational

prediction of a tumor’s deformed shape using only US-tracked

FMs is feasible using standard personal computers. We believe

our methodology may pave the way for a novel clinical tech-

nique for the real-time shape reconstruction and tracking for

HN tumors in I-PDT. Additional studies are required to eval-

uate the impact of tumor deformation on the response to I-PDT.
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