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ABSTRACT

This paper presents a set of data-driven methods for predict-
ing nitrogen concentration in proton exchange membrane fuel
cells (PEMFCs). The nitrogen that accumulates in the anode
channel is a critical factor giving rise to significant inefficiency
in fuel cells. While periodically purging the gases in the anode
channel is a common strategy to combat nitrogen accumulation,
such open-loop strategies also create sub-optimal purging de-
cisions. Instead, an accurate prediction of nitrogen concentra-
tion can help devise optimal purging strategies. However, model
based approaches such as CFD simulations for nitrogen predic-
tion are often unavailable for long-stack fuel cells due to the
complexity of the chemical environment, or are inherently slow
preventing them from being used for real-time nitrogen predic-
tion on deployed fuel cells. As one step toward addressing this
challenge, we explore a set of data-driven techniques for learn-
ing a regression model from the input parameters to the nitro-
gen build-up using a model-based fuel cell simulator as an off-
line data generator. This allows the trained machine learning
system to make fast decisions about nitrogen concentration dur-
ing deployment based on other parameters that can be obtained
through sensors. We describe the various methods we explore,
compare the outcomes, and provide future directions in utilizing
machine learning for fuel cell physics modeling in general.

INTRODUCTION
Proton exchange membrane fuel cells (PEMFCs) utilize hy-
drogen to generate electricity [1]. Due to their low carbon diox-
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FIGURE 1: Nitrogen crossover in fuel cell.

ide emissions and high energy density, PEMFCs are becoming
increasingly more common in automotive industry as a poten-
tial substitute for traditional internal combustion engines. Dur-
ing normal fuel cell operations, nitrogen diffuses through the
proton exchange membrane to the anode channel driven by ni-
trogen concentration gradient as schematically illustrated in Fig-
ure 1. The process dilutes the hydrogen in the anode channel
which lowers the fuel cell efficiency. Purging out all the gases
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in the anode channel after nitrogen build-up has been a major
approach to combat this problem [2]. Currently, most car manu-
facturers purge out the anode gases at a constant frequency. The
challenge of installing dedicated nitrogen sensors prevents an
accurate measurement of nitrogen concentration, which in turn
inhibits the development of more effective purging strategies.
However, with the increase demand for fuel cell technology in
automotive industry, more effective nitrogen purging strategies
are needed.

A conventional approach for direct nitrogen prediction in-
volves the use of CFD tools. The prediction at each time step
is simulated by a physical model. There are two major draw-
backs of using CFD simulations. First, the simulation process is
computationally expensive and slow which makes it challenging
to use for real-time nitrogen prediction in on-board control sys-
tems. Second, CFD-based nitrogen prediction in long-stack fuel
cells is very challenging primarily due to the difficulty in creating
physically accurate computational models of the highly complex
chemical environment. These two disadvantages prevent the di-
rect use of CFD for on-board nitrogen prediction.

In this work, we present a new data-driven approach for ni-
trogen prediction. The main purpose of this work is to demon-
strate that a machine learning (ML) model can serve as an appro-
priate substitute for the current method of periodic purging by
allowing the nitrogen concentrations to be accurately estimated
from other data that can be sensed using on-board sensors. While
this work uses a simulator to train the proposed ML systems for
nitrogen prediction, the long-term vision of this work is to de-
velop ML algorithms that can be trained by simply using the ex-
periments conducted on the real, physical fuel cells. This, in
turn, will alleviate the need for complex, model-based CFD sim-
ulations of long-stack fuel cells in general.

Specifically, we explore three ML approaches to establish a
time-dependent regression model from the input variables to the
nitrogen concentration. These include (1) K-Nearest Neighbor
model, (2) Input/Output Hidden Markov Model IOHMM), and
(3) Long Short-Term Memory (LSTM) models. Our experiments
suggest that after parameter tuning, LSTM outperforms the other
two models with mean square value and a coefficient of determi-
nation R? of prediction curve on test data.

To the best of our knowledge, our work is the first attempt to
demonstrate the feasibility of nitrogen concentration prediction
using data-driven methods. However, we once again note that
the main scope of this work is to demonstrate the feasibility of a
data-driven regression model, where the models we utilize have
been currently trained and tested on a simulated, short-stack fuel
cell model. Future work will utilize experimental data collection,
training, and validation on real fuel cells.

RELATED WORK
This work focuses on demonstrating the use of ML for the
prediction of anode side nitrogen concentration in fuel cells.

Nitrogen Concentration Prediction

In the fuel cell industry, anode gas purging is usually per-
formed at a fixed interval [3]. The determination of the purg-
ing strategy relies on a large number of experiments. Siegel et
al. [4] experiment on a PEMFC and create a one-dimensional
model to predict nitrogen crossover and accumulation. Rabbani
and Rokni [5] present a model-based nitrogen crossover of a
single-stack fuel cell. Ahluwalia and Wang [6] create a nitro-
gen buildup model and explore several effects on nitrogen accu-
mulation. Kocha et al. [7] find the membrane permeability by
comparing nitrogen crossover and use this value to predict nitro-
gen accumulation. However, these works focus on short-stack
fuel cells and use a physical model, which is not practical for
industrially deployed long-stack applications. When the number
of stacks are in the hundreds, accurate physics models for sim-
ulations are currently unavailable. By contrast, our long-term
motivation is to use the real fuel cells to learn an ML-based re-
gression model, which can then be deployed with the fuel cell
operationally for real-time nitrogen prediction.

Sequential Data Processing in ML

Nitrogen buildup is a time dependent process. To capture
this effect accurately, observed data must be viewed and pro-
cessed as a time-dependent and sequentially acquired signal.
Typical sequential data processing is utilized to model time-
dependent phenomena. In air quality prediction, Sun and Sun
[8] use principle component analysis (PCA) and support vector
machines (SVM) to predict PM2.5 concentration based on the
PM2.5 of past days. Guo et al. [9] compare two models, artificial
neural networks (ANN) and SVM, in predicting effluent concen-
tration in waste water treatment.

Bayesian networks (BN) have been a prominent modeling
framework to process sequential data [10]. Leclerc at al. [11]
use a naive bayesian network to predict cyclosporine blood con-
centration. Dean and Kanazawa [12] use a BN-based tempo-
ral model to reason about persistence and causation. Later, the
model is largely referred to as dynamic bayesian network (DBN),
and has been extensively used in various data processing and dy-
namic control problems [13—-16]. Weigend et al. [17] propose a
gated mixture expert model under the DBN framework to allow
the algorithm generate complex time series functions.

However, DBN has the drawback of assuming the dynam-
ics within each discretized time slice remains the same. Nodel-
man et al. [18] create a continuous time BN to mitigate the need
for discretized time steps in DBN models. The DBN framework
usually assumes a base probabilistic distribution for each random
variable. These requirements can limit the ability of DBN mod-
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els to model complicated probabilistic distributions.

Sequential Data Processing Using Deep Learning

Historically, the problems in natural language processing
have been of primary interest where effective sequential data pro-
cessing is critical. One variant of DBN, hidden markov model
(HMM), has been one prominent technique to formulate and
solve such problems. However, with recent advances in neu-
ral computing, recurrent neural networks (RNN) and its vari-
ants have now mostly replaced HMMs. RNN defines an neural
network structure for each time slice, similar to DBNs. Hop-
field networks were an early instantiation of RNNs that have
demonstrated RNN’s ability in deciphering patterns from seem-
ingly corrupt, missing, and noisy inputs [19], and with the advent
of backpropagation [20], efficient network optimization became
possible.

A major drawback of RNNs is the propensity for memory
loss with coarser time steps, as vanishing and exploding gra-
dients cannot properly propagate [21]. Long short-term mem-
ory (LSTM) models address this problem by introducing internal
states and using gate mechanisms [22]. LSTM has shown its suc-
cess in natural language processing. Wang et al. [23] use a deep
LSTM structure to encode tweets and classify the tweets based
on the encoding. Their method outperforms other conventional
ML algorithms in terms of classification accuracy. LSTM has
also been used for language translation. Sutskever et al. [24] use
an LSTM model to encode one language and another LSTM to
translate the encoding to another language.

Although ML and more recently deep learning have been
successfully utilized to formulate and learn from sequential data,
today nitrogen prediction in fuel cells rely solely on physical
models. Our approach is thus one step toward allowing fuel cell
nitrogen prediction to be formulated as a ML problem.

METHODS

This section first presents the method we use to generate Ni-
trogen data. Then the machine learning algorithms we have ex-
plored are described in details. In this study, the regression model
we choose is K-nearest Neighbor (KNN) model, Input/Output
Hidden Markov (IOHMM) Model and Long Short-term Mem-
ory (LSTM) model. KNN is selected primarily as a baseline
algorithm due to its simplicity. IOHMM and LSTM are the al-
gorithm framework we focus on as both of the algorithms are
widely used to deal with sequential data.

Data Generation

The training and testing data sets are generated from a two
dimensional finite element model of a single-stack fuel cell. In
this model, the anode hydrogen recirculation, the purging pro-
cess, and the nitrogen accumulation have been simulated. The

nitrogen diffusion from the cathode to the anode can be divided
into four different processes. The nitrogen dissolution at the
boundary between the catalyst layer and the proton exchange
membrane is governed by Henry’s law:

’;lNz Jdissolved = sz (CNz,dissolved — PN, /HNZ) (1)

where 7, gissotvea 18 the nitrogen mass flux due to dissolution
at the catalyst layer and membrane interface, cy;, gissoived 1S the
nitrogen concentration within the proton exchange membrane,
DN, is the gas partial pressure of nitrogen and Hy, is the Henry’s
constant of nitrogen gas in the membrane.

The diffusion of nitrogen through the proton exchange mem-
brane is a gas concentration gradient driven process and is gov-
erned by Eq(2):

5CN dissolved Nafi
Z’T =V (DN;fmnVCNz,dissongd) 2
where Dx;z Jion i the diffusivity of nitrogen within the proton ex-

change membrane.
Nitrogen diffusion in the porous electrode media is de-
scribed in the model using the following equation:

OECN, dissolved
726;“” d vy (Df\};‘f VCN2> 3

Dif;f is the effective gas diffusivity of nitrogen in porous materi-

als.
Nitrogen diffusion in the anode gas channel is represented
by Eq(4):

6CN2

ot

+V (ﬁchz) =V (DNz VCNZ) 4

where ii, is the gas velocity inside the channel.

The fuel cell model also takes into account the electrochem-
ical reactions as well as heat generation at the anode and cathode
with governing equations used in previous studies [25,26]. The
generated data has 9 features and 1 output. These 9 features (in-
puts to the ML algorithms) are the cell voltage (V'), current den-
sity (%), temperature (K), cathode inlet/outlet relative humidity,
anode inlet/outlet relative humidity, anode gas velocity (%) and
purge valve opening amount. When the purge valve is fully open,
the purge open is 1. When it is fully closed, the value is 0. The
output is the anode channel nitrogen concentration in 'Zi—‘gl, which
is the target quantity our approach will try to estimate using the
above inputs.
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Data Preprocessing

We standardize each feature in the training data through
mean subtraction and normalization by its standard deviation,
and apply the same standardization coefficients to the test data.
This allows the features that can exhibit varying orders of mag-
nitudes to be properly handled by the ML algorithms:

Xi —

Xj Vi<n 5

Xt — Ul

Xt Vi<n (6)

where 7 is the number of features, x; are the standardized values
of feature i in the training data, xt; are the analogous quantities
in the test data, and ¢ and ¢ are the mean and standard deviation
of x; before standardization respectively.

Test criteria

We use the mean absolute error (MAE), mean square er-
ror (MSE) and coefficient of determination (r2) to test our al-
gorithms’ performance.

K-Nearest Neighbor model

K-Nearest Neighbor (KNN) stores the features and outputs
of all the data samples in a training set. For a test point, the algo-
rithm finds K nearest samples in the feature space of the training
set. The output of the test point is then a weighted sum of the out-
puts of the K training samples. The weight of a neighbor point is
proportional to its proximity (inverse Euclidean distance) to the
test point:

Dk — Hxlesi _XkHZ (7)
o1
Y[(,’A‘t — 7Y (8)
Lot

where Dy is the distance of the k* nearest training point X* to
the test point X', Y, is the output of the k" point. Y’ is the
prediction result of the test point.

We studied several K values to obtain the best results. The
output of KNN is strongly dependent on the proximity of the
training samples in the feature space. Thus, the algorithm does
not generalize well for test points not covered in the training set.
However, the results of KNN can be used to gain insights into
how similar the training set is to the test set.

Data Arrangement for Dynamic ML Models

Input features for a dynamic model

Ground truth

Adata sequence | Xpm+1 | Xem+2 [ Xemes | -eeeeeen- X1 X4 Yoot

FIGURE 2: Illustration of data arrangement used for dynamic

ML models.
ForIOHMM:  Xi=[ X4 X9 ...... Xn1 Xn Y k
For LSTM: Xi=[ X1 X9 ... Xn-1 Xn i

FIGURE 3: Explanation of input features.

Both the dynamic Bayesian network (DBN) model and the
Long Short-Term Memory (LSTM) model are dynamic models,
which require data to be modeled as a sequential set. Both of the
models need past data to predict a future quantity. For current
time ¢, the arrangement of one data sequence at time ¢ is shown
in Figure 2. X; is the input features X for the dynamic models
at time . m is the time step of the model. It represents how
much past information we want to feed in our dynamic model
and is a hyper-parameter that we need to tune. Y; is the quantity
that we want to predict at time 7 + 1. It corresponds to nitrogen
concentration at time ¢ + 1.

The quantity X; varies depending on the model we choose.
In this paper, we have studied Input/Output Hidden Markov
Model (IOHMM), which is a variant of DBN, and LSTM. The
two models require different X at time 7. For IOHMM, X at
time ¢ is a 10-D vector consisting of the 9 features at time ¢ from
our generated data and the nitrogen concentration at time ¢. The
model requires nitrogen concentration at each time step for its
output node. The concept of the output node will be explained
in [IOHMM Model section. For LSTM, the nitrogen concentra-
tion at time ¢ is omitted. The two settings of X; are illustrated in
Figure 3, where lower case x,, is the n'”* feature in our generated
data. Thus, the maximum value of n is 9 in our case. For a data
set of N points, we have N-m sets of such data sequence and N-m
target values. These sets of data sequence are used for training
our dynamic models.

IOHMM Model

Bayesian network uses a graph structure to represent the
conditional probability distribution of each random variable ap-
pearing in a node. The bayesian network model we study is
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FIGURE 4: Illustration of IOHMM model.

called an Input/Output Hidden Markov Model JOHMM) (Fig-
ure 4 left). The shaded node (input node) is deterministic. The
two white nodes are probabilistic. Node Z3 represents the output
of the model and is called output node. The conditional distribu-
tions of the two white nodes are:

Zy ~ P(Z|Z) 9)

Z3 ~ P(Z3|Zy) (10)

IOHMM models the relationship between the inputs and an out-
put at time #, and is called a one time-slice model. This model
repeats at each time step to represent a time-dependent dynamic
process. Since the one time-slice model repeats after r = 1, the
complete IOHMM can be unrolled (Figure 4 right). Once a time
step m is set, a data sequence of length m is generated. The model
is unrolled m times until it covers the time step. Moreover, since
the model structure at t = 2 repeats (red rectangle in Figure 4),
the entire conditional dependence of the IOHMM model can be
fully defined by the model structure consisting of the model at
t=1andt =2 only.

In Eq(10), Z; is not included because Z; is a hidden variable.
However, Eq(10) can be expanded as:

PZ:|21) = Y P(Zs|Z1.2 = )P(Z = 1) (1)
i=1

where P(Z;|Z;) is a hidden distribution that depends on the input
features in the data set. P(Z3|Z;,Z,) is the base distribution for
the output and its value depends on both the hidden variables
and the inputs. From Eq(11) it can be seen that the model is able
to represent a combination of different distributions that involve

the input features and the output. This allows a more accurate
discovery of the underlying distribution in the data set.

To represent the time-dependent buildup of nitrogen, we as-
sume that the hidden state from the previous step influences the
current hidden state. Thus, the distribution of Zs needs to be
dependent of Node 2:

Zs ~ P(Zs|22,2Z4) (12)

The model inside the red rectangle in Figure 4 repeats over time.
Thus, Eq(9), Eq(10), and Eq(12) fully define the correlation of
each node in the IOHMM model.

In Eq(9-12), the nature of the underlying distributions are
user-defined. Since the output is continuous, we use the widely
used continuous linear Gaussian to associate the input features
and nitrogen concentration in P(Z3|Z,Z, =i). Zz and Zs are
discrete hidden variables. Thus, we use the softmax function to
model the probability.

LSTM based model

External loop

Input gate
(%)

Internal
loop

Forget gate
(f

Current
input of the
data(x)

Output gate
(oY

FIGURE 5: An LSTM block.

LSTM is an RNN based model designed for sequential data.
Its structure is shown in Figure 5, governed by the following re-
lationships:

n m
up=S(bf+ Y T+ Y WiSh") (13)
J=1 j=1
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V=S + Z T+ Z Wit ) (14
y

_S(blf—l—j; /¥, +ZWlf]h‘j ! (15)

st = fisi ! v (16)

= S(by +,§’ T, + Z Wk (17)

i = tanh(s})o! (18)

In all the above equations, b,T,W are the trainable coefficients
of the LSTM model. b represents bias. 7" and W represent the
weights of the current input and weights of the previous LSTM
output.

The LSTM model repeats itself at each time step. The cur-
rent data sequence x' and the previous model results 4, are fed
into the model at current time instance, as represented in Eq(13).
A sigmoid function S is used as a non-linear activation function.
The repetition of the model is denoted with the external loop in
Figure 5.

The original RNN model suffers from vanishing or explod-
ing gradients if the model repeats for a long time duration during
training. LSTM adopts two strategies to address this issue. First,
it implements a gate mechanism, which is a sigmoid function that
is able to learn how much gradient to backpropagate through an
analysis of the current inputs. For example, Eq(14) is the equa-
tion for input gate vi. It is a sigmoid function whose inputs are
the previous LSTM results and the current data sequence. The in-
formation attenuation is represented by the term “v;u;”” in Eq(16).

Second, LSTM creates a state variable s; that also repeats
itself over time inside the whole model. This is shown as the
internal loop in Figure 5. The state variable receives informa-
tion from the current input and the previous state. The amount
of information to accept depends on the input gate and the forget
gate. This is shown in Eq(16). This ability to integrate knowl-
edge from previous states serves as a memory. The internal loop
produces a path for gradient flow over longer time durations. A
forget gate f; controls how much information from the previous
state to output to the next time instance. This is shown in Eq(15).

The final output of an LSTM block at time ¢ is calculated via
Eq(18). The output gate o; in Eq(18) is calculated via Eq(17).

The basic structure of LSTM can be used as a block. Fig-
ure 5 is a single LSTM block. Other models can be stacked above
the core LSTM block to increase model complexity.

Prediction for
t+1

Fully connected

| Hidden layer and nonlinear activation |
A

Fully connected

Conc

of LSTMoutputs: [__h1 | W2 | hd___| e
LST™M LST™M LST™M LST™
block " block 7 block | T block

Data input Data input Data input Data input
att=1 att=2 att=3 at t=t

FIGURE 6: The structure of LSTM based model.

We hypothesize that the output at every time step of the
model has an effect on the final nitrogen concentration. Thus,
in our model, we concatenate the output of each LSTM block at
the individual time slices. Then, we augment a multiple layer
perceptron (MLP) to the fully unrolled LSTM model. The MLP
is used for predicting the nitrogen concentration at ¢ 4+ 1. The
complete structure is shown in Figure 6. The outputs of the
LSTM module is used as the input for MLP. The mean square
error (MSE) is used as the loss function. Thus, our goal is to
optimize:

N
argminWMLP-WLSTM ( Z (yj 7F(Hj)))2 (19)

Jj=m+1

where N denotes the total number of pieces of training data, m
denotes the time step, y; is the j " N, concentration in the training
set. F(.) is our MLP model. Wy p is the trainable weights in
MLP. Wysrys is b,T and W in Eq(13-17). H; is the concatenation
of the outputs of the LSTM block at each time step.

Several layer structures and activation functions have been
experimented and we report the optimal structure in the next sec-
tion.

EXPERIMENTS AND RESULTS
Data set

The data is generated uniformly at a sample rate of 2Hz us-
ing our single-stack fuel cell simulator. The training set contains
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2701 samples, whereas the test set contains 2240 samples. For
test data set, the maximum value of the nitrogen concentration is
2.52 'ngl The minimum value is 0 ’;‘1—”3’ The range is thus 2.52

’:‘n—%l. Due to high linear correlation between cathode inlet relative
humidity and cathode outlet relative humidity, we discarded the
latter feature in our experiment.

KNN

The KNN algorithm serves as a baseline algorithm for this
study. The algorithm is able to reveal the similarity between the
training and test data.

MAE Loss vs K values

results are shown in Figure 7. The lowest MAE result is 0.475
(at K=1). The lowest MSE result is 0.400 (at K=30). Both of
the losses tend to converge. This is due to the fact that as K
increases, the algorithm averages more points around the target
point. This can be seen in Figure 8 and Figure 10, where the
increased number of neighbors amplifies the averaging effect of
KNN.

el
H o

0.62 - .q.
.
0.60 - ® .
e ®
0.58 e 3
LN ]
°
0.56 .
v
& « ¥
0.54 1
°
0.52 A
o®
0.50 -
&
®
0484 @
°
. T T . T T : T T
0 25 50 75 100 125 150 175 200
K value
(a) MAE Loss.
MSE Loss vs K values
054 ®
0.52 4
!
0.50 o®
.
0oas{ ® @
i .
k]
0a6{ ® e
.
A
0.44 4 °
e o 0 o
e e
® 9
0.42
€ e
® °®
0.40 4 <
. T T . T T : T T
0 25 50 75 100 125 150 175 200
K value
(b) MSE Loss.

FIGURE 7: MAE and MSE losses with different K values.

We have tested K values from 1 to 200. The MAE and MSE

500 . 1000 1500 2000
time sequence

FIGURE 8: KNN prediction K = 1.

Prediction Versus Ground Truth at K=1

- |deal prediction

3.0 1 O Prediction v.s Groud truth

Prediction

T T
0.0 0.5 1.0 15 2.0 2.5 3.0
Ground truth

FIGURE 9: R? plot using KNN at K=1.

When K=1, only the nearest neighbor is used for prediction,
which helps reveal how well the test set is covered by the training
set. From Figure 8, we see that KNN has a better prediction
on the latter part of the test set. This implies that the output
of the latter part of our test data set is similar to the training
set. By contrast, the first half of the test data is only weakly
covered by the training set. This is strongly indicated by R* plot
shown in Figure 9. The r? value indicates that the prediction
is poor. However, we observe that large number of prediction
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FIGURE 11: R? plot using KNN at K = 200.

points cluster around the ideal prediction curve while the rest
points scatter.

As mentioned, KNN performs simply as an overall means
estimator for high K values. We thus treat the loss at K=200 as
a baseline reference loss that must be outperformed by all meth-
ods. The MAE and MSE loss are 0.573 and 0.434, respectively.
Hence, for [OHMM and LSTM, we expect them to perform (ide-
ally much) better than this quantified baseline performance. The
outcome of KNN at K=200 is shown in Figure 10 and we can
see that the predicted values are close to the average value of the
ground truth. The R? plot is shown in Figure 11. That 72 value is
close to zero also reveals the average effect for K at 200.

IOHMM

For IOHMM, we perform a parametric grid search at time
step (T') from 1 to 10 and on discrete hidden variable (Z) from 1
to 6. The best MSE of 0.431 is obtained at T = 2 and size(Z) = 2.
The best MAE of 0.563 happens at 7 = 7 and size(Z) = 6. By
comparing the losses with the KNN baseline average loss, it can
be concluded that IOHMM does not perform any better than the
baseline average prediction of the nitrogen concentration. This

is shown in Figure 12.

N2 concentration prediction
3 T T T T

Ground truth
Prediction

N, concentration (molim"3)

0 500 1000 1500 2000 2500
time sequence

FIGURE 12: IOHMM prediction.

Figure 13 shows the R? plot for IOHMM, which also reveals
the poor prediction ability of IOHMM.

Prediction Versus Ground Truth for IOHMM
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25F 7
re=-013
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Ground truth
FIGURE 13: R? plot for [OHMM.
LSTM

For the LSTM model, we varied the number of hidden
nodes. For the emprically optimized LSTM, we use a single
LSTM block. The number of outputs (k) of LSTM is set to 256.
One fully connected MLP layer is appended to the LSTM block.
The number of hidden units for the fully connected layer is 256.
We use 100 time steps. Our algorithm is trained for 500 epochs.
The best test MSE error is 0.00884 at 113 epoch, shown in green
dot in Figure 14.
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FIGURE 14: LSTM MSE of test set over epochs.

The prediction of N2 concentration
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FIGURE 15: LSTM prediction.

Step Size | MSE MAE
10 0.0209 | 0.117
50 0.00893 | 0.0773
100 0.00884 | 0.0757

TABLE 1: Effect of different step sizes on LSTM.

LSTM prediction results are shown in Figure 15. Compared
to Figure 8, Figure 10 and Figure 12, we can see that the LSTM
prediction has a better coverage of the ground truth than KNN
and IOHMM. A zoomed in picture of a specific region is shown
in Figure 17 to reveal the prediction accuracy. The R? plot is
shown in Figure 16. All the prediction points cluster around the
ideal prediction curve. The r> value is close to one. The plot
reveals both low variance and low bias of the prediction result.

For time step determination, we use the LSTM time steps of
10, 50 and 100 as shown in Table 1. The time step of 100 results
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FIGURE 17: A zoom in of Figure 15.

Performance of Different Models on Test Set

Model MSE MAE

KNN (Average) 0.434 0.573
KNN 0.400 0.475
IOHMM 0.431 0.563
LSTM Based Model | 0.00884 | 0.0757

TABLE 2: Comparison of different models.

in the best prediction as revealed by the MSE and MAE losses.

Comparison of Different Algorithms

Table 2 shows the results of different algorithms. LSTM
performs the best by far. With respect to MSE, it outperforms
KNN averaging by 98.0%, the best KNN result by 97.8%, and
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Input Effect Test

Input variable Fixed at Min | Fixed at Max
(MSE) (MSE)

Voltage 598% 4903%
Current Density 25% 521%
Temperature 407% 433%
Relative Humidity of 300% 389%
Cathode Inlet
Relative Humidity of 24.7% 108%
Anode Inlet
Relative Humidity of 41.5% 510%
Anode Outlet
Anode Gas Velocity 194% 209%
Purge Open Amount 15350% 72486%

TABLE 3: Effect of different features on LSTM.

IOHMM by 98.0%. We also note that IOHMM has a similar
weak performance to KNN averaging (K = 200) method.

Input Features’ Effect on LSTM-based Algorithm

Based on LSTM’s performance, we further study each input
feature’s influence on this model. The analysis is important as (1)
it is able to tell us if the LSTM based model captures the most
important information correctly, and (2) if any input feature is
deemed to have an insignificant influence on nitrogen concentra-
tion, this can signal an opportunity to avoid instrumenting sen-
sors for that particular feature on the physical fuel cell.

For each test sample, we freeze one of the input features at
its minimum value in the training set and analyze how the ni-
trogen prediction performance and MSE loss change. The same
experiment is repeated by freezing the feature at its maximum
value in the training set. The relative MSE change is shown in
Table 3. The results show that every input has an impact on the
prediction performance. The minimum change of MSE is 24.7%
when relative humidity of anode inlet is fixed at its minimum. We
note that even a 500% worsening of MSE may not be considered
significant, noting that the output range is 2.52 and our best MSE
is 0.00884. However, the relative degradation of MSE with each
feature provides insights into the qualitative significance of the
features. For instance, the largest degradation happens when the
purge open amount is fixed. This indicates that the LSTM based
algorithm suggests the purge open amount to be the most critical
input feature that affects nitrogen concentration. This aligns well
with the simulation model, where all gas release in the anode is
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directly impacted by the purge valve.

CONCLUSION

Due to the complex electrochemistry and external interven-
tions (such as valve purging), real-time nitrogen prediction in
fuel cells presents a major challenge. This study utilizes and
compares three different ML algorithms that model the highly
non-linear dynamics of nitrogen concentration buildup as a data-
driven, time-dependent regression problem. Our LSTM model
produces by far the best performance, and is able to predict ni-
trogen concentration with significant accuracy. To the best of our
knowledge, this work is the first study of that uses a data-driven
approach for predicting nitrogen concentration in PEMFCs.

Our current data set is based on data obtained from a simu-
lation model of a single-stack fuel cell. In later work, we intend
to collect experimental data from long-stack fuel cells to vali-
date our LSTM-based nitrogen concentration prediction method
in more realistic settings.
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