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ABSTRACT

The demand for fast and accurate structural analysis is be-
coming increasingly more prevalent with the advance of gen-
erative design and topology optimization technologies. As one
step toward accelerating structural analysis, this work explores
a deep learning based approach for predicting the stress fields
in 2D linear elastic cantilevered structures subjected to exter-
nal static loads at its free end using convolutional neural net-
works (CNN). Two different architectures are implemented that
take as input the structure geometry, external loads, and dis-
placement boundary conditions, and output the predicted von
Mises stress field. The first is a single input channel network
called SCSNet as the baseline architecture, and the second is the
multi-channel input network called StressNet. Accuracy anal-
ysis shows that StressNet results in significantly lower predic-
tion errors than SCSNet on three loss functions, with a mean
relative error of 2.04% for testing. These results suggest that
deep learning models may offer a promising alternative to clas-
sical methods in structural design and topology optimization.
Code and dataset are available at https://github.com/
zhenguonie/stress_net
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1 INTRODUCTION

While computational stress analysis is fundamentally crit-
ical in design and engineering, advances in automatic genera-
tive design systems impose higher demands on analysis speed
without compromising accuracy. In this work, we explore the
potential of data-driven stress analysis, where conventional run-
time analysis is replaced by a machine learning system that can
generate solutions instantaneously. Our approach is inspired by
the great and increasing success of data-driven approaches that
model physical phenomena and use the acquired knowledge to
make predictions for unseen problems. Recent advances include
data-driven approaches demonstrated in fluid dynamics [1,2,3,4],
design and topology optimization [5,6,7,8], molecular dynamics
simulation [9, 10, 11, 12], and others [13, 14, 15, 16].

In computational solid mechanics, there have been early at-
tempts to use neural regression for finite element analysis (FEA)
model updating [17, 18]. More recently, deep learning has been
gaining interest in the solution of traditional mechanics prob-
lems. Javadi et al. [19] use a simple neural network in FEA
as an alternative to the conventional constitutive material model.
However, the geometry is abstracted and simplified into a feature
vector, making the approach difficult to generalize to complex
cases. Deep learning has also been integrated into FEA to op-
timize the numerical quadrature in the element stiffness matrix
on a per-element basis [20]. Compared to the conventional nu-
merical approach, this approach accelerates the calculation of the
element stiffness matrix.
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The use of convolutional networks, which uses learned fil-
ters to understand image-based representations, has caught the
attention of the academic community these years. Spruegel et
al. [21] use a convolutional network as a classifier to check the
plausibility of FE simulations. In an inspiring work, Liang et
al. [22] develop a three-module convolutional network for aortic
wall stress prediction to accelerate the patient-specific FEA. The
network takes as input the tube-shaped geometry and outputs the
stress field. The description of geometry, boundary conditions
and loads, is tailored for aorta models. We build upon these ad-
vances to demonstrate the potential of data-driven techniques for
stress field predictions in a moderately more general case.

In this work, we present an end-to-end deep learning based
approach to predict the stress field in 2D linear elastic deforma-
tions. Two different architectures are explored that take as in-
put the geometry, loads, and boundary conditions, and output
the predicted von Mises stress field. The first architecture is a
single-channel stress prediction neural network (SCSNet) where
the loads are augmented with the feature representation (FR).
The second is a multi-channel stress prediction neural network
(StressNet) with five separate channels of input including the ge-
ometry, load and boundary conditions represented by images of
identical sizes. In principle, StressNet can be extended to a gen-
eralized model for any arbitrary 2D conditions once given the
corresponding training data, due to its on-limits multiple input
channels.

This image-based problem representation allows the encod-
ing of arbitrary 2D structures (within the prescribed domain res-
olution), boundary conditions and external forces. As one step
toward assessing the feasibility of such an approach, we focus
on cantilevered structures with loads applied to the free end of
the structure. A dataset involving 120,960 problems with vari-
ations in geometry and loads is generated to train and evaluate
the networks. In our tests, StressNet with a deep architecture has
a significantly higher accuracy over SCSNet, with a mean rela-
tive stress error of 2.04%. An inbetween network that combines
elements of SCSNet and StressNet is also studied to assess the
impact of single versus multi-channel input representation.

2 BACKGROUND and RELATED WORK
Finite element analysis for stress computation. Stress analysis of
a given structure requires the solution of related partial differen-
tial equations. Finite element analysis (FEA) is the conventional
approach to solve this problem. It simplifies the structure by
breaking it down into a large number of finite elements and com-
putes the coupled mechanical deformations and stresses based
on the boundary and load conditions by building up an algebraic
equation:

Ku = F (1)

where K is the global stiffness matrix, F is the vector describing
the applied external nodal forces, u denotes the nodal displace-
ment vector. To compute displacements, the global stiffness ma-
trix has to be first assembled.

We assume linear isotropic materials and small deformations
in a 2D field. The elemental stiffness matrix Ke can be computed
as follows:

Ke = AeBT
e CeBe, (2)

where Ae is the area of the element, Be is the strain-displacement
matrix that depends only on the element’s rest shape and Ce is the
elasticity tensor constructed using Young’s modulus and Pois-
son’s ratio of the base material. Given a mesh V with m elements,
one can assemble the global stiffness matrix K in order to deter-
mine the displacements u from (1) through a proper application
of the zero displacement boundary conditions and the external
nodal forces. Then, the stress-displacement relationship can be
written as:

σ =CgBu, (3)

where σ ∈ R4m captures the unique four elements of the ele-
mental stress tensor for planar stress calculations and B is the
assembly of Be matrices. Block-diagonal matrix Cg ∈ R4m×4m

is constructed with elemental elasticity tensors C on the diago-
nal. For each element, Ce can be computed analogous to Ke.
While applicable to different element types, we use linear quad
elements making K ∈ R2n×2n, u ∈ R2n, f ∈ R2n and B ∈ R4m×2n

for a planar mesh with quad elements having n nodes.
Then, the von Mises Stress of each element is computed using
2-D von Mises Stress form:

σvm =
√

σx2 +σ2
y −σxσy +3τ2

xy (4)

where σvm is von Mises Stress, σx and σy are the stress compo-
nents in the x and y directions respectively, and τxy is the shear
stress.

The final stress distribution could be obtained after the
stresses of all elements are computed. Several factors impact
FEA’s complexity including the number of elements and the de-
gree of the elements, as they give rise to large stiffness matrices
that need to be assembled from elemental stiffness matrices [22].
This leaves an opportunity for researchers to seek faster methods
for inner loop simulations for structure design and optimization.
This work explores the use of deep learning toward this goal.
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Convolutional neural networks and ResNet. Convolutional neu-
ral networks (CNN) are designed to process data that comes in
the form of multiple arrays, for example, a color image composed
of three 2D arrays containing pixel intensities in the three-color
channels [23]. CNN consists primarily of two core structures: a
convolutional layer and a pooling layer. In a convolutional layer,
a filter bank with a set of weights slides over the input image to
produce a feature map. After a convolutional layer, the result of
the weighted sum is usually passed through a non-linearity such
as a ReLU function: f (x) = max(0,x), and then passed on to the
pooling layer. The role of the pooling layer is to merge semanti-
cally similar features into one.

Inspired by the philosophy of VGG net [24], He et al. [25]
propose a 152-layer Residual Network (ResNet) that won the first
place in ILSVRC-2015 with an error rate of 3.6 %. As shown in
Figure 1, the defining feature of ResNet is the shortcut connec-
tion added to each pair of 3× 3 filters in the residual version.
The shortcut connection simply performs identity mapping, and
its output is added to the output of the stacked layers. To the
extreme, if an identity mapping was optimal, it would be easier
to push the residual to 0 than to fit an identity mapping by the
stacked layers. It means ResNet can dynamically select the layer
depth for the desired underlying mapping.

FIGURE 1. ResNet: a building block with a shortcut connection [25]

Deep learning in computational mechanics. The Artificial Neu-
ral Networks (ANN) with the multilayer perceptron (MLP) has
been applied in computational mechanics for several years, for
structural analysis [26, 27, 28], materials failure and damage
[29, 30, 31, 32], regression of the material constitutive proper-
ties [29, 33, 34, 35, 36], computational mechanics enhancement
[20, 19], topological design and optimization [37, 38]. However,
due to the intrinsic limitation of MLP, the geometry is usually ab-
stracted and simplified into a feature vector that loses the spatial
position relationship, making the approach difficult to generalize
to complex cases.

Spruegel et al. [21] use a convolutional network as a clas-
sifier to check the plausibility FE simulations. Similarly, Sos-
novik et al. [39] propose a convolutional encoder-decoder archi-
tecture to accelerate topology optimization methods. Khadilkar

et al. [40] use CNN to predict the stress field for the bottom-
up SLA 3D printing process. In an inspiring work, Liang et
al. [22] develop a three-module convolutional network for aor-
tic wall stress prediction to accelerate the patient-specific FEA.
The network takes as input the tube-shaped geometry and out-
puts the stress field. However, as the description of the problem
is tailored for aorta models, the network cannot be extended to ar-
bitrary geometry, boundary conditions and loads. We build upon
these advances to demonstrate the potential of data-driven tech-
niques for stress field predictions in a moderately more general
case.

3 METHOD
This work presents a data-driven approach to stress field

prediction in 2D cantilevered structures with a linear isotropic
elastic material subjected to external loads at the structure’s free
end. The approach takes as input the structure geometry, exter-
nal loads, and displacement boundary conditions, and outputs the
predicted stress field. Based on the input channel configuration,
two deep neural network architectures are proposed: a) SCSNet
with a single input channel, and b) StressNet with multiple input
channels.

3.1 Problem Description and Dataset
Consider the cantilevered structure in Figure 2 composed of

a homogeneous and isotropic linear elastic material. The left end
of the structure is affixed to the wall, and the right end bears the
external static loads. The evenly distributed external loads are
applied in both the horizontal (qx) and vertical (qy) directions.
For each sample, the loads (qx, qy) are constant due to the static
problem, and determined by the resultant force q and its direc-
tion θ : qx = qcosθ and qy = qsinθ . The geometry is not limited
to a rectangle, but other shapes such as the trapezoid, the trape-
zoid with curved sides, and all the above structures with holes,
are utilized. In total, there are 28 geometries within such six cate-
gories with the change of geometry contour, hole shape, size, and
location. Theoretically speaking, the eligible cantilevered struc-
tures are infinite, so that we cannot enumerate them all. What we
select are common structures in mechanical engineering. In ad-
dition, the material properties keep unchanged and isotropic for
all samples.

This two-dimensional elastic deformation is a plane strain
problem. The governing equations consist of the strain-
displacement equation (5), compatibility equation (6), equilib-
rium equation (7), and the generalized Hooke’s law in Equation
(8):

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(5)
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FIGURE 2. The schematic diagram of a two-dimensional cantilevered
structure with linear isotropic material.
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∂σii
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E
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ε22
ε12

 (8)

where i and j are subscripts with values of 1 or 2, x1 represents
the x-axis and x2 represents the y-axis, ui is the displacement in
xi direction, εi j is strain on surface xi in x j direction, σi j is stress
on surface xi in x j direction, fi is the body force component in xi
direction , E is Young’s modulus, and ν is Poisson’s ratio.

A 2D finite element method (FEM) software SolidsPy [41]
is used to generate the training and testing data. The full domain
contains 32× 24 elements. Any element in the domain is a 4-
node quadrilateral with a size of 1×1 (mm). Randomly selected
samples from a total of 120,960 samples are shown in Figure 3.
Each case is represented as a 32× 24 image. Images in the left
column are the input for the single channel, and the images on the
right are the corresponding von Mises ground truth stress fields.
For input images, the blue color represents the part of the domain
with no material; the green color represents the solid domain; the
brown color on the right-hand side of the input data represents
the position of the loads. In dataset generation, the resultant load
q ranges from 0 to 100 N in an interval of 20 N, and the load
direction θ ranges from 0 to 2π in an interval of π/12. This in-
formation delineated with distinct (qx, qy) in the input data. For
the ground truth fields, the von Mises stress within the solid do-
main is plotted as the stress field where the stress is absolute zero

within the void domain. Among all computed FEM samples, the
von Mises stress varies from 0 to 2,475 MPa with an average of
67.80 MPa.

FIGURE 3. Samples of the dataset computed by FEM. Each row is
a FEM sample. Images in the left column are input channels including
geometry and load position; Right images are stress fields (Units: mm-
MPa-N).

Based on the computation of FEM, the multi-channel dataset

4 Copyright c© 2019 by ASME



for StressNet can be transformed from the single-channel dataset
for SCSNet. As shown in Figure 4, all the datasets are encoded
as matrices and displayed as colorful images. Firstly, the geom-
etry channel is encoded as a 32×24 matrix containing just zeros
and ones and shown as a binary-color image. As a single chan-
nel geometry, the solid (red denotes 1) and void (blue denotes
0) parts of the domain are distinguished. Secondly, for the two
load channels, the component magnitude of the force is located
in the matrix at the force applied location (red denotes the force
component value, blue denotes 0). Thirdly, for the two displace-
ment boundary condition channels, all displacement-constrained
points are delineated in their respective binary matrices (blue de-
notes -1 and red denotes 0). Finally, the von Mises stress field is
also a 32×24 matrix and displayed as a colorful image.

FIGURE 4. An example of five-channel data representation and the
output stress field.

3.2 SCSNet
As illustrated in Figure 5, a single-channel is proposed to

perform the prediction of the von Mises stress field. The input of
the model is a matrix including the information of the geometry
(blue denotes 0, green denotes 1 and load position (red denotes
2) and shown as a triple-color image. The output of the model
is the computed stress field, where each pixel represents the von
Mises stress.

SCSNet is a baseline architecture that uses multiple CNN
layers in an encoder-decoder structure (convolutional autoen-
coder). This convolutional autoencoder learns to encode the in-
put in a set of simple signals and then try to reconstruct the input
from them [42, 43, 44]. The encoder network consists of two
convolutional layers (E1 and E3) and two max-pooling layers
(E2 and E4). Each convolutional layer has a filter with a ker-
nel of 3× 3 and a stride of 1× 1. The padding scheme is zero
padding to keep the output image the same size as the input. Af-
ter a reshape layer E5, and a fully connected (FC) layer E6, we
obtain the latent feature representation of geometry at the bottle-

neck. The load vector (qx,qy) is concatenated with FR before the
new FR is fed into the decoder network. The decoder network
is the reverse of the encoder. Upsampling layers take the place
of pooling layers for increasing the field resolution. The entire
model contains a total of five convolutional layers.

The convolutional layer applies a convolutional operation to
the input channels and passes the result to the next layer. CNN
can extract distinguishing features from the input images through
the scanning and convolutional operation by filter banks [45,46].

The height, width, and channel of the input image vary
through the model: Input image is 24× 32× 1; E1 is 24× 32×
32; E2 is 12× 16× 32; E3 is 13× 16× 64; E4 is 6× 8× 64;
E5 is 3074× 1× 1; E6 is 1024× 1× 1; E7 is 30× 1× 1; FR
is 32× 1× 1; D1 is 1024× 1× 1; D2 is 3074× 1× 1; D3
is 6× 8× 64; D4 is 12× 16× 64; D5 is 12× 16× 32; D6 is
24×31×32; D7 is 24×32×16; D8-Output image is 24×32×1.

FIGURE 5. The architecture of SCSNet with a single input channel.

3.3 StressNet
SCSNet has constant CNN layers and can only model sim-

ple FEM problems, in which the loads are distributed uniformly
and displacement boundary conditions are the same in the X and
Y directions. To decrease the prediction error and increase its
versatility, we additionally propose a StressNet architecture with
multiple input channels as shown in Figure 6. A downsampling-
and-upsampling structure is employed, and five Squeeze-and-
Excitation ResNet modules are used between the downsampling
and upsampling structures. As mentioned before, ResNet can
dynamically select the layer depth by shortcut connections. All
convolutional layers are followed by batch normalization and
ReLU layers.

The input data contains five channels: 1) geometry, 2)
X-component of the load, 3) Y-component of the load, 4)
X-component of the displacement boundary condition, 5) Y-
component of the displacement boundary condition. For each
channel, the information is encoded in a two-dimensional 32×24
matrix. As with SCSNet, the output data of StressNet is also a
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single-channel von Mises stress field that is encoded in a 32×24
matrix and displayed as a colorful image.

Downsampling comprises three convolutional layers (C1,
C2, and C3), and upsampling comprises three deconvolutional
layers (C4, C5, and C6). Referring to the structure of image
transformation networks [47], we use 9× 9 kernels in the first
and last layers (C1 and C6), and 3× 3 kernels in all the other
convolutional layers.

FIGURE 6. The architecture of StressNet with multiple input chan-
nels.

Residual blocks are used to mimic identical layers to com-
bat the vanishing gradient problem [25]. As shown in Figure 7,
a SE-ResNet module is comprised of two convolutional layers
with 3×3 kernels and one Squeeze-and-Excitation (SE) network
block. The output of the SE-ResNet module, as shown in Equa-
tion ((9)), can be conducted by feedforward neural networks with
shortcut connections.

SE blocks, illustrated in Figure 8 are used inside the SE-
ResNet modules to improve the representational capacity of the
network by enabling it to perform dynamic channel-wise feature
recalibration [48]. The input data u ∈ RH×W×C is shrunk into
S(u) ∈ RC through the global average-pooling layer. Then two
fully connected layers are employed to downsample (FC+ReLU)
and upsample (FC+Sigmoid) the linear array respectively. A re-
shape operation is conducted to obtain the excitation output data
E(u) that has the same dimension and size as the initial input data
u. The final output of the block is obtained by a rescaling oper-
ation that is the element-wise matrix multiplication, as shown in
Equation (10).

z = F(x,{wi})+ x (9)

v = E(u)×u (10)

FIGURE 7. The residual block with a SE block

FIGURE 8. The SE block

3.4 Loss function and metrics
We use the MSE (mean squared error) and MAE (mean ab-

solute error) to evaluate the model’s prediction accuracy. The
prediction ŷ and ground truth y in our current model are both
displayed as 32×24 resolution images. Before computing MSE
and MAE, each predicted stress field is reshaped into 1D-arrays
with a length of 768. The reshaped prediction ŷ can be ex-
pressed as ŷ = (ŷ1, ŷ2, · · · , ŷn), while the reshaped ground truth
y = (y1,y2, · · · ,yn). MSE and MAE are respectively represented
in Equation (11) and (12).

MSE =
1
n

n

∑
j=1

(y j− ŷ j)
2 (11)

MAE =
1
n

n

∑
j=1
|y j− ŷ j| (12)

where n = 768 is the total number of elements.
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Here we also introduce the mean relative error (MRE) as
shown in Equation (13). MRE is a relative error rate in percent-
age to measure how close the predictions are to the ground truth.

MRE =
1
n

n

∑
j=1

|y j− ŷ j|
ε +max(y j, ŷ j)

×100% (13)

where ε is a smoothing term that avoids division by zero (this
article takes ε = 0.01).

Based on the Cauchy-Schwartz inequality, MSE ≤ MAE2.
MSE has a tendency to be increasingly larger than MAE2 with an
increase of testing sample, and is more sensitive to data variance.
In our approach, MSE is used for the training loss, while all three
error measures are used to quantify the prediction performance.

4 RESULTS AND DISCUSSIONS
All code is written in TensorFlow and run on an NVIDIA

GeForce GTX 1080Ti GPU. Adam optimization algorithm with
an exponentially decaying learning rate is used for training, and
the batch size is set to 256, which is the allowed maximum size
according to the GPU memory. The training and testing results
show that both the two architectures are stable and converged re-
liably. Under our experiment scenarios, it takes 1.56 seconds for
SCSNet to render all the 120,960 FEM samples, and 10.4 sec-
onds for StressNet. The FEM software takes approximately ten
hours (on Intel i7-6500U CPU) to accomplish the FEM compu-
tation on the same number of 2D problems.

4.1 Accuracy and performance
In this experiment, we train and evaluate our models using

the whole dataset. The training data size is 100,000, and the sep-
arate testing data size is 20,960. Figure 9 shows MSE loss as a
function of epochs. Chart (a) is in arithmetic coordinates, and
chart (b) is in logarithmic coordinates. Chart (a) shows that all
the four MSE curves decline rapidly in the first fifty epochs, and
then begin to flatten. From chart (b), it can be seen that SC-
SNet preserves a nearly constant order of magnitude after 1000
epochs. By contrast, StressNet continues to decrease with more
training, even after 5000 epochs. StressNet has a significantly
smaller MSE than SCSNet in the end. Figure 10 shows the MAE
loss on training data and testing data of the two architectures.
The trend in the MAE loss is nearly identical to that of MSE.
StressNet has much better accuracy than SCSNet. The other per-
formance metrics are summarized in Table 1. It can be seen that
MRE of StressNet is just 2.04% for testing, which we deem ac-
ceptable for stress fields prediction.

The evolutive predictions by StressNet with the increasing
epoch during the training are plotted in Figure 11. Each row de-
notes a randomly selected sample from the whole datasets. The

first column is the ground truth. Images starting from the second
column, in order, are evolutive predictions of the von Mises stress
fields. Predictions in the first epoch just contain a few non-zero
scattering points, and then in the tenth epoch have a rudimentary
form, especially on the left half. Since from the hundredth epoch,
the predictions have no visual distinction with the ground truth.

FIGURE 9. MSE curves on training and testing data of two architec-
tures. (a) is shown in arithmetic coordinates; (b) is shown in logarithmic
coordinates.

FIGURE 10. MAE curves on training and testing data of two architec-
tures. (a) is shown in arithmetic coordinates; (b) is shown in logarithmic
coordinates.

4.2 Effect of the training data size on performance
Besides using all the data for training and testing with the ra-

tio of 100,000/20,960, we also reduce the training data size from

7 Copyright c© 2019 by ASME



FIGURE 11. Computed stress fields by StressNet: ground truth and evolutive predictions. Each row denotes a randomly selected sample form the
whole datasets. From left to right: 1) ground truth; 2) epoch = 1; 3) epoch = 10; 4) epoch = 100; 5) epoch = 5000. The ratio of training data and testing
data is 100,000/20,960.

TABLE 1. Error metrics. Epoch = 5000, ȳ = 67.80. SCS denotes
SCSNet, and SN denotes StressNet.

Metric MSE (MPa2) MAE (MPa) MRE (%)

Model SCS SN SCS SN SCS SN

Training 83.63 0.14 4.28 0.22 10.40 1.99

Testing 84.07 0.15 4.30 0.23 10.43 2.04

100,000 to 20,000 to demonstrate the effect of training size. Fig-
ure 12 shows the variations of MSE and MAE for both training
and testing with different training sizes. The variations of MSE
and MAE follow similar trends. With the increase in the training
data, both MSE and MAE decline gradually. The standard devi-
ation across multiple runs at a fixed training data size (error bar)
also decreases with increasing training data. MSE and MAE of
the testing data are expectantly slightly larger than those of the
training data. It means that the larger training data, the better pre-

diction performance. Similarly, we randomly plot the computed
stress fields with different training data size as shown in Figure
12. By using different sizes of the training data, StressNet train-
ing is terminated at the five thousandth epoch. For each sample
in Figure 13, the stress fields predicted by StressNet look like
the same with different training data sizes. However, they have
different color bars, which means the outputs are similar but still
different.

4.3 Prediction of maximum stress

As a measure of how well the results of StressNet can be
used for predicting failure, we also examine how well Stress-
Net can predict the maximum von Mises stress obtained in the
ground truth. An analysis of the testing data shows a coefficient
of determination R2 of 0.99. This implies that StressNet is able
to predict the maximum stress with significant accuracy.
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FIGURE 12. Effect of training data size on the prediction perfor-
mance of StressNet.

4.4 Effect of the hierarchical nature of deep learning
on prediction accuracy

In addition to the two architectures described above, we also
deployed and studied an inbetween architecture shown in Figure
14 which keeps the SCSNet structure but uses StressNet’s multi-
ple channeled inputs. The five channels are classified into three
categories: geometry, loads and boundary conditions similar to
the way described for StressNet. All three encoders are indepen-
dent and parallel to each other. After the fully connected lay-
ers, three feature representations are combined in turn. Then the
combined FR is decoded through reverse CNN layers. Such an
intermediate model consists of eight convolutional layers totally,
which is far less than StressNet.

We trained this model on the same GPU, and the training
result shows that this model has no improvement in training ac-
curacy relative to SCSNet. This supports our hypothesis that
as the hierarchical architecture becomes deeper as it does with
StressNet, its prediction becomes more accurate, although this
deepening has to be judicious in light of the image resolution,
training size, and data variability. Additionally, the input chan-
nel configuration may not have a significant impact on prediction
accuracy.

Comparatively speaking, SCSNet can reduce the training
time, and reach an acceptable accuracy where the mean relative
error is 10.40%. In addition, due to its fully convolutional net-
work architecture, it is able to account for large variations in the
size of the 2D FEM data. This makes StressNet a great alterna-
tive to classical FEM once the training data is sufficient to train
the network.

5 CONCLUSION
In this paper, we present an end-to-end deep learning based

approach for stress field prediction in cantilevered structures.

Two architectures are implemented: a single-channel stress pre-
diction neural network (SCSNet), and a multi-channel stress pre-
diction neural network (StressNet) with SE-ResNet modules. A
2D FEM software SolidsPy is used to generate the training and
testing data, which contains a total of 120,960 FEM samples.

Both architectures are stable and converged reliably in train-
ing and testing. MSE and MAE results show that StressNet can
obtain higher accuracy than SCSNet. The mean relative error
of the StressNet model is just 2.04% for testing with respect to
the ground truth. The effect of training data size on performance
is also studied. With the increase in the training data size, both
MSE and MAE decline gradually. However, as the magnitude
of MAE is relatively small with respect to the magnitudes of the
stress fields, all the computed stress fields across different train-
ing data size are desirably very similar.

The effect of the hierarchical nature of the deep network on
prediction accuracy is studied. The results indicate that the input
channel number does not have a significant effect on the predic-
tion accuracy. As hierarchical architecture becomes deeper, its
prediction becomes more accurate. For better prediction accu-
racy, StressNet is a reasonable choice. It encodes and preserves
more information of the input and enables a richer set of non-
linear operations due to its architecture.

Future work will be to improve the network to an increas-
ingly more general method using generative deep learning to al-
leviate the need for extensive coverage of the input geometry,
boundary conditions, and loads.
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[15] Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R.,

10 Copyright c© 2019 by ASME



and Tkatchenko, A., 2017. “Quantum-chemical insights
from deep tensor neural networks”. Nature Communica-
tions, 8, Jan, p. 13890.

[16] Barati Farimani, A., Gomes, J., Sharma, R., Lee, F. L., and
Pande, V. S., 2018. “Deep Learning Phase Segregation”.
arXiv e-prints, Mar, p. arXiv:1803.08993.

[17] Levin, R., and Lieven, N., 1998. “Dynamic finite element
model updating using neural networks”. Journal of Sound
and Vibration, 210(5), pp. 593 – 607.

[18] Atalla, M., and Inman, D., 1998. “On model updating using
neural networks”. Mechanical Systems and Signal Process-
ing, 12(1), pp. 135 – 161.

[19] Javadi, A., and P. Tan, T., 2003. “Neural network for con-
stitutive modelling in flnite element analysis”. Computer
Assisted Mechanics and Engineering Sciences, 10, 01.

[20] Oishi, A., and Yagawa, G., 2017. “Computational mechan-
ics enhanced by deep learning”. Computer Methods in Ap-
plied Mechanics and Engineering, 327, pp. 327 – 351. Ad-
vances in Computational Mechanics and Scientific Compu-
tationthe Cutting Edge.

[21] Spruegel, T., Schrppel, T., and Wartzack, S., 2017.
“Generic approach to plausibility checks for structural me-
chanics with deep learning”.

[22] Liang, L., Liu, M., Martin, C., and Sun, W., 2018. “A deep
learning approach to estimate stress distribution: a fast and
accurate surrogate of finite-element analysis”. Journal of
The Royal Society Interface, 15, 01.

[23] LeCun, Y., Bengio, Y., and Hinton, G., 2015. “Deep learn-
ing”. Nature, 521, 05, pp. 436–44.

[24] Simonyan, K., and Zisserman, A., 2014. “Very deep convo-
lutional networks for large-scale image recognition”. arXiv
preprint arXiv:1409.1556.

[25] He, K., Zhang, X., Ren, S., and Sun, J., 2015.
“Deep residual learning for image recognition”. CoRR,
abs/1512.03385.

[26] Jenkins, W., 1995. “Neural network-based approximations
for structural analysis”. In Developments in Neural Net-
works and Evolutionary Computing for Civil and Structural
Engineering, Civil-Comp Press Edinburgh, pp. 25–35.

[27] Waszczyszyn, Z., and Ziemiański, L., 2001. “Neural net-
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