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ABSTRACT

We propose a data-driven 3D shape design method that can
learn a generative model from a corpus of existing designs, and
use this model to produce a wide range of new designs. The ap-
proach learns an encoding of the samples in the training corpus
using an unsupervised variational autoencoder-decoder archi-
tecture, without the need for an explicit parametric representa-
tion of the original designs. To facilitate the generation of smooth
final surfaces, we develop a 3D shape representation based on a
distance transformation of the original 3D data, rather than us-
ing the commonly utilized binary voxel representation. Once es-
tablished, the generator maps the latent space representations
to the high-dimensional distance transformation fields, which
are then automatically surfaced to produce 3D representations
amenable to physics simulations or other objective function eval-
uation modules. We demonstrate our approach for the computa-
tional design of gliders that are optimized to attain prescribed
performance scores. Our results show that when combined with
genetic optimization, the proposed approach can generate a rich
set of candidate concept designs that achieve prescribed func-
tional goals, even when the original dataset has only a few or no
solutions that achieve these goals.

INTRODUCTION

In engineering design, while design simulation and analysis
technologies are well developed and ubiquitous, digital tools to
assist the early conceptual design phases are severely limited. In-
stead, humans still play a critical role in establishing the design
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space and the associated parameterizations. However, the heavy
reliance on human-driven concept generation and design space
exploration make product development particularly challenging
for problems in which the geometry/form of the product has a
significant impact on performance. As such, the need for digital
design tools that support (1) knowledge extraction from configu-
rationally and geometrically different past designs, (2) leveraging
this information for large-variance, automatic design synthesis
inside and outside of the original design space, and (3) seamless
integration into analysis and simulation engines remain a central
need in design automation.

In this work, we present a data-driven 3D shape synthesis
method to assist human designers in conceptual design. Our ap-
proach relies on the observation that past designs may encapsu-
late useful design information that, if digitally captured, could
be used to generate new designs automatically. To this end, we
adopt an unsupervised variational autoencoder (VAE) deep learn-
ing method that takes input a corpus of 3D designs and extracts a
latent design representation. This representation transforms the
originally very high-dimensional data into a compact feature vec-
tor, where each feature encodes a latent probability distribution
function learned over all past designs. Once learned, this rep-
resentation can be sampled, or elements in this latent space can
be interpolated and extrapolated to generate new latent space in-
stances. These new instances can then be projected to the original
design space using the decoder of the VAE.

In contrast to the common method of voxelizing 3D data
into a 3D binary representation [1-4], we utilize distance trans-
formation maps [5] as the primary input. This involves (1) the
conversion of input 3D shapes (commonly acquired in the form
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of polygonal models) into real valued distance maps, (2) using
the distance map of each original design to train the VAE, (3)
automatically converting any synthetically generated new dis-
tance map back to a polygonal model for downstream analy-
sis. This allows the synthesized 3D shapes to exhibit much
smoother surfaces without suffering from ‘pixelatization,” while
being amenable to engineering analyses.

We demonstrate the utility of our approach on the 3D outer
shape design of gliders. While one approach is to learn a direct
mapping from the available past designs to their aerodynamic
performance, and use this mapping as a simulator to evaluate new
designs, such a mapping would need to be learned for every new
engineering objective. Instead, VAE learns a shape generator in
an unsupervised manner, where the latent space exploration in
the trained architecture allows the newly generated design to be
integrated into widely available analysis tools. We demonstrate
this in a particular case study, where the study incorporates flight
dynamics (albeit simplified) for shape optimization.

Our approach also develops a simple latent space design
crossover technique that allows a genetic optimizer to produce a
large set of new designs through stochastic latent vector interpo-
lation and extrapolation. While not a requirement in the overall
framework, the use of genetic optimization enables a large set of
synthetically generated designs to meet the target performance
score, even though only a few or no original design solutions
could attain the prescribed goals. This, in turn, offers greater
conceptual latitude to the human designer in deciding which con-
cepts to further develop.

BACKGROUND

With advances in machine learning, data-driven approaches
that model and optimize engineering design problems are becom-
ing increasingly more prevalent. In this section, we will discuss
some recent progress in (1) addressing various mechanical prob-
lems with data-driven approaches, (2) applications of learning-
based methods in design and (3) dimensionality reduction for
shape optimization.

Data-driven Methods in Various Mechanical Problems

Sosnovik et al. [6] propose a Convolutional Neural Network
that accelerates topology optimization computations. Using the
powerful ability of deep learning methods to segment images
pixel-wise, the approach predicts final optimal topologies after
several iterations of optimization, based upon the initial condi-
tions of the layout.

To address the circuit synthesis in EDA design, Guo et al. [7]
propose an active learning strategy for reducing topology evalua-
tion cost for a circuit synthesis problem. They utilize a predictive
model with a random forest to approximate true circuit topology
performance. Their experimentation reveals that uncertainty and

topology structure may play critical roles in improving the ap-
propriation model accuracy and make a significant contribution
to reducing the system evaluation costs.

Data-driven methods have also been used in modeling non-
linear physics. Raissi et al. [8] treats the deep neural network as a
non-linear function approximator and use the method to identify
complex non-linear systems such as Lorenz system and the Gly-
coltic oscillator model. Umetani et al. [9] develop a data-driven
approach to estimate the aerodynamic forces on a glider and its
wing shape, and use this for glider design. This enables a user to
accurately match the desired trajectory without the aid of costly
simulations or experiments.

Learning-based Methods in Design Problems

With a large amount of available data and the advance of
hardware technology, data-driven methods have become an in-
creasingly common strategy for the problems that are difficult to
approach by the creating physical model or are expensive in com-
putation. Recently, researchers in the mechanical design commu-
nity have started exploring the machine learning approach to aid
the design process.

Fuge et al. [10] devise a framework that relies on collabora-
tive filtering to recommend best design methodologies to solve
target design problems, and argue that such approaches can be
valuable for novice designers and enhance the overall product
development cycle. In order to have an automatic design gen-
erator, Chen et al. [11] introduce the BezierGAN, a generative
model for synthesizing smooth curves. The model maps a low-
dimensional latent representation to a sequence of discrete points
sampled from a rational Bezier curve. It is tested on four dif-
ferent design datasets and reveals better capacities in generat-
ing realistic 2D smooth shapes when compared with InfoGAN.
Similar frameworks can have an impressive performance even
for creative hand sketches. Chen et al. [12] propose a model,
sketch-pix2seq, based on a sequence-to-sequence variational-
auto-encoder (VAE) model called sketch-rnn. With their modifi-
cation, the model has better performance in learning and generat-
ing sketches of multiple categories and shows promising results
in creative tasks. However, these works are limited to 2D images
or sketches. It is still challenging to extend these works to 3D
design representations. Unlike 2d images which can be easily
represented as unified RGB/grayscale form with the same size,
3d shapes are usually represented in polygonal meshes, point
clouds or implicit surfaces with various lengths and weak cor-
respondence among different shapes.

To have a deeper understanding of the mapping between the
shape and the functions of design, Dering et al. [13] propose a
deep learning approach based on three-dimensional (3D) convo-
lutions that predict functional quantities of digital design con-
cepts. Testing trained models on novel input yields accuracy as
high as 98% for estimating the rank of the functional quantities.
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FIGURE 1. The architecture of our proposed data-driven conceptual design pipeline.

This method is also employed to differentiate between decorative
and functional headwear. Moreover, Burnap et al. [14] develop
a deep learning approach to predict design gaps in the market.
Their approach is built on conventions in both quantitative mar-
keting inbounding the heterogeneity of consumer choice pref-
erences, as well as engineering design for bounding the space
of possible designs. Raina et al. [15] explore the representa-
tion of design strategies as a Hidden Markov Model and their
application to engineering design problems. Their results im-
ply the successful transfer of design strategies from human de-
signers to computational agents. They also propose a method
to achieve transfer learning in agent-based models through state-
based probabilistic models. Burnap et al. [16] use a deep learn-
ing based generative model to find the statistical representation
of a design space via using a large number of images and design
attributes. They test their methods on automobile body design
and successfully morph a vehicle into different meaningful body
types. In consideration of a sequential design pipeline, Oh et
al. [17] manage to combine the generative methods with further
topology optimization in automobile wheel design. However, the
synthetic designs are still technically immature with one-shot op-
timization. They claim that an iterative and automatic optimiza-
tion process can be a better alternative.

Dimensionality Reduction for Shape Optimization

At the heart of a functional shape design process, the idea
of reducing the dimension in the original design space plays a
critical role in shape optimization. For example, generative topo-
graphic mapping has been proposed by Viswanath et al. [18,19]
to tackle with the design problem of 2D aircraft wings. In order
to reduce the dimension of design space with a sense of the shape

common features, Proper Orthogonal Decomposition (POD) [20]
and Generative Adversarial Networks (GAN) [21] are introduced
as effective shape feature extractors. They both validate their de-
sign framework in designing a 2D airfoil profile through limited
control points.

Although the aforementioned prior researches achieve plau-
sible results when applying a data-driven approach as a tool for
the design process in 2D design space, there doesn’t exist a close-
loop 3D conceptual design pipeline which enhances the design
automation and optimization with respect to the functional re-
quirements.

TECHNICAL APPROACH

Fig. 1 shows our proposed framework. The key modules are
a deep learned shape encoder-decoder, a geometry or physics-
based design simulator, and an optimizer.

Input to our approach is a database of 3D models belonging
to the same object category (e.g., aircrafts). These models are
most commonly acquired in the form of 3D polygonal surface
models. Through unsupervised learning, the variational shape
learner extracts a latent feature vector for each of the input de-
signs. The latent space vector has much fewer dimensions than
the original shape representation, and thus serves as a dimension
reduced encoding of the large design space. This is the first mod-
ule of our design pipeline (Shape Parameterization).

The geometry- or physics-based simulator is determined by
the design performance objectives. It is responsible for testing
the design candidates and provide performance scores for the
subsequent optimization process (Function Evaluation). The in-
puts of this module are the reconstructions of some candidate
feature vectors using the existing well-trained decoder network.
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Through evaluation, we can have all the function scores for these
design candidates, which aid the optimizer to generate potential
better candidates.

The optimizer utilizes the outcomes of the simulator, to-
gether with the latent space representation, to optimize the de-
signs directly in the latent space. New candidates can be gen-
erated with a non-gradient based optimization method (Shape
Generation). These modules are detailed further in the follow-
ing sections.

Variational Shape Learner

In this study, we adopt a variational autoencoder model, the
Variational Shape Learner (VSL) [22], which builds on the ideas
of the Neural Statistician [23] and the volumetric convolutional
network [24]. The parameters of the VSL are learned under a
variational inference scheme [25]. As shown in Fig. 2, we use
a hierarchical VAE (Variational Autoencoder) which consists of
an encoder, a decoder and a latent space feature representation.

Distance Maps and Shape Representation: We use a 3D
signed distance field (SDF) as the primary design representation
in the original space. As opposed to the commonly used binary
voxel representation [1-4], this representation allows smooth fi-
nal surfaces to be constructed over the designs generated by VSL.

SDF is a scalar function of position that defines a closed
volume implicitly. The absolute value of the function is the dis-
tance from the surface of the solid. A positive value indicates the
point is inside of the solid, or negative outside. The boundary is
the isosurface where the function value is zero. SDF has been
recently used for deep-learned shape completions [5].

In our approach, the SDF is implemented as a tri-linear func-
tion defined over a structured lattice. A signed distance is as-
signed to the lattice nodes and interpolated within the lattice cell.
A lattice with n x m X k nodes has (n—1) x (m—1) x (k—1)
cells, and each node is connected to neighboring nodes by multi-
ple edges.

To create the training and testing data, an SDF needs to be
generated from a polygonal mesh. The program calculates a dis-
tance d from each lattice node to the nearest point on the polyg-
onal mesh. Then +d is assigned to the node if the node is inside
of the solid, or —d if outside.

Once an SDF is obtained as an output from the VSL, a
polygonal mesh of the boundary needs to be extracted from the
SDF for rendering and to facilitate downstream processes.

For this, our approach first places a vertex on each edge with
the two nodes having one positive and one negative value. The
position of the vertex is smoothly interpolated based on the dis-
tance values.

Then the program creates arcs on each rectangle of the lat-
tice cells that has a mix of positive and negative nodes. There are
four cases: (1) one negative and three positive, (2) two negative
connected and two positive connected, (3) two negative diagonal

and the other two positive, and (4) one positive and three nega-
tive. Cases (1), (2), and (4) yield one arc, and (3) yields two arcs
as shown in Fig. 3.

Finally, polygonal faces in each lattice cell are created by
connecting the arcs. The result may become degenerate if a lat-
tice node has exactly zero value, or the node is exactly on the
boundary. We append a very small value to the distance values
of such nodes to avoid this degeneracy.

Encoder-Decoder Details: For the encoder, the global la-
tent code is directly learned from the input SDF through three
convolutional layers with kernel sizes 6, 5, 4, strides 2, 2, 1
and channels 32, 64, 128. The size of the latent vector is 70.
Each layer is followed by a ReL.U activation layer [26] and a
batch normalization layer [27]. Each local latent code is condi-
tioned on the global latent code, the input voxel and the previ-
ous latent code (except for the first local latent code) using two
fully-connected layers with 100 neurons each. After we learn the
global and local latent codes, we concatenate them into a single
vector. A 3D deconvolutional neural network with dimensions
symmetrical to the encoder of the global latent code is used to
decode the learned latent features into an output SDF model.

An element-wise logistic sigmoid [28] is applied to the out-
put layer in order to convert the learned features to occupancy
probabilities for each SDF cell. The detailed network architec-
ture can be found in [22].

Physics-based Simulator

The trajectories of the original and synthesized aircrafts
are simulated in YS FLIGHT SIMULATOR [29]. While the
flight dynamics kernel of the simulator uses a simplified phys-
ical model, it is suitable for making a quick estimation of the
flight characteristics.

An aircraft in the air is subject to lift, drag, gravity, and
thrust, so called the four forces of flight. For this design task
thrust is cut to idle, or zero, rendering the designs as gliders.
Gravity is -9.8m/s” in the y-direction. Lift and drag forces are
calculated as:

1

L= 5Cvazs )]
1 2

D= 5CDpv S, (2

where L is lift, Cy, is lift coefficient, p is air density, v is velocity,
S is wing area, D is drag, and Cp is drag coefficient. C, and Cp
are functions of o or angle-of-attack. YS FLIGHT SIMULA-
TOR kernel approximates Cy and Cp as a piecewise-linear and a
parabolic function respectively.
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FIGURE 2. A schematic of VSL [22].

The rotation of an aircraft is the hardest to simulate. Unless
the moment of inertia and center of gravity is known it is im-
possible to make an accurate simulation. Instead of estimating
the moment of inertia and center of gravity, the simulator kernel
approximates a rotation as a second-order system with a stabil-
ity constant and a maneuverability constant, both of which are
empirically specified.

Estimating a reasonable C; and Cp functions and stability
and maneuverability constants for an output design of the net-
work is also a challenge. However, the output design from the
network leaves freedom of choosing the airfoil of the wing, mo-
ment of inertia, and the center of gravity. It is reasonable to as-
sume that the designs generated by the network can be configured
to have a similar characteristic to an existing airplane of a sim-
ilar geometric signature. We have chosen one from 88 aircraft
data in the flight simulator that matches the forward-projection
and top-view-projection area ratio the best to the output design
from the network and take C; and Cp functions and stability and
maneuverability constants for the characteristic of the designs
generated by the network.

Design Optimizer

The main purpose of this module is to explore potentially
better design candidates using the compact latent space. We use
a gradient-free genetic optimizer following its success in concep-

tual design [30-32]. Latent feature vectors extracted from vari-
ous designs are selected and ranked based on their corresponding
performance scores. Then, mutation and crossover operations in-
volving interpolation and extrapolation are used to produce sub-
sequent generations.

We observe that conventional crossover renders shapes in-
complete. This means that not all the designs in the latent space
are valid. To address this problem, we utilize the line crossover
operator [33] to generate new offsprings. A child is generated
using a linear interpolation between two parents:

Child:rxPl—i—(l—r)ng, 3)

where r € [0,1.2] is a random number drawn from a uniform dis-
tribution, and P; and P are the two parents respectively. The in-
tuition of line crossover is that the linear interpolation or extrap-
olation of the two parents may provide competitive offsprings
[32]. In our case, we expect the line crossover is functionally
similar to shape morphing which blends the geometric represen-
tation of two models together. The weight r tells the similarity
between the child representation and the parent P;. Sample re-
sults of the reconstruction models from the latent feature inter-
polation and extrapolation are shown in Fig. 4. Note that the
voxelized representation is used to show the coarse, binary ver-
sions of the designs that are generated from the latent space. The
actual output of the network is an SDF.
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FIGURE 3. Four cases of arc generation in a rectangular face of a
lattice cell.
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FIGURE 4. Sample reconstructions of the latent vector interpolation
and extrapolation.

We first compute the scores for all the models in our dataset.
Then, we rank all models and randomly select one model from
every (N/n) interval where N is the number of total models, n is
the population size (set to 100 in our approach). The probabil-
ity of crossover and mutation is 0.9 and 0.05 respectively. The
optimization goal is to minimize the Mean Square Error:

MSE = [|y: = yel[2, “)

where y, denotes the target functional objective score and y,. de-
notes the scores of the children generated in each generation.

Pailkg/m?)

Prmarlke/m?) h*(m)

D (m)

FIGURE 5. A schematic graph of the design task.

CASE STUDY

In this section, we demonstrate our approach on glider air-
craft design. All the modules in the pipeline are specified from
the suggested options we mentioned above. VSL, YS FLIGHT
SIMULATOR and Genetic Optimizer are chosen as the three
main modules in our pipeline.

For the data, we use the 4096 airplane models from the Mod-
elNet40 repository [2]. We clean the floating patches in the mod-
els and align all the models in the same direction. Then we com-
pute the SDF from the polygonal model to produce the network
input [41 x 41 x 41] in size for each model. It takes 3 hours to
train the network for 1000 epochs on an NVIDIA GeForce 1080
GPU. The learning rate is 5 x 1073, and the batch size is 64.

Design Task

As shown in Fig. 5, given the initial launch speed S(m/s),
the initial pitch angle 0(degree), the density of the projectile
aircraft P, (kg/m>) and the density of the air p;,(kg/m>) are
given, the goal is to design the shape of the glider so that it can
go through the gap located at #*m high from the ground, and Dm
horizontally away from the launch point.

In this design task, the constraint is that the projectile can-
didates should all fit in a 1m x 1m x 1m box without any propul-
sion. Among all the parameters, D, Py, and p,;, are fixed. S, 0
as well as 4* can be set arbitrarily by the user. Designers are usu-
ally accustomed to the inverse task: Given the projectile, adjust
S and 6 to hit the target height, which can be regarded as a tun-
ing process of several parametric design variables. By contrast,
in our design problem, the shape of the projectile aircraft cannot
be readily parameterized or represented with a limited number of
design variables.

RESULTS

In our experiments, we set 8 = 10°, S = 45.7m/s, Pmar =
1000kg /m>, pair = 1.29kg/m* and D = 100m. Our main interests
lie in the height of the gap A*(m). We varies the value of h* to
test the performance of our proposed pipeline.
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FIGURE 6. Upper: 10 randomly selected aircraft SDF models from
the initial population. Lower: The landing height /(m) distribution of
the 100 initial population.

To have an intuitive sense of a reasonable range for hx,
we randomly select 100 aircraft models from the dataset. Then
we obtain the landing height of each aircraft model using the
physics-based simulator we introduce in the CASE STUDY sec-
tion. The acquired height range is & € [0,12.6]m. A plot of
the sorted height distribution is shown in Fig. 6. Note that zero
means the model lands at the ground before D = 100m.

First, we set h* = 6m, which is around the mean value of the
height range. After about 200 rounds of an iterative optimiza-
tion process, the distribution of the landing heights for the final
design candidates are demonstrated in Fig. 7. Unlike the diverse
distribution in Fig. 6, the distribution is much flatter and mostly
gather near the target height of 2" = 6m. In fact, if the toler-
ance is 0.1 m, 76% of design candidates in the final population
satisfy the design requirement. (See Tab. 1) In the initial popula-
tion, only 1% of the population can fulfill the same requirements.
Fig. 7 also shows the diversity in the final synthetic populations,
which will benefit the human designers with more valid options
to choose from.

To demonstrate the ability of our pipeline in design space ex-
ploration, we intentionally set a design requirement that is orig-
inally unfeasible in the existing design candidates. Specifically,
we set 1* = 13.8m. The height distribution of the suggested de-
sign candidates after optimization is shown in Fig. 8. We can
observe that all the heights are within [13.2,13.9]m, which ex-
ceed the maximum height(12.6m) the initial designs can reach.
According to Tab. 2, although the concentration of heights for
final designs is not as impressive as #* = 6m case, 88% of can-
didates are able to fulfill the requirement if the tolerance is 0.5m.

Height/m

h* =6m

40 60 70 80 90 100

50
Airplane Index

FIGURE 7. Upper: 10 randomly selected aircraft SDF models from
the optimized population when #* = 6m. Lower: The landing height
h(m) distribution of the 100 optimized population when h* = 6m.

TABLE 1. PERCENTAGE OF THE DESIGN CANDIDATES WITH
THE LANDING HEIGHT &, S.T. |h — h*| < 6 WHEN A* = 6m.

6(m) Initial Final
0.1 1% 76%
05 4% 98%

The results also reveal the difficulty of exploration outside the
original feasible space. To make the task even more challenging,
we set h* = 14.5m and repeat all the design process. Expect-
edly, see Fig. 9, the final synthetic candidates cannot reach such
a height requirement. But we obtain a design boundary refer-
ence in a data-driven manner as well as plentiful promising de-
signs that provide useful suggestions for further manual design
exploration.

CONCLUSIONS

This work presents an integrated conceptual design pipeline
involving a data-driven shape learner, a function evaluator and a
functional design optimizer. The pipeline is verified with a case
study on the shape design of projectile aircraft models. When the
design objective is set within the objective range of the design ex-
emplars, our algorithm is able to synthesize a large set of design
candidates that also satisfy the functional design requirements. It
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FIGURE 8. The landing height /(m) distribution of the 100 optimized
population when 7* = 13.8m.

TABLE 2. PERCENTAGE OF THE DESIGN CANDIDATES WITH
THE LANDING HEIGHT 4, S.T. |h — h*| < 6 WHEN h* = 13.8m.

O0(m) Initial Final
0.1 0% 5%
05 0% 88%

h* = 14.5m |

10 20 30 a0 50 60 70 80 90 100

Airplane Index

12
o

FIGURE 9. The landing height /2(m) distribution of the 100 optimized
population when 7* = 14.5m.

is capable of generating new designs whose performance scores
are outside the range of the original models.

Likewise, the same approach can be utilized to generate
valid design candidates in other domains when adopting differ-
ent options for each module. For example, if the design focus is
the shape of a 2D beam bridge with load constraints, the shape
learner alternative can be a 2D VAE. The physics-based simu-
lator should accordingly be an FEA simulator. The functional
design optimizer can adopt PSO.

At the meantime, even for design problems with the same di-
mension (2D/3D), various data representations can be introduced
in the pipeline in terms of the focus area. Depth images are suit-
able when designing shell structures. While point clouds are ben-
eficial when designing adjacent mesh surfaces. These potential
extensions of our pipeline are becoming increasingly promising
as several recent learning frameworks like Matterport3D [34] and
PointNet [35] have been developed.

LIMITATIONS AND FUTURE WORK

Two time-consuming processes in our pipeline are the train-
ing of the shape learner and the geometry-based or physics-based
simulation. A potential more efficient method is to directly es-
tablish a mapping between the latent feature vector and its cor-
responding physic properties, which may be a trained network
as well. In this manner, designers can completely get rid of the
original data format (2D/3D) during the iterative optimization
process. The final proposed designs will be reconstructed once
the objective is fulfilled.

When manipulating the feature vectors in the functional op-
timizer module, we don’t have a sense of the exact meaning of
each dimension in the latent space. This is a common problem
which has also problematic for researchers from the machine
learning field. Recently, researchers like Wieczorek et al. [36]
are exploring learning orthogonal latent features, which may en-
able the designers to acquire a desired latent space.
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