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The ability to track human operators’ hand usage when working in production plants and
factories is critically important for developing realistic digital factory simulators as well
as manufacturing process control. We propose a proof-of-concept instrumented glove
with only a few strain gage sensors and a microcontroller that continuously tracks and
records the hand configuration during actual use. At the heart of our approach is a train-
able system that can predict the fourteen joint angles in the hand using only a small set of
strain sensors. First, ten strain gages are placed at various joints in the hand to optimize
the sensor layout using the English letters in the American Sign Language (ASL) as a
benchmark for assessment. Next, the best sensor configurations for three through ten
strain gages are computed using a support vector machine (SVM) classifier. Following
the layout optimization, our approach learns a mapping between the sensor readouts to
the actual joint angles optically captured using a Leap Motion system. Five regression
methods including linear, quadratic, and neural regression are then used to train the
mapping between the strain gage data and the corresponding joint angles. The final pro-
posed model involves four strain gages mapped to the fourteen joint angles using a two-
layer feed-forward neural network (NN). [DOI: 10.1115/1.4043757]
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1 Introduction

Recent advances in 3D data acquisition and tracking technolo-
gies have enabled a rapid digitization of large production plants
and factories in various formats such as point clouds and triangle
soups (a set of unorganized and disconnected triangles). Acquired
data are utilized for the generation of digital twin of manufactur-
ing processes, which can be used to simulate and optimize work-
cell layouts while improving human operator effectiveness, safety,
and ergonomics. Although the existing process simulation tools
can make use of digitized factory environments in the form of
point clouds, these tools still require a labor intensive manual con-
figuring of the simulation environment such as how human work-
ers interact with the assembly tools and how they manipulate
different objects during manufacturing.

In most factory settings, human workers are usually responsible
for controlling the manufacturing process by manipulating
switches, buttons, and valves in automatic systems. In handcrafted
lines or assembly lines, they directly operate on the workpiece or
use multiple hand tools. Under both circumstances, the behaviors
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of human hands are the most critical data that need to be acquired
as the majority of human operations on the production line can be
represented as a set of hand motions.

In this work, we address the problem of acquiring an accurate
3D model of human hand usage using a proof-of-concept instru-
mented glove with only a few strain gage sensors. Once available,
these data can be incorporated directly into factory environment
simulators, thereby alleviating the need for manual process
parameter tuning. Specifically, we envision that a set of instru-
mented gloves will be utilized by human workers while they are
performing their jobs in a real factory environment and the pro-
posed wearable device will enable automatic data collection for
understanding how human workers interact with their surround-
ings. The content of this paper is based on our paper [1] presented
at the IDETC/CIE 2018 conference.

Toward this goal, we develop a wearable device that is able to
track and record human hand poses relative to the wrist over an
extended period of time. The main advance in this work is the
development of methods, algorithms, and a prototype device that
use as little as four strain gages to predict in real-time all the
fourteen joint angles in the fingers with an average root-mean-
square error (RMSE) of 3.6 deg. Given a target number of strain
gages, we begin by optimizing the layout configuration of these
sensors on the outer surface of the human hand using the
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classification performance on the English letters in American Sign
Language (ASL) as a way to assess candidate layouts. Next, we
establish a training protocol for hand pose tracking wherein a new
user wears and trains the glove for a duration of 3 min. The pur-
pose of this training is to learn a mapping from the sensor readouts
to the fourteen joint angles, where the joint angles are captured
using a Leap Motion depth sensor as the ground truth. This
approach enables high-fidelity benchmark poses to be gathered
during the training phase using optical tracking, while alleviating
the need for optical tracking during actual use (hence only requir-
ing strain sensing). In consideration of the fabrication cost and
comfort of wear, we target at using as few strain sensors as possi-
ble. The results of our experiments involving a varying number of
strain gages as well as regression algorithms involving linear least
squares, quadratic least squares, and neural regression are also
compared. Our studies suggest that an instrumented glove with
four strain gages that uses neural regression to be the best compro-
mise between tracking accuracy and device simplicity in all the
regression methods aforementioned.
Our main contributions are the following:

(1) A method to optimize the strain sensor layout for human
hand pose estimation.

(2) A training algorithm between optically captured hand poses
and a lower dimensional strain data for high fidelity hand
pose tracking.

(3) A wearable glove with a limited number of strain sensors
for real-time hand pose tracking.

2 Related Work

Our work builds on hand gesture recognition and tracking systems
with a specific focus on factory environment use. In this section, we
review hardware systems and computational algorithms of two main
hand tracking approaches: (1) wearable sensor systems and (2)
vision-based techniques. Additionally, we discuss commercially
available hand tracking systems in relation to our specific problem.

2.1 Wearable Sensor Systems. Wearable devices typically
integrate strain, acceleration, and force sensors combined with
classifiers for hand pose recognition [2-5]. Compared to these
works, our aim is to track the full hand pose rather than a set of dis-
crete hand gestures. Kramer et al. [2] present a hand gesture recog-
nition system using an instrumented glove with approximately 20
sensors where each sensor is composed of two strain gages. In our
approach, we aim to minimize the number of strain sensors for ease
of usability and cost of fabrication. The musculoskeletal system of
the hand allows the prediction of hand movement (all 14 joints)
using fewer number of sensors due to a coupling between the joint
angles. In our approach, we exploit this coupling to achieve accu-
rate tracking using only a few sensors (3—5) with a performance
similar to ten strain gages. Note that this approach requires a special
attention due to the mapping from low-dimensional sensor data to a
high-dimensional joint angle space (Sec. 3.3.2).

Lei et al. [4] present an accelerometer-based method to detect
12 predefined index finger movements of stroke patients during
rehabilitation therapies. The study reports gesture recognition
accuracy varying from 59% to 87% and continuous tracking of
one finger on the 12 classes. One drawback of accelerometer-
based approaches is that these sensors are rigid pieces. In contrast,
strain gages are inherently slimmer, lighter, and flexible allowing
them to better conform to natural hand poses. Federico et al. [3]
demonstrate a glove design with conductive mixture patterns as
sensors. Carbonaro et al. [6] present a wearable kinesthetic glove
realized with knitted piezoresistive fabric sensor technology.
Their glove is conceived to capture hand movement and gesture
by using knitted piezoresistive fabric in a double-layer configura-
tion working as angular sensors. Hammond et al. [7] demonstrate
work on the design, fabrication, and experimental validation of a
soft sensor-embedded glove which measures both hand motion
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and contact pressures. While the above study presents very high
accuracy at first wear, sensor-based approaches are sensitive to
hand sizes and repetitive wears. In our approach, we overcome
this issue with a short training session using a depth sensor in a
controlled environment.

2.2 Vision-Based Techniques. Vision-based approaches
have been widely used in gesture recognition and motion tracking
applications. These vision-based approaches have been demon-
strated using many different hardware setups including optical or
infrared cameras [8,9], red, green, and blue (RGB) cameras, and
depth sensors [10,11]. Gioliu et al. [12] present a support vector
machine (SVM) based gesture recognition algorithm using infrared
cameras, RGB cameras, and depth sensors, reporting up to 92%
accuracy. Wang and Popovi¢ [13] use a single camera to track a
hand wearing an ordinary cloth glove. da Silva et al. [14] develop a
wearable sensing glove for monitoring hand gestures based on opti-
cal fiber Bragg gratings sensors. BigHand2.2M [15] uses a convolu-
tion neural network (NN) to predict the position of the joints on the
input depth maps. Real-time hand tracking has been studied in
Ref. [16]. However, vision-based techniques are nonwearable and
nonportable settings which are not feasible in an industrial environ-
ment. Vision-based techniques are also sensitive to environment
conditions such as lighting which may change during an operation
in a factory. Moreover, vision-based techniques are not suitable for
hand tracking while holding other objects due to occlusions.

2.3 Other Related Work and Commercial Systems. Pos-
ture recognition systems for other body parts such as the surface
[5], arm [17], leg [18], and body [19,20] have also been exten-
sively studied. Rendl et al. [5] use a transparent sensing surface
based on printed piezoelectric sensors to reconstruct surfaces.
Though their reconstruction of the surface can work well, it is
more complicated to predict the angle of joints. In principle, these
works share techniques and goals similar to that of hand tracking.
Yet, the hand tracking problems require higher resolution sensor
readings as well as smaller hardware restrictions for portability.

There exists a growing body of commercial hand gesture recog-
nition and tracking systems. Proglove [21] is a wearable device
that demonstrates the need for tracking operations in a factory
environment. Proglove is designed to scan and display the items
which are being touched or handled for industrial logistics, hence
is not concerned with hand pose estimation and tracking. Gest
(accelerometer-based) and Myo (acoustic-based) [22]? are weara-
ble devices that focus on hand gesture recognition to control com-
puters and machines. Compared to these devices, our aim is to
develop a wearable system that can be incorporated into tradi-
tional work gloves with whole hand tracking capabilities. Cyber
Glove [23] is a motion capture device equipped with 22 sensors
for full hand tracking. In contrast, understanding redundancies
and minimizing the number of sensors is key in our approach to
enable development of a comfortable and affordable glove sys-
tem. In addition, we introduce a training approach for personal-
ized calibration of glove systems.

Leap Motion and Kinect [24]3 are vision-based hand tracking
devices primarily for virtual reality gaming. They require external
devices like cameras to be placed facing the tracked objects. Such
nonportable settings requiring optical sensors are not feasible in
our target context. However, these approaches are very useful for
training and calibration purposes. As such, we use a Leap Motion
system for the initial mapping of strain sensor data to the joint
angles. By combining the strain sensor based tracking with the
vision-based pretraining, we can monitor hand poses even when
the hand is occluded holding an object and we can quickly train
the algorithms for accurate personalized tracking. To our knowl-
edge, our study is the first to focus on real-time hand pose tracking

2https://gest.co
3https://www.leapmotion.com
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Table 1 A summary of some selected related work as a comparison to our method

Name Approach Adaptive to hand sizes Adaptive to occlusions Main focus
[2-4,21,22] Wearable X v Gesture recognition
. Wearable v v Gesture recognition
[7] Wearable v v Index finger tracking
[6,23] Wearable X v Hand tracking
[8-12] Vision-based v X Gesture recognition
[13-16,241° Vision-based v X Hand tracking
Our method Wearable v (trainable) v Hand tracking
“https://gest.co.

Phttps://www.leapmotion.com.
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Fig. 1 (a) Fourteen joints in the hand and (b) ten strain sensor
layout on a latex glove

with or without objects in hand using only a few strain sensors
(see Table 1).

3 Technical Approach

In this paper, our objective is hand pose tracking using a simple
and portable hardware setup and develop algorithms that address
our specific challenges. We divide our technical discussions into
two parts. First, we discuss the hardware design and explain our
algorithms for choosing informative sensor placements. Second,
we describe the hand tracking protocol and the training procedure
for personalized tracking that captures the hand size and a possi-
ble initial deformation of the strain sensors.

3.1 Hardware Design and Initial Sensor Layout. As shown
in Fig. 1(a), there are 14 joints in the hand. Our approach aims to
track the angular deformations at these joints during the hand’s
actual use. For our prototype, we choose a latex glove in order to
achieve a tight fit with the hand as a way to increase strain readout
fidelity. For the initial strain gage placement, we use ten strain
gages as shown in Fig. 1(b). We observe that the motion of the tip
joints (J5, J8, J11, and J14) are strongly coupled with the mid-
joints (J4, J7, J10, and J13) at each finger making two of these
joints on the same finger difficult to move independently. Based
on this observation, we place only two sensors per finger, resulting
in ten total sensors (S1-S10).

3.1.1 Hardware Setup. For the prototype, ten strain gages
(KFH-20-120-C1-11L1M2R, Omega) are attached to a medium-
sized Latex glove (Microﬂex® Diamond GripTM, Norwalk, CT,
ULINE, Pleasant Prairie, WI) using double-sided tape. The glove
is worn by a human subject and the hand is laid flat on a flat sur-
face prior to attaching the sensors as shown in Fig. 1(b). This con-
figuration simply establishes a strain-free datum for the sensor
network. Any subsequent hand motion is registered via the tensile
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Fig. 3 The hand gestures used in our sensor selection study.
PO corresponds to neutral hand pose that serves as a calibra-
tion point. P1-P13 are the first 13 letters (A-M) in American
Sign Language. Image courtesy: Dr. Bill Vicars*.

or compressive strain readouts. Once the sensors are attached, this
particular glove is used by all human subjects without changing
the sensor locations, with user-specific training prior to the use of
the glove as will be discussed in Sec. 3.3.

As shown in Fig. 2, we use an Arduino microcontroller board
for the strain readouts with a Wheatstone bridge amplifier
(INA125P-ND, Texas Instruments), whose output is then chan-
neled to the analog port of the Arduino mega board to register ten
strain gages.

3.2 Data Collection and Sensor Layout Optimization. In
this section, we explain the data collection and sensor layout
selection process to determine which sensor configurations pro-
vide the highest information gain as measured through a gesture
classification system. This process is repeated for a range of target

“https://www.Lifeprint.com
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Table 2 Recognition accuracy of the best five sensor configu-
rations using three strain gages

Table 3 Best sensor configuration for each target number of
strain gages (3-9)

S1, 82, 83, S5, S6, S7, S8, S9

Configuration Training accuracy (%) Test accuracy (%)  No. of target SGs Best configuration

S5, S8, 89 98.29 63.44 3 S5, S8, S9

S5, S6, S8 95.96 59.56 4 S6, S7, S8, S9

S5, 56, S9 93.11 58.72 5 S5, S6, S7, S8, S9

S6, S8, S9 90.90 57.04 6 S2, 84, S5, S7, S8, S9

S7, 58,59 94.02 50.80 7 S1, S2, 5S4, S5, S7, S8, S9
8
9

sensor numbers (3—10 sensors). For each target number of sensors,
we identify the best strain gage choices using the classification
performance on the English letters in ASL as a way to assess the
candidate sensor choices (Fig. 3). Toward this goal, three users
(two males and one female) perform the static gestures for the first
13 letters of the ASL while wearing the instrumented glove. For
each user, pose 0 serves as the neutral calibration point to zero all
sensor readouts prior to each trial. In each iteration, the user
presents pose 1 through pose 13 while holding each pose for
approximately 10s. The sensor readouts are recorded at every
100 ms. Each user repeats the experiment for the second time by
taking off the glove and wearing it again. Following data collec-
tion, the transition periods between the thirteen poses (the leading
and trailing two seconds for each pose) are removed.

Next, the data obtained from the three users are aggregated into
a large set, separated into two bins: first time wear (all users
aggregated) and second time wear (again, all users aggregated).
The first time wear data are used for training, and are further bro-
ken into tenfold training and validation sets. For each target num-
ber of sensors, we use a multiclass SVM with cross validation to
determine the strain gage combinations that yield the highest user-
independent recognition accuracy on the ASL test.

Table 2 shows the recognition accuracy on the ASL data for
sensor configurations consisting of only three sensors (top five of

C( 130> choices). The training accuracy (trained on first time

wear data) reports the average of the validation runs for each con-
figuration, while the test accuracy reports the results on the test set
(second time wear data). The fall-off between the training accu-
racy and test accuracy mainly results from the misalignment
among different wearings. As shown, S5, S8, and S9 form the best
three-sensor configuration.

Table 3 summarizes the best sensor choices as a function of the
target number of strain gages.

3.3 Hand Tracking. After we establish the optimal sensor
choices, we describe the hand tracking process. For hand tracking,
the key need is to map the strain sensor readouts to the fourteen
joint angles through a training protocol, and use this map as a way
to predict the hand pose during actual use. However, the main
challenge is in the prediction of the high degrees-of-freedom joint
angles from a fewer number of sensor readouts.

3.3.1 Training for Pose Tracking: Data Collection. For train-
ing, we establish a map between the strain sensor readouts and the
joint angles with the help of the Leap Motion depth sensor
(Fig. 4). This system allows the capture of all fourteen joint angles
in a controlled environment, thus establishing the ground truth for
the strain to joint angle mapping.

During training, the users move their hands through random
poses while wearing the instrumented glove. The hand motion
should be slow enough for strain sensor readings to stabilize
against the Leap Motion data capture. Note that this stabilization
is only needed during training to match strain sensor readings to
Leap Motion data. Hence, no speed restriction is present once the
system is trained.

Figure 5 shows the amount of variation in each of the fourteen
joint angles (abs(Angle,,.x — Angle,,;,)) as captured through the
Leap Motion system. These variations are important to note as
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S1, S2, S4, S5, S6, S7, S8, S9, S10

Fig. 4

Optical training process using the Leap Motion system
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Joint Angle Index

Fig. 5 The range of the joint angles captured through the Leap
Motion system

they will allow an assessment of the RMSE values reported in
Sec. 4.

A new user wears and trains the glove for a duration of 3 min.
During this phase, the strain readouts and the joint angle readouts
are captured at different frequencies, and moreover, the sampling
may be nonuniform within each channel. These two input streams
are thus registered by acquiring them through the same computer
and using the system clock as a reference for registration. This
produces a large set of registered strain versus joint angle pairs
(approximately between 1500 and 1700 pairs) that are used for the
next step of training. Note that this training is repeated for each
new user to accommodate differences in hand shapes and sizes.

3.3.2 Training Algorithms. To map the strains to the joint
angles, we use linear regression, quadratic regression, and feed-
forward neural regression. Note that, for these regression models,
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Fig. 6 RMSE for single hidden layer neural networks as a func-
tion of hidden nodes

the mapping is from £ strain gages to the 14 joint angles (where
k< 14).

Linear regression: For linear regression with bias, this map can
be represented as follows:

ST=1J )

where S is the N x (k+ 1) strain data matrix (with bias), N is the
number of training data points, and £ is the number of target strain
gages. J is the corresponding N x 14 joint angle matrix encoded in
a similar way. T is the desired mapping matrix. We use a linear
least squares solver with L2 regularization to obtain the map T.

Quadratic regression: Quadratic regression follows a structure
similar to that of the linear regression model, except the width of
S and the height of T are increased to account for the quadratic
terms, while using the same number of training data as before.

Support vector regression: The support vector regression
(SVR) uses the same principles for regression as the SVM for
classification. In our case, we use the Gaussian kernel as the ker-
nel function.

Random forest regression: Random forest regression (RFR) is
an ensemble learning method for regression that operates by learn-
ing a multitude of decision trees whose predictions consolidated
into a single prediction [16]. We use 100 decision trees (choice
determined empirically) to learn the mapping from the strain sen-
sors to the joint angles.

Neural regression: Finally, we build a feed-forward neural net-
work to estimate T. The network admits the strain sensor data as
input and estimates the joint angle data on the output. We train
various neural networks with different complexities. Both single
and double layer networks are tested, with the number of hidden
nodes in each layer ranging from 10, 20, ..., 50. The sigmoid acti-
vation function is used in the hidden layers. Each network is
trained three times and is assessed based on the average RMSE.

4 Results and Discussion

In all of our experiments, we trained our algorithms with 90%
of shuffled data and tested it with the remaining 10%.

4.1 Neural Network Optimization. We conducted paramet-
ric studies to search for a good performing neural network struc-
ture. For a single hidden layer, we varied the number of hidden
nodes from 5 to 50 with an increment of five. In all cases, the
training continues until an increase in the validation error is
observed. The resulting average RMSE values (over different
numbers of target input sensors) corresponding to a different num-
ber of hidden layer nodes are shown in Fig. 6. We deem 15 hidden
layer nodes to be a good compromise between network complex-
ity and accuracy.

Similarly, a two hidden layer network was also explored. Here,
the number of hidden layer nodes in the first and second hidden
layers is varied from 10 to 50 with an increment of ten. Based on
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the results shown in Fig. 7, we choose the network with ten first
layer nodes and 30s layer nodes (RMSE of 2.73 deg). As a com-
parison, the resolution and the error between wearings for Cyber
Glove [23] are 1 deg and 3 deg with 22 sensors.

While the optimal single and two hidden layer networks per-
form well with low RMSE values relative to the joint angle ranges
(Figs. 6 and 7 versus Fig. 5), we use the two hidden layer network
over the single hidden layer network in the remainder of this
work.

4.2 Comparison of Regression Models. Figure 8§ summa-
rizes the performance of our linear (LR), Quadratic (QR), SVR,
RFR, and NN regression models, reported as the RMSE values of
the models applied to the test data and averaged over the fourteen
joint angles. As shown, QR, SVR, RFR, and NN produce mark-
edly better estimations over LR (smaller RMSE is better).

For each model, as the number of sensors increases, the RMSE
values exhibit a declining trend as expected. Of note is the fact
that even with only four sensors, the NN produces results that are
better than the ten-sensor models of LR and QR. The results of
NN are slightly better than RFR and SVR model. With the number
of sensors increasing, the difference between NN, RFR, and SVR
models is becoming smaller. As such, we deem the NN model
with four sensors as the best model to deploy with the observed
data, as it provides a favorable trade-off between simplicity and
test accuracy. As shown in Table 3, this result suggests the use of
NN model with strain sensors S6, S7, S8, and S9.

4.3 Insights Into the Joints. Figure 9 provides a more
detailed view of the RMSE values. In particular, Fig. 9 shows—
for each joint—the RMSE values for the five regression models
for configurations of ten sensors as well as four sensors’. For most
joints, the NN model produces lower RMSE values. Moreover,
for the proposed four-sensor configuration (Fig. 8 right), the maxi-
mum RMSE for the NN is observed at J3 and J6. Interestingly,
these two joints also result in the worst RMSE values for LR and
QR. And even more interestingly, these joints are also responsible
for producing the worst RMSE values for the ten-sensor configu-
ration (Fig. 8 left). On the other hand, for RFR and SVR, this
observation is reversed. For the four-sensor configuration, for J3,
RFR and SVR exhibit better performance over NN. Likewise,
when the number of strain gages is ten, RFR and SVR preform
slightly better than NN. This observation offers the insight that
combining different regression algorithms using ensembles with
respect to different joints may further improve the overall accu-
racy of our approach.

Figure 10 shows the R* values for the five regression models
over different joints. In this case, the higher the R?, the better the
improvement in the prediction model, compared to the mean
model. As seen, the NN model is the best when it comes to
explaining the variation in the data.

SNote that Fig. 8 reports an average RMSE over these joints.
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5 Conclusions

This work presents a trainable instrumented glove that is capa-
ble of predicting the fourteen joint angles on a hand using as few
as four strain gages. The long-term goal of this study is to enable
wearable gloves that can be used in factory settings to monitor
workers’ hand usage over extended periods of time. The proposed
algorithms and prototype system offer a step toward this goal.

During deployment, hand pose prediction that relies solely on
strain readouts has the advantage of not being restricted by bulky
hardware and other impediments common to optical sensing sys-
tems such as object occlusions and lighting. Our work, however,
takes a significant advantage of the optical tracking system by
offering a short training phase that allows the determination of a
robust mapping from the physical strain space to an optically cap-
tured joint angle space. The optical tracking is only confined to
the training phase, thereby making the proposed system usable
during deployment.

Our work has demonstrated that a training duration as short as
3 min provides sufficient data to learn a useful mapping from the
strain gages onto the joint angles, thereby making the proposed
system practically viable in real-world settings.

While our work uses conventional strain gages for the develop-
ment of the methodology, the same infrastructure and algorithmic
approach can be immediately adopted for use with more advanced
strain sensors with smaller footprints or with those using soft
materials and continuous electronic circuitry. We intend to
explore this direction as the immediate next step.

5.1 Limitations and Future Work. This study is limited to
the prototype glove that includes both sensing and tethered data
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transmission. An immediate improvement would be to incorporate
wireless data transmission. This setup would include a data
receiving hardware that connects to the computer system follow-
ing the same hand tracking algorithms presented in this paper.

Another future direction involves extending glove usage and
data collection over durations measured in hours. This way we
can investigate the performance of our hand pose tracking
approach for actual use cases with long operational times.

Finally, in future studies, we intend to improve the glove ergo-
nomics, as well as to explore using soft materials and continuous
electronic circuitry in the glove to improve comfort. We envision
a glove system in which both sensing and circuitry design are fur-
ther informed by ergonomic considerations.
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