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A multitude of studies in economics, psychology, political
and social sciences have demonstrated the wisdom of crowds
(WoC) phenomenon, where the collective estimate of a group
can be more accurate than estimates of individuals. While
WoC is observable in such domains where the participating
individuals have experience or familiarity with the question
at hand, it remains unclear how effective WoC is for do-
mains that traditionally require deep expertise or sophisti-
cated computational models to estimate objective answers.
This work explores how effective WoC is for engineering de-
sign problems that are esoteric in nature, that is, problems
(1) whose solutions traditionally require expertise and spe-
cialized knowledge, (2) where access to experts can be costly
or infeasible, and (3) in which previous WoC studies with the
general population have been shown to be highly ineffective.
The main hypothesis in this work is that in the absence of
experts, WoC can be observed in groups that consist of prac-
titioners who are defined to have a base familiarity with the
problems in question but not necessarily domain experts. As
a way to emulate commonly encountered engineering prob-
lem solving scenarios, this work studies WoC with practition-
ers that form micro-crowds consisting of 5 to 15 individuals,
thereby giving rise to the term the wisdom of micro-crowds
(WoMC). Our studies on design evaluations show that WoMC
produces results whose mean is in the 80th percentile or bet-
ter across varying crowd sizes, even for problems that are
highly non-intuitive in nature.

1 Introduction
Crowdsourcing is emerging as a cost-effective, rapid ap-

proach to problem solving in a variety of disciplines where
the collective estimate of a group can outperform the indi-
viduals, even in the presence of domain experts. This phe-
nomenon is known as the wisdom of crowds (WoC) and has
been demonstrated across a range of problem domains [1–3].
Traditional crowdsourcing naturally focuses on tasks that are
human easy and computer hard, such as vision problems
where crowds are asked to identify and label objects in large
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sets of images [4]. In such problems, the task is typically
very intuitive for humans, and thus the correct answer can
be inferred from a crowd consensus. In engineering prob-
lems requiring domain expertise, however, crowdsourcing
has proven to be significantly less effective, in part due to
the limited number of experts in the sampled crowd [5]. This
suggests that extending traditional crowdsourcing to tasks
requiring expertise is non-trivial, especially if experts are
scarce. As an alternative to crowdsourcing, expert collab-
oration has been extensively studied [6–10]. However, inter-
actions among group members have been shown to lead to
similarity of experts [11], which may result in experts being
outperformed by diverse groups [12]. As such, it remains un-
clear how conventional crowdsourcing can be made truly ef-
fective for engineering design problems, especially for tasks
that require expertise.

As one step toward addressing this gap, this work ex-
plores the effectiveness of WoC for engineering design prob-
lems that are esoteric in nature. Esoteric problems are de-
fined as those (1) that traditionally require expertise and spe-
cialized knowledge, (2) where access to experts can be costly
or infeasible, and (3) in which previous WoC studies with
the general population have been shown to be highly inef-
fective [5]. The main hypothesis in this work is that in the
absence of experts, WoC can be observed in groups that con-
sist of practitioners who are defined to have a base famil-
iarity with the domain and the problems in question, even
though no single individual may have the expertise to cor-
rectly solve the problem. With this definition, experts are a
subset of practitioners. However, in this work, in contrast to
purely expert crowds, practitioner crowds are characterized
by individual responses that exhibit both significant accuracy
(deviation from the ground truth) and precision errors (vari-
ation among the responses). This new definition and focus
on practitioners stands in contrast to previous studies that
explore WoC in design that rely either on the general pop-
ulation crowds where experts are extremely scarce and un-
known [5], or on teams of experts [7] as the basis of crowds.
Additionally, as a way to emulate commonly encountered en-
gineering problem solving scenarios, this work studies WoC



with practitioners that form micro-crowds consisting of 5 to
15 individuals (rather than tens or hundreds of individuals),
thereby giving rise to the term the wisdom of micro-crowds
(WoMC) which is central to the presented work.

As part of this study, four design assessment questions
with varying levels of difficulty and intuitiveness were de-
ployed where the participants were asked to assess the qual-
ity of the candidate design solutions. Several data aggre-
gation methods were developed and tested on the acquired
data. The results suggest that WoMC with practitioners can
indeed be observed, where the crowd estimate outperforms
the individuals in the vast majority of instances. To facili-
tate benchmarking, these results have been obtained for prob-
lems in which there already exists an objectively true solu-
tion (i.e., benchmark results obtained through optimization).
As such, it could be argued that crowdsourcing is remark-
ably unnecessary for such problems where solution methods
already exist. However, the most significant conclusion of
the presented work is that for current or future engineering
design problems where algorithmic solutions may currently
not exist, small groups of practitioners may in fact provide
very effective solutions. Note that, in this context the current
lack of solution methods implies a lack of experts, which re-
inforces the importance of practitioners.

An interesting limitation of the presented work, how-
ever, is that when applied to open-ended, conceptual design
problems where no objectively true solution exists, the per-
formance of WoMC declines significantly. The results in-
dicate that in such cases, the individuals in the crowd tend
to make significant estimation errors when benchmarked
against expert ratings. Nevertheless, it remains unclear
whether these estimation errors are due to the practitioners’
inability to accurately assess candidate solutions, or whether
there exists issues even with expert ratings of such open-
ended problems.

Crowdsourcing scenarios in esoteric domains. In en-
gineering, crowdsourcing is often used in the form of grand
challenges to gather candidate solutions where the crowd-
sourced solutions are assessed by experts juries. However,
use of experts to assess these solutions may not be ideal since
these grand challenges are usually created for very complex
problems where experts can not solve optimally. The idea
of wisdom of micro-crowds with practitioners that is pre-
sented here can be an alternative to experts juries in such
problems. This way, both the generation and assessment of
the candidate solutions can be crowdsourced through practi-
tioner crowds that are exposed to the esoteric domain. Note
that, micro-crowds are composed of anonymous and non-
interacting people with individually unknown expertise lev-
els unlike traditional design teams.

Another esoteric crowdsourcing scenario includes on-
line communities in advancing fields. Thingiverse, an on-
line community for 3D printing designs or GrabCAD, an on-
line community for sharing CAD designs can be examples of
communities in advancing esoteric fields. These communi-
ties already include large groups of people that are familiar
with their respective domains, practitioners. Such communi-
ties can benefit from the utility of our work to asses candidate

designs that may in fact produce successful outcomes, which
would be critically important in cases where no appropriate
computational evaluation techniques exist. One such prob-
lem might be planning for hybrid manufacturing [13]. While
hybrid manufacturing pushes the boundaries of production
processes, its use is limited to manually created suboptimal
plans since there are no established computational solutions
to handle such complex planning. Our studies in this paper
could help selecting the best possible plan among these man-
ually created candidate solutions.

2 Background
Amazon Mechanical Turk (AMT) [14], CrowdFlower

(CF) [15] and Prolific Academic (ProA) [16] are among the
most prominent crowdsourcing platforms. These platforms
have a wide reach and are designed to be representative of
the general public consisting of diverse crowds [17]. While
AMT allows the surveys to be targeted toward specific de-
mographics, it is difficult to identify crowds that share a pre-
scribed technical background. By contrast, our work focuses
on solving esoteric problems via micro-crowds that consist
of practitioners.

Previous studies have developed task design and re-
sponse quality detection methods as a way to maximize the
useful information content in crowdsourcing [18, 19]. Ex-
ample methods include the use of explicitly verifiable ques-
tions to identify malicious users and to encourage honest
responses, and task fingerprinting to monitor completion
time, mouse movements, key presses, and scroll movements,
which can all be used as indicator attributes for detecting
suspect responses [20]. Effect of incentives and competiton
in crowdsourcing data quality has been investigated in [21].
The presented work uses response speed as one such indica-
tor to vet data quality and monetary compensation as incen-
tive.

Consensus through collaboration is a widely used ap-
proach in engineering [6, 9]. However, driven by the pre-
vious observations that there is a danger of expert collabo-
ration to result in a singular thought pattern that could be
outperformed by diverse groups [11], this work explores
WoMC with individuals who remain independent and form
crowds that are more diverse than collaborating experts.
Surowiecki [3] argues that one requirement for a good crowd
judgement is that people’s decisions remain independent of
one another. This was further validated by Lorenz et al. [12]
where individuals were observed to produce collectively
more accurate crowd estimations over cases where the same
individuals were informed by others’ estimates. Indepen-
dence of opinion (no contact between the individuals) con-
stitutes one of the major differences between the traditional
collaborative design teams and micro-crowds. Team network
structure in mass collaboration design projects and effect of
individual’s characteristics have been studied in [22]. In con-
trast to our work, aforementioned study assumes each indi-
vidual in the group has known levels of expertise and abil-
ity. Yet, in the context of our work, a practitioner’s expertise
level is unknown albeit the group is assumed to have an ex-



posure to the problem domain. Thus, unlike traditional de-
sign teams, micro-crowds are composed of anonymous and
non-interacting people with individually unknown expertise
levels.

Burnap et al. [5, 23] explored the use of crowdsourc-
ing in engineering design assessment as well as techniques
for identifying the experts in a crowd. These studies do not
assume an apriori knowledge of the individuals’ background
and are thus greatly suited for studies involving large crowds.
Our work builds on and complements these studies by focus-
ing on a small group of practitioners, none of whom may be
an expert but whose technical familiarity with the problem
domain is significantly higher and more homogeneous com-
pared to crowds extracted from the general population.

Crowdsourcing has also been used in design for iden-
tifying customer preferences to balance style with brand
recognition [24] or to study the relationship between prod-
uct geometry and consumer judgment of style [25]. Ghosh
et al. [26] modeled user preferences by considering percep-
tions estimated by user-product interaction data. While these
works primarily focus on eliciting subjective judgments of
preference and perception, the main focus of the presented
work is to crowdsource solutions to engineering problems
where an objectively true solution must exist (albeit un-
known).

Another popular use of crowdsourcing involves the dis-
covery of diverse solutions to complex technical problems
involving very high-dimensional design spaces, such as the
GE bracket design challenge [27]. While the generation
of solutions is typically the core challenge (hence crowd-
sourced), candidate solutions can be rather easily assessed
using computational analysis tools. However, the main hy-
pothesis and the utility of our work is that further crowd-
sourcing to assess candidate designs may in fact produce
successful outcomes, which would be critically important in
cases where no appropriate computational evaluation tech-
nologies exist.

Another open problem within the engineering design re-
search community where crowdsourcing could provide value
relates to the consistent evaluation of conceptual designs.
In contrast to engineering problems with known solutions
(i.e., structural mechanics), conceptual design problems have
no true solution. When studying the conceptual design pro-
cess, researchers often utilize cognitive studies to explore
specific process characteristics, such as the impact of ana-
logical stimuli on solution output [28–30]. Typically, design
output from such studies is evaluated qualitatively; trained
experts rate defined metrics, such as the novelty or qual-
ity, across a wide design space [31]. Unsurprisingly, the
process of both training and rating design solutions can be
incredibly time consuming and costly. This is particularly
true for cognitive studies requiring hundreds of design con-
cepts to be evaluated at a given time [32]. Another chal-
lenge with the current approach to evaluating conceptual de-
sign solutions is that when multiple experts are used, they
do not always agree upon the particular merits of a given de-
sign concept. This can lead to low inter-rater reliability met-
rics, and require researchers to retrain experts prior to hav-

ing them re-evaluate designs. With this in mind, a combined
human-computational framework that removes the necessity
of training experts could greatly improve and expedite the
conceptual design evaluation process. Recently, evaluation
of creativity in conceptual designs by crowdsourcing and im-
pact of expertise on creative concept selection has been stud-
ied [33,34]. Toh et al. [35] developed a machine learning ap-
proach for computing design creativity of large sets of design
ideas. In this work, we also explore WoMC for evaluation of
conceptual designs.

3 Experimental Design
In order to study the wisdom of crowd in esoteric en-

gineering applications, it is necessary to understand the re-
lationship between crowds and problem types. This section
explains the characteristics of the crowd participants and the
design problems used in this work.

3.1 Crowd Population
Two key factors in the WoC are diversity of opinion and

independence. Therefore, a crowd should include people
with a variety of opinions rather than a group of elites or
experts that may create bubbles and conform to each other’s
opinions [3]. To support independence, we collected sur-
vey results through a web-based survey providing anonymity
and independence across participants. To support diversity
of opinion, we collected crowds through AMT or students
specializing various topics in mechanical engineering.

This work considers two types of crowds: AMT workers
and practitioners. AMT crowds consist of individuals from
the population at large, with no explicit control over an in-
dividual’s level of expertise. On the other hand, the practi-
tioner group represents individuals who have familiarity and
knowledge within the target domain, however are not neces-
sarily domain experts for the given task. For example, a prac-
titioner would be an individual who has studied or currently
practices mechanical engineering, but does not necessarily
specialize in the field of a given task such as heat transfer,
structural mechanics, or manufacturing. For a practitioner
group, performance of individuals may have significant vari-
ation yet the base domain knowledge pushes the estimation
method to accurate levels. Note that with this definition, ex-
perts are a subset of practitioners.

For the practitioner group, 15 mechanical engineering
graduate students at Carnegie Mellon University were re-
cruited to participate. Each participant was compensated
monetarily for their time. The 15 practitioners were recruited
from an available pool of over 300 graduate students. It is
important to note that these students have different skill lev-
els. As later will be shown, this can be observed by large in-
dividual estimation errors and significant performance vari-
ation among the group members. Students in our study are
graduate students who already have engineering degrees as
well as engineering experience through internships and pos-
sible full-time jobs. In that sense, they also represent engi-
neers not just students. For the AMT surveys, groups of 100



Fig. 1. 3D printing-1: support material question. Numbers indicate
the amount of support material required to print the object at the given
orientation on a scale from 1 (very little) to 10 (a lot).

Fig. 2. 3D printing-2: surface finish question. Numbers indicate the
surface quality rating between 1 (poor) and 10 (excellent).

Fig. 3. 3D printing-3: surface finish question. Numbers indicate the
surface quality rating between 1 (poor) and 10 (excellent).

people were gathered through Amazon Mechanical Turk, re-
ceiving monetary compensation. In order to remain true to
the notion of general public as closely as possible, no spe-
cific demographic groups were targeted. For the structural
mechanics questions (discussed in detail below), the study
used the data provided by Burnap et al. [5].

Fig. 4. The structural mechanics problem [5]. Numbers indicate the
strength of each bracket between 1 (weak) and 5 (strong).

3.2 Survey Design and Questions
This study investigates the WoC with four different sur-

veys that range in the challenge they present to a human. All
surveys require the respondents to be knowledgeable about
the terminology used in the questions. 3D printing questions
(Fig. 1, 2, 3) aim to probe broadly intuitive perception skills
involving visual estimations of areas and volumes. However,
they are designed to be increasingly more challenging. Con-
versely, the structural mechanics problem that involves esti-
mating shape deformations (Fig. 4) presents a much greater
challenge to humans, even for experts.

Although engineering problems are often computer
easy, human hard, they are solved using expert intuition
when no computational tools are available. A series of sur-
veys for problems with known solutions such that the crowd
evaluation accuracy could be determined, assessed whether
such situations could benefit from WoC. The structural me-
chanics problem (Fig. 4) provides a good example, as such
structural design problems had been solved primarily by
experts’ knowledge and intuition until the introduction of
topology optimization techniques in the 1990s [36]. There-
fore, there now exists the tools to computationally evaluate
the aggregated crowd evaluations and benchmark the perfor-
mance against true values. As such, practitioners’ perfor-
mance on such problems (which can now be objectively as-
sessed) may provide insights into whether crowd-evaluations
of design proposals may yield successful outcomes espe-
cially for engineering challenges for which computational
modeling and analysis tools may not yet exist.

A rating-assignment approach within a predefined scale
is utilized. Each survey consists of multiple questions
(e.g., rating the amount of support material for six differ-
ent orientations) to facilitate expertise inference later in the
crowd aggregation stage. In all surveys, participants are pre-
sented with the problem statement and the candidate solu-
tions to be rated.

Figure 1 shows 3D printing-1 survey where partici-
pants are asked to rate the amount of support material re-
quired to print an object at various orientations using a fused-
depositon printer. For each of the given orientations, partic-
ipants are required to evaluate the amount of support mate-
rial needed on a scale from 1 (very little) to 10 (a lot). The
benchmark analysis computes the required support material
as the volume that is created by the projection of overhangs
to the base with zero overhang angle [37]. Then, the scores
are scaled linearly between 1 and 10 to create the benchmark
values.

3D printing-2 survey is about evaluating the surface fin-



ish quality of an object in various orientations (Fig 2). The
participants are asked to rate the quality of the printed ob-
ject considering the amount of surfaces in contact with sup-
port material for each presented orientation. Surface quality
rating is between 1 (poor) and 10 (excellent). To compute
the true surface finish, the overhang areas are computed with
zero overhang angle. Then, the overhang areas are scaled
inversely between 1 and 10 such that 1 represents large sup-
port material contact with poor finish and 10 is very good
finish with the least amount of support material contact. 3D
printing-3 survey (Fig. 3) asks the same question on an object
with more features that increase the difficulty of evaluation.

In the structural design survey, participants are presented
with eight different bracket designs intended to support a
downward force at the end of the bracket (Figure 4). Then,
they are asked to rate the strength of each bracket on a
scale from 1 (weak) to 5 (strong), where strength is defined
to be the amount of deformation under the given load [5].
The main reason we use this problem is that estimating the
strength of arbitrary shapes is significantly more demand-
ing compared to volume/area evaluations. While humans
are exposed to volume/area computations in daily life, rating
the strength of an arbitrary design requires a specific expe-
rience [38], which is highly unlikely to be prevalent in the
general population.

4 Crowd Estimate Aggregation Techniques
The choice of aggregation method affects the collective

estimate of the group. For instance, previous studies show
that the median or geometric mean can result in estimates
that are more accurate over the arithmetic mean [1,12]. This
section explains the different aggregation methods used in
this work.

The following metrics are used: Arithmetic mean, ge-
ometric mean, median, majority voting and Bayesian net-
works. In a crowd of n participants with a set of estimates
Y : y1, ...,yn where yi ∈ Z : 1 6 yi 6 10 for all i, the arith-
metic mean is yagg = 1

n ∑
n
j=1 yi. The geometric mean is

exp( 1
n ∑

n
j=1 ln(yi)). The median is the median value in Y .

The majority vote is the mode of Y .
Bayesian networks have been widely used in crowd-

sourcing to mitigate the noise from biased responses. Rel-
evant studies model the sources of bias using models that
consider problem difficulty and the competence of partici-
pants [4, 5, 39–43]. Similar to these approaches, this work
adopts a Bayesian model as shown in Fig. 5. The evalua-
tion process is modeled such that for participant i working
on problem j, participant expertise, αi, and problem diffi-
culty, β j, result in variance, δi j. Thus, the evaluation of par-
ticipant i on problem j, yi j, is obtained when the true score
of the problem, x j is combined with the variance, δi j. Note
that the Bayesian model does not require prior knowledge of
the true answers, participant expertise or problem difficulty.
The only observed variable is the participant answer for each
question.

The variance is obtained using participant expertise and
problem difficulty. This work assumes that a participant may

Fig. 5. The Bayesian network model.

be malicious, inexperienced or experienced. Also, a problem
can be easy, difficult or unintuitive. Defining both parameters
on a continuous range, the variance is modeled as follows:

δi j =
exp(−αi/β j)

1+ exp(−αi/β j)
(1)

where the participant expertise is modeled by the param-
eter αi ∈ (−in f ,+ inf) and the problem difficulty is β j ∈
(0,+ inf). The resulting variance becomes δi j ∈ [0,1]. The
evaluation process is modeled as a random variable with a
truncated Gaussian distribution around the true score (µ= x j)
with a variance δi j. To bring everything into the same scale,
evaluations, yi j, are scaled to [0,1] from the original survey
scale. The true scores are also represented as x j ∈ [0,1].

The relationship between the evaluation variance with
participant expertise and problem difficulty is further ex-
plained in Figure 6. The variance indicates how far the eval-
uations may be spread apart from the true score. Therefore, a
high variance implies probability of sampling far away from
the true score, resulting in high evaluation error. From per-
spective of precision i.e., reciprocal of variance, small vari-
ance means high precision, meaning higher chance of get-
ting the correct evaluation. As anticipated, smaller variance
is observed as expertise increases as shown in Figure 6 for
three problem difficulty levels that correspond to easy, dif-
ficult and unintuitive. On the other hand, non-experts can
give answers with large variance. Yet there is a potential for
malicious participants who intentionally give the wrong an-
swers. Since the answers are maliciously wrong, the amount
of variance (thus the evaluation error) is even more than that
of a non-expert that randomly guesses the answers. On the
other hand, for a very easy question, even unskilled partic-
ipants can give answers with a small variance and anyone
malicious can make the most damage (Figure 6-Top). As the
questions get more difficult, expertise affects the varaince of
answers more (Figure 6-Mid). Yet, an unintuitive question
can not be evaluated with small variance (high precision) by
participants at any skill level and evaluated with similar vari-
ance since all participants evaluate the problem with random
guesses (Figure 6-Bottom).

The structure explained above leads to the graphical
model shown in Figure 5. In the model, participant expertise,



Fig. 6. The evaluation variance with participant expertise shown at
three different problem difficulty levels as easy, difficult and unintu-
itive.

αi, problem difficulty, β j, and true scores, x j, are sampled
from a known prior distribution and these determine the ob-
served evaluations, yi j. Given a set of observed evaluations,
the task is to infer the most likely values of true scores, x j,
together with the participant expertise, αi, and problem dif-
ficulty, β j, parameters. Assuming a Bayesian treatment with
priors on all parameters, the joint probability distribution can
be written as

p(y,x,δ,α,β) =∏
i

p(αi)∏
j

p(β j)p(x j)

∏
i j

p(yi j|δi j,x j)p(δi j|αi,β j)
(2)

Equation (2) excludes hyper-parameters for brevity. In
our implementation, we use Gaussian priors for α with mean,
µα = 1, and precision, τal pha = 1. Since the value of β needs
to be positive, the implementation imposes a truncated Gaus-
sian prior with mean, µβ = 1, and precision, τbeta = 1, with
a lower bound as +ε. For the true scores, x j, we use a trun-
cated Gaussian with bounds [0,1], mean µx = 0.5 and preci-
sion τx = 0.1.

Markov Chain Monte Carlo (MCMC) simulations are
employed to infer the results utilizing Metropolis-Hastings
method. Empirically, we observe that using thinning inter-
val of 3 and burn-in length of 105 works well with 5× 105

iterations.

5 Results
To demonstrate the WoMC in esoteric engineering prob-

lems, we conducted four surveys on two sets of crowds (prac-
titioners and AMT workers) having different skill levels as
explained in the previous sections. This section presents the
results of the surveys and compares the performance of the
aggregation methods.

Survey results. The results of the surveys with dif-
ferent crowds and aggregation methods are summarized in
Table 1. All scores are scaled between 0 and 1 for direct
comparison across surveys. In addition to the overall survey
results, Figure 7 includes estimation errors for each question
in the surveys. While the collective error can be defined as
the difference between the true answer and the aggregated
answer (yt − yagg) for a single question, this work uses root
mean square (RMS) error for multi-question surveys since it
provides a performance measure in the same scale as the in-
dividual questions. For a survey containing m questions, the

collective error can be computed as
√

1
m ∑

m
j=1(y

t
j− yagg

j )2.
Note that the participant responses are discrete scores rather
than continuous variables. While arithmetic mean, geomet-
ric mean, and Bayesian networks produce a real number from
discrete inputs, median and majority voting remain discrete
values. For consistency, we compare continuous and discrete
aggregates with true continuous answers and their rounded
values, respectively.

Crowd expertise and aggregation methods. As
shown in Table 1, with the AMT groups, there is no accu-
rate estimations with any of the aggregation methods, with
RMS errors around 40% and as high as 60%. Moreover,
the Bayesian network method is outperformed by the other
methods in all of the AMT studies. This outcome is consis-
tent with previous findings that argue crowdsourcing AMT
populations for engineering design evaluations may produce
unreliable results [5]. On the other hand, the results of the
practitioner studies suggest that crowdsourcing can indeed
be useful for the same kinds of problems, where consistently
more accurate estimations are obtained relative to the AMT
groups.

When the aggregation methods are compared, no single
method appears to be best in the AMT studies. On the other
hand, for the practitioner groups, the results indicate that the
Bayesian network consistently produces accurate crowd es-
timations. Of note, for both the practitioner and the AMT
groups, the geometric mean method never emerges as the
best approach. This can be explained by the fact that the
responses are constrained within particular upper and lower
bounds (1-10 for the 3D printing and 1-5 for the structural
design problems) where the range spans only one order of
magnitude, whereas the geometric mean is most useful when
input data varies in orders of magnitude [12].

WoMC and individuals. To analyze the WoC ef-
fect, the performance of the aggregated crowd estimation is
compared against the individuals (Fig. 8). Only practitioner
crowds are included in this analysis as we do not observe
a reasonable accuracy in AMT surveys. The collective an-
swers aggregated with Bayesian networks are employed as
they consistently perform well in practitioner group studies.

Figure 8 shows that the collective estimation of the
crowd is more accurate than most of the individuals1. Note
that the practitioner group is composed of individuals with

1WoC is not expected to outperform all individuals. Rather, its effective-
ness is proportional to the fraction of individuals it is able to outperform. In
actual use, which individuals have the best answer in unknown.



Table 1. In practitioner groups, the WoC effect is observable as evidenced by the low RMS errors (over the scale 0-1). The Bayesian model
gives the best estimate in most cases for practitioners. For the AMT groups, however, the high RMS errors suggest poor estimation accuracy
hence much weaker WoC. Note that for the AMT groups, no single aggregation method consistently performs better.

RMS error in crowd estimation

Question Arithmetic mean Geometric mean Median Majority voting Bayesian model

3D printing-1, practitioner 0.111 0.091 0.136 0.079 0.055

3D printing-1, AMT 0.403 0.378 0.430 0.336 0.363

3D printing-2, practitioner 0.202 0.236 0.197 0.163 0.113

3D printing-2, AMT 0.438 0.462 0.473 0.540 0.600

3D printing-3, practitioner 0.196 0.198 0.136 0.111 0.116

3D printing-3, AMT 0.402 0.431 0.363 0.453 0.561

Structural Mech., practitioner 0.197 0.217 0.198 0.342 0.173

Structural Mech., AMT 0.339 0.352 0.385 0.395 0.392

Fig. 7. Error of crowd estimation for each question in the four survey sets. Each bar-group represents the RMS of the crowd aggregated
through arithmetic mean, geometric mean, median, majority voting and Bayesian model, respectively. Note that for each of the 3D printing
surveys, there are six questions. For the structural design survey, there are eight questions.

different skill levels and estimation errors significantly vary
in the group. This confirms that Bayesian networks can pro-
duce an accurate measure of the WoC for the problems that
are of esoteric nature. This can be explained by the partic-
ipant expertise and problem difficulty based inference that
considers all answers of an individual to multiple questions

collectively rather than a single one. Moreover, these results
suggest that the Bayesian networks approach does not un-
dermine the WoC effect by erroneously honing in on only an
elite group of experts in the group, and instead allows diverse
perspectives to be incorporated. This can be explained by the
fact that the level of expertise is not prescribed but rather in-



Fig. 8. Estimation error significantly varies in the practitioner group. Collective estimate of the practitioner crowd is more accurate than the
vast majority of individual practitioners. Collective error of the crowd and errors of individual practitioners in the crowd are given in the center
node and the surrounding nodes, respectively. The color of the circles represents the error with dark green representing high error and light
yellow low error. Individuals who perform better than the collective answer are marked with a dashed circle.

Table 2. Percentile rank of crowd estimation in individual estima-
tions for the practitioner crowd.

Percentile rank of crowd estimation

Question Continuous Discrete

3D printing-1 87% 100%

3D printing-2 87% 93%

3D printing-3 93% 93%

Structural Mech. 93% 100%

ferred as a latent variable in the Markov Chain Monte Carlo
simulations.

Table 2 further quantifies the WoC effect by revealing
the fraction of people that are outperformed by the collective
answer. A higher percentile suggests that a higher fraction
of individuals are outperformed, hence a stronger WoC ef-
fect is achieved. The percentile rank of the crowd is com-
puted using two error metrics as continuous and discrete: the
continuous percentile rank computed as the distance between
the true answers and participant ratings; the discrete measure
rounding the true answers to the nearest integer while com-
puting the individual estimate errors. Note that the discrete
measure can be significantly affected by these round off er-
rors. The difference between continuous and discrete per-
centile ranks can be explained by this fact. Of note is the
distinction between the percentile rank and the accuracy of
the collective estimate. The percentile rank reveals the rela-
tive performance of the collective estimate compared to the
individual estimates, while the accuracy refers to the RMS
error between the estimate and ground truth benchmark.

Effect of crowd size. Platforms such as AMT enable
access to large and diverse groups. However, in most practi-
cal problem-solving settings, only a limited number of prac-
titioners are likely to be accessible for the solution of the en-
gineering challenge. To gain insight into the impact of small-
sized practitioner groups, we analyze the WoC effect across
even smaller group sizes, leading to the term micro-crowds
(WoMC).

Fig. 9. The effect of crowd size on the performance of the crowd es-
timate represented as the percentile and population bias. A slightly
upward trend in the percentiles and a significant decrease in the stan-
dard deviation (yellow shaded) as the crowd size increases suggest
that higher percentile ranks can be achieved with stronger certainty
in larger crowds. For population bias, both mean and standard devi-
ation slightly decrease as crowd size increases.

Figure 9 shows that WoMC can still be observed in
smaller groups. The crowd size is analyzed with the 3D
printing-1 survey and crowd estimation computed using
Bayesian networks (Table1). Initially, practitioner studies
are conducted with 15 participants. To simulate micro-
crowds with smaller number of participants, a subset of 500
randomly generated combinations of 5 to 14 individuals were
generated from the original 15 participant set. The results
suggest that the WoC effect can still be observed in diminish-
ing group sizes. The probability of obtaining crowd estima-
tions with higher success (percentile) increases with larger
crowds. An approximately 6% increase in percentile rank



with 10% decrease in standard deviation is observed as the
crowd size is increased from 5 to 14. Figure 9 also shows the
effect of crowd size on population bias, defined as the error
of aggregated estimate across the crowd [44]. Both the mean
and standard deviation slightly decrease with the increasing
crowd size.

Evaliuation Metric. One might argue that internal
scales may play an important role in people’s ratings. In
other words, different individuals may use different internal
scales and their defintion of very weak, very strong or very
little may differ. For example, a strict grader may score the
surface quality between 0 and 5 (instead of 0 to 10) while
another rater gives scores between 5 and 10. For this reason,
we compare our RMS error metric with Kendall’s tau coef-
ficient [45] which is a correlation metric that measures the
similarity of the orderings.

Figure 10 shows the correlation of the collective esti-
mate and each individual participant’s answers to ground
truth similar to Figure 8. Note that RMS error and Kendall’s
tau correlation have an inverse relationship (i.e., better per-
formance is indicated by a smaller error or a larger corre-
lation value). When two metrics are compared, in general,
we observe similar wisdom of crowds in terms of the num-
ber of people that the aggregated result has outperformed.
3D Printing-1 and Structural Mechanics surveys result in the
same performance with both evaluation metrics. When the
Kendall’s tau coefficient is used as the evaluation metric, we
still observe that the collective estimate of the practitioner
crowd is more accurate than the vast majority of individual
practitioners which is a key observation in this study. We
believe the reason for this similar behavior may be the pre-
conditioning in our questions where we ask users to scale
their rating between predefined boundaries as well as having
access to all candidate questions before rating each question.
This way, the participants are preconditioned to use the given
scale rather than their internal scales.

Conceptual design evaluations. As an extension of
the methods presented in this paper, the feasibility of using
a practitioner-sourced Bayesian network model within the
context of conceptual designs was explored. To accomplish
this, a practitioner evaluation study was run in which each in-
dividual practitioner evaluated a pre-existing set of concep-
tual design solutions that had also previously been evaluated
by two trained experts. Fifteen practitioners were recruited
from Carnegie Mellon University, each specializing in Me-
chanical Engineering (Design focus), or Product Develop-
ment. Participants were allowed a maximum of 120 minutes
to complete the ratings, and were monetarily compensated
for their time.

Each practitioner evaluated 114 conceptual designs, cor-
responding to one of four design problems. These prob-
lems are as follows: a device that disperses a light coating
of a powdered substance over a surface [46], a way to min-
imize accidents from people walking and texting on a cell
phone [47], a device to immobilize a human joint [48] and
a device to remove the shell from a peanut in areas with
no electricity [49]. This set of conceptual design solutions
was taken from a solution set collected for prior work by

Table 3. RMS error in crowd estimation for the conceptual design
evaluations.

Aggregation method RMS error

Arithmetic mean 0.2388

Geometric mean 0.6028

Median 0.3256

Majority voting 0.3652

Bayesian model 0.3268

Goucher-Lambert and Cagan [32]. Each design was eval-
uated across four metrics: usefulness, feasibility, novelty,
and quality. In the previous study, consistency of the two
trained experts was assessed using the intraclass correlation
coefficient (ICC). ICC correlations have been reported as
ICC>0.65, ICC>0.77,ICC>0.71, ICC>0.50 for usefulness,
feasibility, novelty and quality, respectively. While three of
the four metrics demonstrate strong corelation and the other
metric (quality) was fair, all inter-reliability levels are within
the range of values typically found in behavioural studies
with human raters [50]. During our experiments, practition-
ers were provided with one-sentence criteria for each metric
(including scoring), and did not see any example solutions
prior to rating designs. Example concepts for two of the
problems are shown in Figure 11. The goal here is to de-
termine the accuracy of the Bayesian network model for a
class of problems with extremely low structural and func-
tional similarity.

Table 3 summarizes the collective estimation errors ag-
gregated with different methods. Here, the Bayesian model
does not perform well and is outperformed by arithmetic
mean. In addition to the large collective estimation errors,
Figure 12 illustrates that individual estimation errors of prac-
titioners are also significantly large.

6 Discussions
The analyses conducted identified some key insights on

how WoMC can be achieved in esoteric engineering prob-
lems, highlighted as follows.

Problem intuitiveness and difficulty. All of the
surveys require specific knowledge about the engineering
problem at hand but they range in intuitiveness and diffi-
culty levels. 3D printing questions are based on qualitative
area/volume estimations in 3D scenes, which humans are ex-
pected to be relatively comfortable with. On the other hand,
the structural design problem is significantly more demand-
ing since estimating the strength of complex geometries re-
quires a deeper familiarity and experience within the do-
main [38]. While individuals are able to make more accurate
estimations in the 3D printing questions than they can in the
structural design question, an interesting observation is that
no significant difference in the wisdom of crowds (i.e., per-
centile rank) is observed implying that crowdsourcing works



Fig. 10. Kendall’s tau coefficient as evaluation metric: Correlation of collective estimation and individual practitioner ratings to ground truth
are given in the center node and the surrounding nodes, respectively. The color of the circles represents the correlation with dark green
representing low correlation and light yellow representing high correlation. Individuals who perform better than the collective answer are
marked with a dashed circle. Note that higher values indicate better correlation meaning better performance.

Fig. 11. Example conceptual designs.

Fig. 12. The conceptual design survey illustrates significant estima-
tion errors for each individual practitioner. Individual estimation errors
of practitioners are given at the surrounding nodes and the collective
estimation error is the center node. Left: arithmetic mean, Right:
Bayesian model.

equally effective in both cases. Moreover, no significant dif-
ference between the results of 3D printing-2 and 3D printing-
3 surveys occur, even though the latter is more demanding
with a larger number of geometrical features. These results
suggest that even for problems that are demanding, the WoC
is attainable at levels comparable to those attained in less de-
manding problems.

Level of expertise. Populations of ordinary people
(e.g., AMT crowds) perform poorly on esoteric engineering
problems. Results indicate that the wisdom of crowds can be
achieved in practitioner micro-crowds of the domain of such
problems. This suggests that people who are still gaining ex-
perience in the domain may prove to be a valuable asset as
problem solvers. This is especially important as practitioner
crowds may be more accessible than experts.

Aggregation methods. In the context of practitioner
populations, the most effective aggregation method found in
this work is the Bayesian network. For practitioner groups,
the exposure to the domain of the esoteric problem builds
true consistency in the data and allows the Bayesian network
to mitigate the mistakes made by individual practitioners. In
the AMT groups, however, we observe consistently wrong
answers due to lack of expertise. For that reason, Bayesian
network method performs worse than arithmetic mean here
for AMT populations as also discussed in [5]. This work in-
dicates that Bayesian network method is more effective given
a minimum level of expertise in the group.

Crowd size. As shown in Figure 9, as the crowd size
increases, the mean percentile performance increases (albeit
modestly) while the standard deviation of the percentile rank
of the group estimates decreases over sets of different micro-
crowds. This indicates larger practitioner crowds will likely
lead to better and more consistent outcomes. On the perfor-
mance of WoMC on an absolute scale, our results indicate
group estimates in the 90th percentile can be achieved with as
few as 5 to14 practitioners. This suggests that in cases where
computational tools are not readily available, high quality
assessments on engineering problems can be gleaned from
small groups of practitioners.

Conceptual design evaluations. When assessing so-
lutions to a set of open-ended, conceptual problems, practi-
tioner crowds struggle to give answers at a level that experts
do. For these problems, estimation error in crowd estima-
tion aggregated with the Bayesian model is significant and it
is outperformed by arithmetic mean. Looking into individ-
ual estimation errors gives an insight into why the Bayesian
model is not performing well for these conceptual designs
that lack the structural and functional similarity. Figure 12
demonstrates that every individual in the practitioner group
makes a significant estimation error. Even though the esti-
mation aggregated through the Bayesian model is better than
all individuals, it is still very high due to large estimation er-
rors of each practitioner. In contrast to the previous esoteric
engineering problems, conceptual design problems have no
true solution. We believe the open ended nature of concep-
tual design problems creates a challenge for consistent eval-



uation in crowd sourced environments and requires further
exploration.

7 Conclusion
This work explored the ability of crowdsourced popu-

lations to estimate accurate values for a variety of esoteric
problems within the domain of engineering design. Results
demonstrate that the wisdom of crowd is most effective in
practitioner groups, or groups of individuals who possess
some level of domain knowledge, but are not necessarily
experts. Aggregated crowd results of practitioners achieve
high accuracy across a range of problems. By simulating
small groupings of 5 to15 practitioners, called micro-crowds,
it is found that crowd estimates perform more accurately
than individual estimates across the majority of the studies.
These results suggest that the WoMC can provide a power-
ful tool for answering difficult problems in which computa-
tional methods have not been established. In addition, these
results argue for the establishment of online communities of
practitioners, which could facilitate the solution of future en-
gineering challenges. However, the results also suggest that
the practitioner crowds struggle to evaluate open-ended con-
ceptual design problems at a level that experts do. An open
research questions is thus the utility of crowdsourcing for
problems involving open-ended synthesis.
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