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Abstract  
Objective: Interventional radiology methods have been adopted for intraoperative control 

of the surgical region of interest (ROI) in a wide range of minimally invasive procedures. One 

major obstacle that hinders the success of procedures using interventional radiology methods is 

the preoperative and intraoperative deformation of the ROI. While fiducial markers (FM) tracing 

has been shown to be promising in tracking such deformations, determining the optimal placement 

of the FM in the ROI remains a significant challenge. The current study proposes a computational 

framework to address this problem by preoperatively optimizing the layout of FM, thereby 

enabling an accurate tracking of the ROI deformations. 

Methods: The proposed approach includes three main components: (i) creation of virtual 

deformation benchmarks, (ii) method of predicting intraoperative tissue deformation based on FM 

registration, and (iii) FM layout optimization. To account for the large variety of potential ROI 

deformations, virtual benchmarks are created by applying a multitude of random force fields on 

the tumor surface in physically based simulations. The ROI deformation prediction is carried out 

by solving the inverse problem of finding the smoothest force field that leads to the observed FM 

displacements. Based on this formulation, a simulated annealing approach is employed to optimize 

the FM layout that produces the best prediction accuracy. 

Results: The proposed approach is capable of finding a FM layout that outperforms the 

rationally chosen layouts by 40% in terms of ROI prediction accuracy. For a maximum induced 

displacement of 20 mm on the tumor surface, the average maximum error between the benchmarks 

and our FM-optimized predictions is about 1.72 mm, which falls within the typical resolution of 

ultrasound imaging. 
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Conclusions: The proposed framework can optimize FM layout to effectively reduce the 

errors in the intraoperative deformation prediction process, thus bridging the gap between 

preoperative imaging and intraoperative tissue deformation. 

Keywords 
Tumor Deformation, Shape Reconstruction, Fiducial Markers, Layout Optimization, 

Stochastic Optimization, Laplace-Beltrami Operator 

1. Introduction 
Interventional radiology methods have been widely adopted by clinicians for monitoring 

surgical procedures. In a typical image-guided surgery, clinicians first perform an initial scan of 

the surgical region of interest (ROI). After medical images of the ROI are obtained, a preplan is 

created based on the reconstructed geometry of the ROI. During the procedure, the preplan is 

executed under the guidance of an intraoperative imaging modality such as ultrasound (US) or 

interventional MRI[1]. By using an intraoperative imaging modality, clinicians are able to observe 

the ROI while the patient is lying on the operating table. By registering the intraoperative 

observation with the reconstructed shape in clinicians’ preplan, the ROI can be monitored, and 

thus reducing the risk of damaging important structures in the nearby anatomy. 

One major obstacle in image-guided surgeries is the deformation of the tissue in the ROI. 

Since the biological tissues can be highly compliant, a slight change in a patient’s posture may 

induce significant shape deformations of the tissue in the ROI, making it challenging for clinicians 

to match the intraoperative images with those obtained to construct the preplan. The time lag 

between preplanning and procedure may also permit tumor deformation due to the progression of 

the disease, an effect which is beyond the scope of the current study. 
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In an effort to overcome the challenge of geometric deformation, previous work has 

explored a variety of approaches to account and compensate for intraoperative tissue deformation. 

One extensively studied approach involves finding the complete deformation of ROI by combining 

the preoperative imaging data, the partial surface/selected point (sparse) data obtained during the 

procedure, and physically based simulations such as finite element method (FEM). In [2–5], 

researchers developed computational methods for predicting intraoperative liver deformations. 

There, the initial undeformed liver tissues were reconstructed from computed tomography (CT), 

and transformed into tetrahedral meshed to facilitate physically based simulations.  During the 

tests/procedures, point matching algorithms were employed to establish the surface 

correspondence between the preoperative shape reconstructions and the intraoperative imaging 

data. Based on the computed surface correspondence information, the complete deformed shapes 

were constructed with insights on the choice of convergence scheme, deformation model, and 

boundary conditions. Recently, intraoperative measurement has been done to assess the fidelity of 

such deformation correction framework for liver surgery [6]. Along the same lines, other 

applications of this general approach have been demonstrated for predicting brain shift caused by 

tumor resection [7, 8] and intraoperative prostate registration [9]. Additionally, recent advances in 

computing hardware such as graphics processing unit (GPU) have enabled fast segmentation and 

3D reconstruction of biological tissue directly from dense medical images [10]. 

A drawback of the above approaches is the difficulty in accurately establishing shape 

correspondence, as point matching algorithms are prone to producing mismatched regions 

especially in the absence of prominent anatomical features. In comparison, fiducial marker (FM) 

based registration offers a promising alternative. FMs can be bone screws, implanted spheres or 

adhesive skin markers [11]. Once the FMs are implanted/attached in and/or around the ROI, they 
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remain embedded in the tissue in the initial placement locations, thus allowing an accurate 

correspondence and tracking between their locations. Previous work has shown the feasibility of 

using FM tracking for predicting intraoperative deformation of soft tissue with high accuracy [12, 

13].  

There were previous studies on optimizing FM layout [11, 14] for rigid registration tasks, 

where the total registration errors were considered to be mainly resulted from fiducial 

localization/registration errors and the deformation behavior of soft tissue was not considered. 

Meanwhile, the FM optimization process was either to choose a subset of a limited number of pre-

defined FM locations or to search close nearby regions, which did not allow a large enough 

searching space for the best possible FM layout. 

In this study, a computational framework is proposed to optimize the placement (layout) 

of FMs such that the intraoperative prediction error of the entire tissue deformation can be 

minimized. Specifically, given the undeformed, 3D model of the tissue of interest, and the number 

of FMs that are to be used, our method identifies the best placement of the FMs such that the 

overall deformations of the tissue under a large variety of interstitial loads can be accurately 

predicted by only tracking the FMs during surgery. By allowing an accurate tracking of the tissue 

deformation, the ultimate goal of this work is to enable the image-based preoperative plans to be 

successfully administered intraoperatively where tissue deformation can otherwise present 

significant challenges. 

The computation framework developed in this study is demonstrated on a minimally 

invasive procedure on a head-and-neck (H&N) tumor model, and the envisioned application 

follows three phases. In Phase I the tumor geometry is reconstructed using CT imaging at the 

diagnostics stage, and FM are strategically deployed using long hypodermic needles. Phase II is 
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performed offline, where preplanning of a minimally invasive procedure is considered, such as 

interstitial photodynamic therapy (IPDT) [15]. In Phase III, the preplan is targeted by using 

interventional ultrasound. Here, the location of the FM is first identified and, the deformed tumor 

shape is computed, a modified intraoperative plan is adopted, and the energy modality application 

is executed. The current study aims at bridging the gap between a well reconstructed tumor 

containing FM in Phase I and predication of the tumor shape at a later time in Phase III by 

computation tools, when only the FM are known to a high degree of certainty. Clinical challenges, 

such as the deployment of FM are not considered in this study. A previous study has demonstrated 

the feasibility of such an operation [12], while the current study aims at developing a strategy to 

best select the FM placement in Phase I. While IPDT and H&N cancer are presented here for 

illustration purposes, the computation framework proposed is quite general, and independent of 

the specific cancer or the applied minimally invasive energy modality.  

2. Methods 
The proposed framework consists of three main components: (i) creation of computational 

benchmarks as a way to simulate the variety of deformations that can be encountered, (ii) 

prediction of soft tissue deformation that takes place between the initial pre-surgical imagining 

and the actual surgery subject to changes in external forces, and (iii) optimization of FM layout to 

ensure tissue deformations can be predicted with the highest accuracy. 

To illustrate our FM optimization framework, a H&N tumor model constructed from CT 

scanning is used in this study as shown in Fig.1(a). The original surface mesh model is noisy and 

anisotropically tessellated. In order to facilitate computation while maintaining the shape fidelity, 

Netgen [16] and Tetgen [17] are utilized for mesh simplification, surface smoothing and 
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volumetric mesh generation. The final tetrahedralized tumor model is shown in Fig.1(b). The mesh 

parameters are listed in Table 1. 

 

Figure 1: (a) Head-and-neck tumor model constructed from CT scanning. (b) The final tetrahedralized tumor model. 

Table 1 Parameters of the mesh model in this study. 

Parameter Symbol Model 

Size 𝑑𝑖𝑚$ × 𝑑𝑖𝑚& × 𝑑𝑖𝑚' 19.9mm × 36.3mm × 67.9mm 

Number of nodes 𝑛 1158 

Number of elements 𝑛) 4650 

Number of surface nodes 𝑛* 760 

Number of surface triangles 𝑛+ 1516 
 

2.1 Creation of Computational Benchmarks to Simulate Variety in Deformations 

During image-guided surgeries, the true deformation of soft tissue matter in the ROI is 

challenging to predict accurately apriori. Depending on the nature of deformations (which is 

unknown a priori), the choice of the optimal FM layout for deformation prediction may also vary 

significantly. To overcome such difficulty, our strategy is to optimize the FM layout by simulating 

a large variety of deformations of the ROI (through different interstitial forces), and choosing the 

FM layout that overall minimizes the deformation prediction error over all such deformations. In 
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this section, the process of generating multiple ground truth deformations (benchmarks) is 

described in detail, where ground truth in this context refer to the virtually benchmarks generated 

from FEM simulations. 

In this study, linear FEM with linear tetrahedral elements is used as the model to simulate 

tissue deformation. Without loss of generality, the current model can be easily extended to other 

FEM models with higher order elements and/or nonlinear FEM schemes. Through linear FEM 

[18], the relationship between the nodal displacements and forces is stated as Eq.(1),  

𝐾𝑥 = 𝑓 (1) 

where 𝑛  is the total number or nodes, 	𝐾 ∈ ℝ34×34  is the stiffness matrix, 𝑥 ∈ ℝ34×5  is the 

displacement vector and 𝑓 ∈ ℝ34×5 is the corresponding external load vector for all the nodes. 

In order to create multiple benchmarks with realistic but varied deformations, a large 

variety of random smooth force fields are generated and applied to the tumor surface. The 

randomly created force fields ensure that benchmarks suitably span the space of possible 

deformations. Imposing smoothness on the simulated force fields is motivated by the observation 

that an anatomical ROI is commonly surrounded by soft tissue in its interstitial environment. If 

there is a change in the shape of ROI, the external loads that result in such changes are likely to be 

smoothly distributed over the ROI surface.  

We employ the eigendecomposition of the discretized Laplace-Beltrami operator (LBO) 

defined over the surface of the tumor [19] as a way to parameterize the creation of random and 

smooth force fields on the tumor surface. For a given surface in the 3-dimensional (3D) space, the 

LBO can be constructed from the shape of the surface [20]. Suppose an arbitrary scalar function 

𝐹 is defined on the surface, mathematically any 𝐹 can be reconstructed by taking the weighted 

sum of an infinite set of basis functions defined over this surface. In our approach, we use the 
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eigenfunctions of the LBO, which provide an appropriate basis for estimating 𝐹 . These 

eigenfunctions are analogously similar to the vibratory mode functions (mode shapes) of the 

surface where displacements in response to forces can be represented as a weighted sum of the 

mode shapes.  

In our work, we use this approach to generate force fields over the surface of the tumors.  

Based on the desire to simulate smooth force fields on the tumor surface, only a few low frequency 

components are needed to reconstruct 𝐹 , which are the eigenfunctions with the smallest 

eigenvalues of the LBO. In the discretized case such as the triangulated surface we are working 

with, the LBO becomes the discretized LBO, which is constructed as an  𝑛* × 𝑛* matrix 𝐿 using 

the cotangent scheme [21]. The corresponding eigenfunctions are obtained as the eigenvectors of 

the discretized LBO as shown in Fig.2(a). In order to illustrate these eigenvectors, the colormap in 

each subplot is adaptively adjusted based on the scale of the entries in each eigenvector.  Each 

eigenvector is a vector with unit 𝐿8 norm. The colormap maps the smallest value in the eigenvector 

to dark blue and the largest value to dark red in each subplot, with linear interpolation based on 

the color bar on the right side. 

As can be seen in Fig.2(a), the first 15 eigenvectors already provide a set of low and high 

frequency components. In this paper, the 𝑛9 = 15 eigenvectors are employed as templates for 

constructing force fields. Depending on the actual scale of deformation and the size of the ROI, 

the number of extracted eigenvectors can be chosen empirically. After the eigenvectors are 

obtained, each benchmark force field is computed by following Eq.(2), 

𝐹< = 𝑠< ∑ 𝑤@𝜙@
4B
@C5  ; 𝑗 = 𝑥, 𝑦, 𝑧 (2) 

where 𝐹<  is the 𝑗+H  component of a benchmark force field, 𝑠<  is the scaling factor, 𝑤@  is the 

weighting term sampled uniformly from [−1, 1], and 𝜙@ is the eigenvector with the 𝑖+H smallest 
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eigenvalue. The final load vector is obtained by concatenating the x, y and z components of each 

force field (which constructs a 3D force vector for each surface node) and multiplying each by 

per-node area to convert the force field into nodal forces on the surface. The per-node area is 

computed as Eq.(3), 

𝐴@ =
1
3N𝑎@<

4P

<C5

 (3) 

 where 𝐴@ is the per-node area of node 𝑖, 𝑛< is the number of triangle adjacent to node 𝑖 and 𝑎@< is 

area of the 𝑗+H  adjacent triangle. 

 

Figure 2: (a) First 15 eigenvectors of discretized LBO with the smallest eigenvalues. The color of each surface is adaptively self-
mapped using the color bar on right side.  (b) x, y and z components of a benchmark force field obtained from the weighted sum 

of the eigenvectors. 

 To produce shape deformations that are realistic relative to the size of the tumor, the 

maximum absolute surface displacements of the benchmarks need to be limited. For each 

benchmark model, we ensure this by first computing the original displacements in response to the 

created force fields and then scaling up (or down) the applied forces linearly to achieve the target 

maximum displacements. In our approach, since the displacements are linear in the weights of the 
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eigenvectors used to construct the force fields, this scaling is easily achieved through an 

amplification or attenuation of the eigenvector weights by a single scalar factor. 

Finally, we compute deformed tumor shapes (benchmarks) by following the scheme 

described above. These benchmarks will be regarded as the ground truth to evaluate our shape 

prediction method in later sections.  

2.2 Deformation Prediction 

During the shape prediction process, we employ the approach described in [12] which 

demonstrates the ability to predict the deformed tumor shapes with high accuracy based solely on 

the observed displacements of the FMs. The deformation prediction is achieved by 

computationally identifying the smoothest force field on the tumor surface, such that the FMs in 

the deformed shape match their observed locations in the benchmarks. To achieve high prediction 

accuracy, larger number of FMs 𝑛Q is preferred. Meanwhile, with the consideration of the tumor 

size and the practical preference for fewer FMs, the number of FM is chosen to be 𝑛Q = 5 in this 

study. The mathematical formulation is briefly described as following: 

By switching the lines of 𝐾 and 𝑓, Eq.(1) can be rewritten in the form of Eq.(4), 

R𝐾S𝐾T
U 𝑥 = R𝑓S𝑓T

U (4) 

 where the lines of 𝐾S and 𝑓S correspond to the surface nodes, and lines of 𝐾T and 𝑓T corresponds 

to the nodes inside the tumor. The prediction of deformed shape is obtained by solving the 

quadratic programming optimization problem in Eq.(5), 

 where 𝐾* = (𝐿3𝑀𝐾S)Y(𝐿3𝑀𝐾S), 𝐿3 ∈ ℝ34Z×34Z is the 3 dimensional discretized LBO obtained 

by assembling 𝐿 in the way 𝑥 is indexed [11], 𝑀 is the diagonal inverse mass matrix that converts 

the nodal forces to a pressure field on the tumor surface in FEM whose 𝑖th diagonal element equals 

argmin
a

𝑥Y𝐾*𝑥 	subject to b𝐷𝑥 = 𝑑
𝐾T𝑥 = 0 (5) 
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to 5
ef

 in Eq.(3), 𝐷 ∈ ℝ34g×34 is a binary indicator matrix which specifies the selection of FMs, and 

the 𝑑 ∈ ℝ34g×5  is the observed displacements of the corresponding FMs in the benchmarks. 

Setting 𝐷𝑥 to 𝑑 ensures that the FMs move to their observed locations in the benchmarks. By the 

assumption that no external forces are applied to the internal nodes, the load vector of the internal 

nodes 𝑓T  is set to 0. With the quadratic formulation described in Eq.(5), we aim to obtain the 

smoothest force distribution on the tumor surface such that the above constraints are satisfied. 

Since the final prediction only depends on the choice of the FM layout, the final output of the 

prediction process can be written in the form of Eq.(6),  

 where 𝑥hi)j ∈ ℝ34×4k  is the nodal displacements of the predicted tumor shapes, and 𝑅 is the 

prediction function that maps 𝐷 to 𝑥hi)j. 

2.3 Optimization of FM Layout 

We use simulated annealing (SA) [22] to optimize the FM layout for shape prediction. 

During the initial shape prediction, 𝑛j FMs are randomly selected from the nodes of the mesh 

model.  The initial prediction error 𝐸𝑟𝑟oTj  is then computed as the Frobenius norm of the 

difference between the surface nodal displacement matrices of the benchmarks 𝑥p)4qr	and the 

initial predictions 𝑥hi)j (Eq.(7)).  

The Frobenius norm allows a suitable balance between the mean offset (1-norm) and maximum 

offset (infinite-norm), which we want to minimize simultaneously. While our study uses the 

Frobenius norm, any norm between 1-norm and infinite-norm, or a weighted sum of multiple 

norms, could be employed as the error function to be minimized without loss of generality. 

𝑥hi)j = 𝑅(𝐷) (6) 

𝐸𝑟𝑟oTj = st𝑥hi)j − 𝑥p)4qHts
uio

8
 (7) 
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After the initial prediction, the SA scheme iteratively improves the prediction accuracy by 

testing neighborhood FM layouts. During each iteration, a new FM layout is selected randomly 

from the mesh vertices where each new FM is within 𝛿 distance of the current FM set. The new 

FM layout is accepted if its prediction error 𝐸𝑟𝑟4)w is less than 𝐸𝑟𝑟oTj. Otherwise, the new FM 

layout is accepted with a probability of 𝑝 = exp |}ii~���}ii���
Y

� where 𝑇 is the temperature at 

current iteration. A description of the SA-based layout optimization is shown in Fig.3. The SA 

process is terminated after reaching a pre-defined maximum number of iterations 𝑛��a . The 

parameters of the SA process used in the current study are listed in Table 2. The initial temperature 

𝑇@ is selected to be high enough such that 𝑝 is very large in the first few iterations. This ensures 

new FM layouts in the early iterations can be accepted with high probability even if they are not 

good choices, so as to prevent SA from getting stuck in local minima. The initial neighborhood 

size is also set to be large such that the FMs can move broadly over the tumor domain. This is to 

help the final optimized FM layout to be less sensitive to the initial FM layout. As the iterative 

optimization process proceeds, the temperature 𝑇  and neighborhood size 𝛿  get updated by 

multiplying 𝑐+ and 𝑐� respectively in each iteration. The updating scheme decrease 𝑇 and 𝛿 so that 

the preference of accepting new FM layout gradually shifts to nearer neighboring layout with better 

prediction accuracy. 

Table 2: Selected parameters for SA process. 

Parameter Symbol Value 
Initial temperature 𝑇@ 1 × 10�𝐾 
Final temperature 𝑇u 5 × 10��𝐾 
Initial neighborhood size 𝛿@ 3 × 10�8𝑚 
Final neighborhood size 𝛿u 4 × 10�3𝑚 
max number of iterations 𝑛��a 200 
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Figure 3: Flow chart of the FM optimization process. 

2.4 Performance Evaluation 

The evaluation procedure of our FM optimization framework is described in below: 

1. Create a training set of 𝑛� = 1000 deformation benchmarks using the scheme described in 

Section 2.1. The maximum absolute surface displacements are limited with a uniform 

distribution between 5 mm and 25 mm, which reflects a reasonable range of deformation based 

on the tumor size. 

2. Optimize the FM layout with the 𝑛� benchmarks in the training set. The optimization process 

is run 20 times with randomly selected initial FM layouts, for the purpose of obtaining 

converging statistics.  
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3. The optimized layout is tested on two unseen benchmark sets, with the maximum absolute 

surface displacements of 10 mm and 20 mm respectively. Each benchmark set contains 𝑛Y =

1000 benchmarks for evaluating FM layout optimization performance. Error functions of 

rationally selected FM layouts are also computed and compared with the optimized FM layout. 

4. Use the optimized FM layout as the datum, and place each FM to nearby region randomly with 

distances between 0 mm and 5 mm. Evaluate how optimization objective changes after such 

fiducial localization error is introduced. 

3. Results and Discussion 
In this study, a training set of 𝑛� = 1000  deformation benchmarks are created by 

following the scheme described in Section 2.1 for optimizing FM layout. Given the size of the 

tumor in Table 1, we limit the maximum absolute surface displacements to be between 5 mm and 

25 mm. The visual comparisons between the initial undeformed (blue) and the deformed (green) 

benchmarks are shown in Fig.4. As can be seen in Fig.4, the proposed benchmark creation scheme 

is capable of producing a rich set of variations in the deformed shapes. 
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Figure 4: Visual comparisons between the initial undeformed shapes (blue) and the deformation benchmarks (green) where the 

maximum displacements on tumor surface ranges between 5 mm and 25 mm.  

To evaluate our SA algorithm, the optimization process is run 20 times with randomly 

selected initial FM layouts. Fig.5 shows the prediction errors in mean Frobenius norm (objective 

function value) between initial FM layouts, optimized FM layouts and optimized layouts with 

fiducial localization error (FLE) across 20 runs of the FM layout optimization process. With the 

selected initial SA temperature and neighborhood size, the results generally converge to the same 

prediction accuracy for each case, without a noticeable dependency on the initial FM layout. Fig.6 

shows the initial FM layout, trajectories of the FMs over the iterations, and the final FM layout for 

one run. From Fig.6, our SA algorithm can move the FMs far away from their initial locations as 

a way to explore the large space of possible FM layouts. 
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Figure 5: Differences in Frobenius norm (error function) between initial FM layouts, optimized FM layouts, and optimized FM 
layouts with FLE across 20 runs of the FM layout optimization process. 

 

Figure 6: The initial FM layout (a), trajectories of the FMs over the SA iterations (b) and the final, optimized FM layout (c) for 
an optimization run. 
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The prediction errors over the iterations in one run is shown in Fig.7. Four error functions 

between the benchmark surfaces and predictions are plotted including the Frobenius norm (as 

described in Section 2.3), the 4-norm, mean offset (1-norm) and maximum offset (infinity-norm). 

In general, the four error functions follow a similar downward trend as the FM layout is iteratively 

optimized. This observation implies that both the average (mean) error as well as the maximum 

error in the nodal position predictions desirably decrease as the FM layout is improved. As seen 

both in Fig.7, the prediction errors change significantly in the first few iterations. This is due to 

the high initial temperature and the large initial neighborhood size in SA as described in Section 

2.3. As the temperature decreases over the iterations, the new FM layouts that produce a larger 

error compared to the previous iteration are accepted with a monotonically decreasing probability. 

Towards the end of the SA iterations, our algorithm only accepts FM layouts with smaller 

prediction error between consecutive iterations. The final result converges to an FM layout with 

the smallest prediction error in its neighborhood. Over all the iterations in both runs, the mean 

offset between the benchmarks and predictions is always below 1 mm which is the typical 

resolution of the US imaging. This means that our deformation prediction approach is able to 

predict the deformed tumor with high fidelity. In terms of the maximum offset among all 

benchmarks, the error drops from 31 mm to 9 mm. Note that these maximum offsets are for one 

benchmark in training set. The average maximum offset for all 1000 benchmarks is 1.3 mm, with 

distribution shown in Fig.8. Also, the error values are calculated by aggregating the error between 

each node on the surface of the tumor in the ground truth deformation and the same point’s location 

in the predicted deformation model. This is in contrast to a less stringent measure of calculating, 

for each ground truth surface node, the shortest distance to the predicted deformation model. As 



19 
 

such, our calculated maximum offsets are conservative in that they overestimate the actual 

mismatch between the ground truth and predicted model. 

 

Figure 7: Changes in prediction errors over the SA iterations in one run of the training benchmark set. 

 
Figure 8: Distribution of maximum offsets for the 1000 benchamarks in the training set using the optimized FM layout. 
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In order to comprehensively evaluate the performance of our SA algorithm, the optimized 

FM layout is compared with rationally selected FM layouts such as FM placements at high 

curvature points, metric k-centers [23], and axis-aligned extrema (Fig.9). The tests are performed 

on two sets of unseen benchmarks, which are created with the maximum absolute surface 

displacements of 10 mm and 20 mm respectively. Each test set contains 𝑛Y = 1000 benchmarks. 

The evaluation is based on the average mean and average maximum surface offsets. Since the 

maximum offsets show high variations across benchmarks, to provide better understanding of the 

test results, a Gamma distribution 𝑓(𝑥) = a���)�
�
�

���(�)
 is fitted to each maximum-offset entry in Table 

3 based on the statistics in Fig.8. The fitted parameters of the Gamma distributions are provided 

as the shape parameter 𝜅 and scale parameter 𝜃. As shown in Table 3, our SA algorithm is able to 

find an FM layout that outperforms those rational selections. The average maximum surface offset 

between the benchmarks and our FM-optimized prediction is 0.89 mm and 1.72 mm on average 

for the 10 mm and 20 mm benchmark sets respectively. The results indicate an approximately 40% 

decrease in the deformation prediction error when compared with the predicted shapes using 

rationally selected FM layouts. 
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Figure 9: Rational selections of FM layout: (a) axis-aligned extrema (b) high curvature points and (c) metric k-centers. 

 

Table 3: Prediction accuracies from different choices of FM layout with fitted Gamma distribution parameters. 

Selection for FMs 

10 mm maximum displacement 20 mm maximum displacement 
Average 

mean offset 
(mm) 

Average 
maximum offset 

(mm) (𝜅, 𝜃) 

Average 
mean offset 

(mm) 

Average 
maximum offset 

(mm) (𝜅, 𝜃) 

Axis aligned extrema 0.43 1.35 (3.12, 0.43) 0.82 2.64 (3.14, 0.84) 

High curvature points 0.44 1.50 (2.84, 0.60) 0.85 2.95 (2.59, 1.14) 

Metric k-centers 0.42 1.32 (3.05, 0.43) 0.80 2.58 (3.17, 0.81) 

Random layout 0.48 2.94 (2.25, 1.31) 0.95 5.90 (2.15, 2.74) 

Optimized layout 
(proposed) 0.30 0.89 (3.49, 0.26) 0.57 1.72 (3.57, 0.48) 

 

The benchmark with the maximum surface offsets in the 20 mm test set is shown in Fig.10. 

The points with the largest prediction error tend to be located near the tip of the tumor. This 

observation suggests a practical strategy that, if decided manually without computational support, 

adding FMs around the tips of elongated regions may help increase tracking fidelity in terms of 
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maximum offset, as the FMs near those regions would lead to more precise information gathering 

near such regions.  

 

Figure 10: prediction result with the maximum offset in the 20 mm set with benchmark deformations (green), predictions (red), 
and maximum offset points on benchmark (blue) and predictions(black). 

Another practical factor related to this work is the FLE. In an amorphous shape like the 

tumor, the FMs may not be localized accurately to the targeting location. A study on FLE is 

performed. An FLE within the range of 0 mm to 5 mm is added each of the optimized FMs. Fig.11 

shows how the prediction error changes as the FLE increases. From Fig.11, it can be seen that the 

prediction error increases along with the increase in FLE of each FM. 
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Figure 11: Changes in prediction error when FLE is added to the optimzed FM layout. 

Overall, the presented work has demonstrated our optimization framework’s ability to 

improve the prediction accuracy in FM-based approach for tracking soft tissue deformations. Such 

improvement can provide clinicians with better visualization of the deformed shape of ROI during 

the procedure. 

4. Summary and Conclusions 
As a proof of concept, a computational framework has been developed to optimize FM 

layout for tracking tissue deformation. The framework includes three main steps: (i) creation of 

benchmarks, (ii) deformation prediction and (iii) optimization of FM layout for better prediction 

accuracy. During the creation of benchmarks, the eigendecomposition of the discretized Laplace-

Beltrami Operator is employed for creating multiple benchmark deformations, which are used as 

ground truths to emulate the large space of potential deformations. In the deformation prediction, 

an approach based on FEM and quadratic programming is utilized to predict the deformed shape 
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from the observed displacements of the FMs. Finally, simulated annealing is employed for 

optimizing the FM layout for minimizing the prediction error. From the FM layout optimization 

results, the prediction accuracy using the optimized FM layout is superior to those using rationally 

selected FM layouts. In terms of the maximum surface offset, the prediction errors on both 10 mm 

and 20 mm sets are reduced by approximately 40% over the rationally chosen layouts, while 

maintaining the sub-resolution accuracy in average surface offset. Overall, the applications of FMs 

and the presented FM optimization framework can bridge the gap between preplanning and 

intraoperative US imaging for the purpose of accurate tumor destruction. 
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