
Placement in Integrated Circuits using Cyclic 
Reinforcement Learning and Simulated Annealing

Physical design and production of integrated circuits (IC) has become more 
challenging with the increase in sophisticated IC technology. Partition, 
analytical and annealing-based placers have been enriching the placement 
solution toolbox. However, long run time and lack of the ability to generalize 
restrict existing placement tools. We devise a learning-based placement tool 
based on cyclic application of reinforcement learning (RL) and simulated 
annealing (SA) by leveraging the advancement of RL.

The proposed model is tested on the lattice layout and ami49 benchmark as 
illustrated in Figure 2 and Figure 3 respectively. In both problems, SA 
achieves a better solution when initialized by our method. 

The lattice layout consists of 100 blocks having the same dimensions. The 
RL agent is trained for 200 steps while SA takes 5000 steps in each of the 
three configurations. 

The same combination of steps for RL and SA steps is used on the ami49 
benchmark, consisting of 49 blocks, having unequal dimensions. The first 
row is a configuration with 3 fixed blocks while the configuration in the 
second row has no fixed blocks.

Our results show that:
• Our method is majorly different with its combination of RL and SA
• The RL module is able to provide a better initialization for SA
• It leads to a better final placement design
• It leverages the RL model’s ability to quickly get a good rough solution 

after training and the heuristics’ ability to realize greedy improvements in 
the solution

Experiments

Cyclic Reinforcement Learning
A cyclic model employs both RL and SA. While the RL agent learns locally 
by computing differences between perturbed states, it also learns globally 
from the SA’s output which serves as the state space’s horizon. Global 
reward rg serves as the approximated value of the rth (final) step Vr during 
the agent’s training as stated in equations below:

The actor chooses perturbations with maximum reward. The critic computes 
the expected reward for each state-action pair. Over n epochs, the RL agent 
learns to generate a state closer to the global minimum compared to the 
initial random solution. The SA converges to a better optimized final solution 
with this improved initialization.

Results
Preliminary results reveal that the agent is able to outperform the baseline 
on both benchmarks. Table 1 below summarizes the average costs of 
solutions from both methods on the lattice problems of different sizes. For 
all of them, our proposed methods achieved lower average cost compared 
with the baseline pure SA with random initialization. For 100 blocks lattice 
problem, the standard deviation for RL Initialization is 146 and that of 
random initialization is 133.

Figure 1: Algorithm for cyclic reinforcement learning and simulated annealing for placement
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Figure 2: Placements for the lattice problem after 5000 steps of Simulated Annealing (SA). For the same number of 
SA steps, RL initialized placements (middle) are more compact than those initialized randomly (right)

Figure 3: Placements for ami49 benchmark. 3 blocks are assumed fixed in the top row. All blocks are free in the bottom row. 
For the same number of SA steps, RL initialized placements (middle) are more compact than those initialized randomly (right).

Table 1: Average cost (in μm) of 10 experiments on Lattice block list

Table 2: Average cost (in mm2) of 10 experiments on ami49 block list

For the ami49 results, Fig. 3 presents the final placement and Table 2 
compares the average cost of solutions from both the methods. The ami49 
benchmark has two configurations:
Configuration 1 -  Three fixed blocks (Fig. 3 top row)
Configuration 2 - No fixed blocks (Fig. 3 bottom row)

Configuration 1 has pre-specified coordinates to be maintained in the final 
placement making it more challenging as the agent tries to make 
perturbations given fixed blocks. However, the results reveal that the agent 
is still able to outperform the baseline (pure SA with random initialization). 
Configuration 2 consisting of no fixed blocks also shows our method's 
improvement from the baseline. The standard deviation for RL Initialization 
and random initialization indicates small variance of results and actual 
improvement of RL Initialization.

Overview


