
Placement in Integrated Circuits using Cyclic
Reinforcement Learning and Simulated Annealing

Physical design and production of integrated circuits (IC) has become more
challenging with the increase in sophisticated IC technology. Partition,
analytical and annealing-based placers have been enriching the placement
solution toolbox. However, long run time and lack of the ability to generalize
restrict existing placement tools. We devise a learning-based placement tool
based on cyclic application of reinforcement learning (RL) and simulated
annealing (SA) by leveraging the advancement of RL.

The proposed model is tested on the lattice layout and ami49 benchmark as
illustrated in Figure 2 and Figure 3 respectively. In both problems, SA
achieves a better solution when initialized by our method.

The lattice layout consists of 100 blocks having the same dimensions. The
RL agent is trained for 200 steps while SA takes 5000 steps in each of the
three configurations.

The same combination of steps for RL and SA steps is used on the ami49
benchmark, consisting of 49 blocks, having unequal dimensions. The first
row is a configuration with 3 fixed blocks while the configuration in the
second row has no fixed blocks.

Our results show that:
• Our method is majorly different with its combination of RL and SA
• The RL module is able to provide a better initialization for SA
• It leads to a better final placement design
• It leverages the RL model’s ability to quickly get a good rough solution

after training and the heuristics’ ability to realize greedy improvements in
the solution

Experiments

Cyclic Reinforcement Learning
A cyclic model employs both RL and SA. While the RL agent learns locally
by computing differences between perturbed states, it also learns globally
from the SA’s output which serves as the state space’s horizon. Global
reward rg serves as the approximated value of the rth (final) step Vr during
the agent’s training as stated in equations below:

The actor chooses perturbations with maximum reward. The critic computes
the expected reward for each state-action pair. Over n epochs, the RL agent
learns to generate a state closer to the global minimum compared to the
initial random solution. The SA converges to a better optimized final solution
with this improved initialization.

Results
Preliminary results reveal that the agent is able to outperform the baseline
on both benchmarks. Table 1 below summarizes the average costs of
solutions from both methods on the lattice problems of different sizes. For
all of them, our proposed methods achieved lower average cost compared
with the baseline pure SA with random initialization. For 100 blocks lattice
problem, the standard deviation for RL Initialization is 146 and that of
random initialization is 133.

Figure 1: Algorithm for cyclic reinforcement learning and simulated annealing for placement

References
Mirhoseini, Azalia, et al. (2020). "Chip Placement with Deep Reinforcement Learning".
In: arXiv preprint arXiv:2004.10746

Cai, Qingpeng, et al. (2019). "Reinforcement Learning Driven Heuristic Optimization".
In: arXiv preprint arXiv:1906.06639

Markov, Igor L., Jin Hu, and Myung-Chul Kim (2015). "Progress and challenges in VLSI
placement research". In: Proceedings of the IEEE 103.11.

H.Murata,K.Fujiyoshi,M Kaneko (1998). "VLSI/PCB placement with obstacles based on
sequence pair.". In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems Volume 17 Issue 1.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov (2017).
“Proximal Policy Optimization algorithms”. In: arXiv preprint arXiv:1707.06347.

https://s2.smu.edu/ manikas/Benchmarks/Block/ami49.yal

Dhruv Vashisht, Harshit Rampal,
Haiguang Liao, Yang Lu,
Devika Shanbhag, Elias Fallon,
Levent Burak Kara

Figure 2: Placements for the lattice problem after 5000 steps of Simulated Annealing (SA). For the same number of
SA steps, RL initialized placements (middle) are more compact than those initialized randomly (right)

Figure 3: Placements for ami49 benchmark. 3 blocks are assumed fixed in the top row. All blocks are free in the bottom row.
For the same number of SA steps, RL initialized placements (middle) are more compact than those initialized randomly (right).

Table 1: Average cost (in μm) of 10 experiments on Lattice block list

Table 2: Average cost (in mm2) of 10 experiments on ami49 block list

For the ami49 results, Fig. 3 presents the final placement and Table 2
compares the average cost of solutions from both the methods. The ami49
benchmark has two configurations:
Configuration 1 - Three fixed blocks (Fig. 3 top row)
Configuration 2 - No fixed blocks (Fig. 3 bottom row)

Configuration 1 has pre-specified coordinates to be maintained in the final
placement making it more challenging as the agent tries to make
perturbations given fixed blocks. However, the results reveal that the agent
is still able to outperform the baseline (pure SA with random initialization).
Configuration 2 consisting of no fixed blocks also shows our method's
improvement from the baseline. The standard deviation for RL Initialization
and random initialization indicates small variance of results and actual
improvement of RL Initialization.

Overview

