
Prediction of high frequency resistance in 

polymer electrolyte membrane fuel cells

Overview

High-frequency resistance (HFR) is an impedance of the fuel cell under high 

frequency perturbation source. It is a critical quantity strongly related to a fuel 

cell system’s performance. As such, an accurate and timely prediction of HFR 

is useful for understanding the system’s operating status and the corresponding 

control strategy optimization. On a real car, It is beneficial to estimate the fuel 

cell system’s HFR from the measurable operating conditions without resorting 

to costly HFR measurement devices. Our research investigates HFR estimation 

in a complex and real fuel cell system in a lab environment. It is an initial stage 

to prove the potential usage of a data-driven method for online HFR prediction 

on real driving environment. We demonstrate that,    

The long short-term memory (LSTM) model concatenated by a multiple layer 

perceptron (MLP) model is used for HFR estimation. The model inputs are all 

the collected data except HFR in an interval of 20 seconds. The collected HFR 

at the 20th second is used as the ground truth for the model.      

• a data-driven model can be used to achieve high accuracy of online HFR 

prediction for an industry level fuel cell stacks.

• the model can be computationally light and thus, practical to use.

HFR prediction model 

Experiment setup 

The experiment data was collected from a commercially available multi-

stack fuel cell system (PROMER  P390 Fuel Cell System, Shanghai Hydrogen

Propulsion Technology (SHPT), Shanghai, China). Current is the main 

external power source of the fuel cell. The collected data are fuel cell voltage 

and current, air flow rate, cooling water temperature and pressure, air supply 

system’s temperature, hydrogen supply system’s pressure and temperature 

and fuel cell’s HFR.  

Conclusion

This work presents a deep learning method for predicting HFR in fuel cells. 

Our LSTM- and MLP- based model, can take the previous and current 

information of the sensor data for a real-time prediction of HFR in operational, 

deep-stack fuel cells. The following conclusions are drawn: 

• The presented model achieves high prediction accuracy under varied 

current patterns.

• The model can achieve runtime performance with high accuracy by 

reducing the model size

The model is designed for computationally efficient real-time predictions. Once 

the model is trained off-line, it can be executed very fast on board. The speed 

can be further increased by reducing the model size while the accuracy only 

slightly decreases. Considering the high prediction accuracy and runtime 

performance, the model may prove promising for fuel cell vehicles, which 

usually control their fuel cell system using embedded controllers.
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Results 

Three current trends are conduced in the experiments. The trends are the 

constant current (type I), the upramp current (type II), and the cyclic current 

(type III). Several test datasets are generated under the three trends. We 

compared LSTM model with several other frequently used regression models. 

LSTM shows the best performance under all the current conditions. 

* LSTM-MLP is our model 

* L-SVR is the support vector regression with linear kernel 

* GK-SVR is the support vector regression with gaussian kernel 

* ANN is the feedforward neural network. 

(a) One time slice of LSTM model and its simplified module. (b) Multiple layer perceptron model. (c) LSTM-MLP model.

We test the model speed and accuracy by tunning LSTM’s encoding 

dimension on all test datasets. This is critical for the practicality of the model 

design because the model will be deployed on a micro-controller on a real car. 

We test typical setup of the encoding dimension from 16 to 512. We find that a 

large shrinkage of the encoding dimension doesn’t decrease the error 

significantly while it is helpful to increase the model speed. However, we do 

observe that GK-SVR is still faster than a LSTM-MLP model of 16 encoding 

dimension although its error is also much higher. Thus, which algorithm setup 

to choose is still a decision to be made depending on the requirement of the 

specific application environment. 

LSTM-MLP encoding dimension comparison GK-SVR

Encoding 
dimension

16 32 64 128 256 512

RMSE 4.61 4.47 4.52 5.49 3.86 4.06 5.41

Speed (sec) 0.82 0.81 0.84 1.02 1.08 1.13 0.67

RMSE

Current type I Current type II Current type III

LSTM-MLP 3.77 4.70 3.51

L-SVR 6.34 5.47 5.58

GK-SVR 4.09 7.48 4.89

ANN 4.76 8.79 4.69

(a) A hydrogen fuel cell stack [1]. (b) Illustration of HFR modelling in a fuel cell [2].
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