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ABSTRACT
In topology optimization using deep learning, load and bound-

ary conditions represented as vectors or sparse matrices often miss
the opportunity to encode a rich view of the design problem, lead-
ing to less than ideal generalization results. We propose a new
data-driven topology optimization model called TopologyGAN
that takes advantage of various physical fields computed on the
original, unoptimized material domain, as inputs to the generator
of a conditional generative adversarial network (cGAN). Com-
pared to a baseline cGAN, TopologyGAN achieves a nearly 3×
reduction in the mean squared error and a 2.5× reduction in the
mean absolute error on test problems involving previously unseen
boundary conditions. Built on several existing network models,
we also introduce a hybrid network called U-SE(Squeeze-and-
Excitation)-ResNet for the generator that further increases the
overall accuracy. We publicly share our full implementation and
trained network.

1 Introduction
Topology optimization of solid structures involves generat-

ing optimized shapes by minimizing an objective function such
as compliance or mass within a material domain, subject to a
set of displacement and load boundary conditions (Figure 1).
With rapid advances in additive manufacturing and the associ-
ated design tools, topology optimization is becoming increas-
ingly more prevalent as it allows optimized structures to be
designed automatically. Existing methods include the density
based approaches such as the Solid Isotropic Material with Pe-
nalization (SIMP) method [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], grid based
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approaches [11, 12, 13, 14, 15, 16], moving boundary based ap-
proaches [17, 18, 19, 20, 21, 22, 23, 24, 25], and load-path based
approaches [26, 27, 28]. Although significant efforts have been
made to improve solution efficiency, topology optimization meth-
ods remain to be computationally demanding and are not readily
suited to be used inside other design optimization modules such
as layout or configuration design tools [25, 29, 30].

FIGURE 1. 2D topology optimization.

In recent years, new data-driven methods for topology opti-
mization have been proposed to accelerate the process. Deep learn-
ing methods have shown promise in efficiently producing near
optimal results with respect to shape similarity as well as compli-
ance with negligible run-time cost [31, 32, 33, 34, 35, 36, 37, 38].
Theory-guided machine learning methods use domain-specific
theories to establish the mapping between the design variables
and the external boundary conditions [39, 40, 41]. However a
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significant challenge in topology optimization is learning an accu-
rate and generalizable mapping from the boundary conditions to
the resulting optimal structure. As such, approaches that involve
establishing this map directly often have to severely restrict the
displacement and external load configurations, as the results are
difficult to generalize to novel boundary conditions.

As one step toward addressing this issue, we propose a new
deep learning based generative model called TopologyGAN for
topology optimization. TopologyGAN is based on conditional
Generative Adversarial Networks (cGAN). The main hypothesis
we pursue is that rather than trying to map the boundary condi-
tions to the resulting optimal shapes directly, various physical
fields computed on the initial, unoptimized domain subject to the
prescribed boundary conditions may hold useful information that
allows the network to learn more accurate maps. This approach
has been motivated by our observation that in deep learning based
approaches, the input displacement and load boundary conditions
are often represented as sparse vectors or matrices1. This sparsity
prevents the network from exploiting useful spatial variations
and physical phenomena that occur within the material domain.
By contrast, in this work, we propose to take advantage of such
variations.

To this end, in TopologyGAN (i) the input channels of the
generator are related to the physical fields (non-sparse matrices)
computed in the initial, unoptimized domain such as the von
Mises stress fields, strain energy fields, and displacement fields
rather than the original boundary conditions alone, and (ii) the
condition for the discriminator involve both the physical fields
and the initial inputs. We use ground truth data generated by
the SIMP method, although our approach is applicable to ground
truth data obtained from other topology optimization methods.

Based on this formulation and the model selection studies
we conduct, we find that the von Mises stress field and the strain
energy density fields are the most useful channels of information
to augment with the original displacement and load boundary
conditions. Our results show that compared to a baseline cGAN
model that does not take advantage of such fields, TopologyGAN
achieves lower test errors than that of the training error of the base-
line method on previously unseen boundary conditions. These
results are encouraging in that they may prove useful for other
researchers who may wish to explore the use of such fields in
similar topology optimization scenarios.

We publicly share our full implementation and trained
network (https://github.com/zhenguonie/TopologyGAN).
The entire data set used in this work is available freely upon
request.

Our main contributions are:

• A new method, TopologyGAN, for topology optimization using
deep learning models.

1Unless, of course, they are fixed, in which case the network cannot account
for variations in these conditions.

• A new design of the input matrices involving the initial physical
fields. This input complements the original problem input
matrices.

• A hybrid neural network architecture, namely U-SE-ResNet,
as the generator for TopologyGAN.

2 Related Work
Our review focuses on studies that highlight topology opti-

mization, deep learning for topology optimization, generative ad-
versarial networks (GAN), and two network architectures closely
related to our work.

2.1 Topology Optimization and SIMP
Topology optimization seeks an optimal subset Ωmat ⊂ Ω,

where Ω is the design domain. To formulate this problem, an
objective function f (y) to be minimized is defined as in Eq.(1),
in which y denotes the structural design (material distribution)2

and h(y) is a resulting physical outcome such as stress, strain or
displacement.

f (y) =



min
y

f (y,h(y))

s.t.


design constraint on y

state constraint on h(y)
equilibrium constraint

(1)

In this work, we use the density-based SIMP method ( [1,
42]), which is widely implemented in many commercial design
software [43,44]. The SIMP method discretizes the design domain
into a grid of finite elements called isotropic solid microstructures.
It models the material density ye to vary between zero (void) and
one (full solid). This representation allows the assignment of
intermediate densities to the elements. The Young’s modulus Ee
for each grid element e is given as:

Ee(ye) = Emin + yp
e (E−Emin) (2)

where E is the material stiffness, Emin is an infinitesimal stiffness
and p is a penalization factor to favor binary outputs avoiding in-
termediate densities. The optimization works toward minimizing

2We use y for material distribution for consistency with the cGAN output
presented in the following sections.
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the compliance C(y) ( [45, 46]) as follows:

min
y

: C(y) = UT KU =

N∑
e=1

(ye)puT
e keue

s.t. : V(y)
V0

= VF

: KU = F
: 0 ≤ ye ≤ 1


(3)

where y is the density-based structural design tensor, U and F
are the global displacement and force vectors, K is the stiffness
matrix, ue is the elemental displacement vector, ke is the elemental
stiffness matrix, and N is the number of total elements.

While the above existing methods can provide optimized
solutions, our work aims to accelerate the iterative nature of these
solvers using a data-driven approach.

2.2 Deep Learning for Topology Optimization
With recent advances in computer hardware, deep neural

networks have been widely applied in various fields, including
autonomous vehicles, robotics, medical diagnosis, bio-medicine,
material design, machine health monitoring, mechanical design,
and manufacturing. Deep neural networks have proven to be
effective at learning complex mappings between problem input
variables and constraints, and target design objectives. Supervised
machine learning techniques have proven to be effective for en-
gineering design exploration and optimization, and for mapping
out feasible regions of the design space [47]. Guo et al. [31]
propose a data-driven design representation where an augmented
variational autoencoder is used to encode 2D topologies into a
lower-dimensional latent space and to decode samples from this
space back into 2D topologies. Oh et al. [48] propose a deep
generative adversarial framework capable of generating numer-
ous design alternatives that are both aesthetic and optimized for
engineering performance. In 3D topology optimization, Rawat
and Shen [33] integrate Wasserstein GAN and a convolutional
neural network (CNN) into a coupled model to generate new 3D
structures using limited data samples. To speed up convergence
in SIMP based topology optimization for thermal conduction,
Lin et al. [49] introduce a deep learning approach using U-Nets.
Through deep learning, only the early results obtained through
SIMP are fed into the network to directly produce the final outputs.
Sosnovik and Oseledets [50] use CNNs to accelerate topology op-
timization from two halfway grayscale images to the final binary
image generated through SIMP. However, these networks focus
either on latent candidate generation or accelerated optimization
and do not establish an end-to-end mapping from the boundary
conditions to the optimized topologies.

To realize an end-to-end topology optimization from pre-
scribed boundary conditions, Yu et al. [32] propose a CNN-based

encoder-decoder for the generation of low-resolution structures,
which are then passed through a super-resolution GAN to gener-
ate the final results. Sharpe and Seepersad [34] explore the use
of cGANs as a means of generating a compact latent representa-
tion of structures resulting from topology optimization. However,
only a few boundary conditions and optimization settings are
considered. Extending data-driven topology optimization to novel
displacement and external load conditions remains a major chal-
lenge.

2.3 Generative Adversarial Networks
Generative Adversarial Networks (GAN) [51], is a generative

model formulated as a minimax two-player game between two
models. It consists of: (1) A generator G whose aim is to learn
a generative density function that models the training data and,
(2) a discriminator D that aims to discern if an input sample is
part of the original training set or a synthetic one generated by
G. The structure of GAN is shown in Figure 2. The input to G is
random noise z sampled from a distribution pz(z). The output of
G, yg = G(z), is a fake data. A real yr or a fake sample yg is then
fed into D to obtain an output D(y), which generates a probability
estimate of the true nature of y. In this case, D is trained to
maximize the probability of assigning the correct label to both the
real samples yr and fake samples yg. G is simultaneously trained
to minimize log(1−D(G(z))). The training loss functions LGAN

D
and LGAN

G are:

max
D
LGAN

D = Eyr∼pdata(y)[logD(yr)] +Ez∼pz(z)[log(1−D(G(z)))]

(4)

min
G
LGAN

G = Ez∼pz(z)[log(1−D(G(z)))] (5)

FIGURE 2. Schematic diagram of GAN.

Conditional GAN Generative adversarial networks can be
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extended to a conditional model when the generator and the dis-
criminator are conditioned on prescribed information [52]. A
conditional GAN (cGAN) learns a mapping from an input x to an
output y, as shown in Figure 3. The cGAN loss ( [53]) is:

LcGAN
G,D = E(x,y)∼pdata(x,y)[logD(x,y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x,z)))]
(6)

LL1(G) = Ex,y,z[‖y−G(x,z)‖1] (7)

G∗ = argmin
G

max
D
LcGAN

G,D +λLL1(G) (8)

where G∗ is the final optimized generative model. In this model,
the inputs x are composed of the original (full) domain, the desired
volume fraction, the displacement boundary conditions, and the
external loads. These are utilized as conditions that the generator
has to attune to. The ground truth final optimized structure (real
structure) y is computed through the SIMP method and provided
as input to the discriminator, alongside x for training.

FIGURE 3. Baseline: cGAN for topology optimization.

2.4 U-Net and SE-ResNet
The U-Net architecture ( [54]) shown in Figure 4 allows the

network to propagate context information from the downsampling
layers to the upsampling layers at various resolutions. To predict
the output around the border of the image, the missing context
is extrapolated by reflecting the input image. This tiling strategy
is important when the network is applied to large images, as
otherwise the resolution would be limited by the GPU capacity
[55].

FIGURE 4. Architecture of the U-Net. The skip connections between
networks are illustrated as dotted arrows.

SE-ResNet SE-ResNet is a CNN-based ResNet [56] enhanced
by SE-blocks [57] as shown in Figure 5. Each SE-ResNet module
contains two CNN blocks and one SE block [58]. The distin-
guishing feature of ResNet is the skip connection which simply
performs identity mapping added to the output of the stacked
layers. As such, ResNet can dynamically select the layer depth
for the desired underlying mapping. The final output of the SE-
ResNet module is computed by a feedforward neural network
with a shortcut connection: w = v + x.

SE block is used in SE-ResNet to improve the representa-
tional capacity of the network by enabling it to perform dynamic
channel-wise feature recalibration. The input data u ∈ RH×W×C

is shrunk to S (u) ∈ RC through the global average-pooling layer.
Then two fully connected layers are used to downsample and
upsample the linear array S (u). A reshape operation produces the
excitation output E(u) that has the same dimension as the initial
input u. The final output of the SE block is a Hadamard product
of E(u) and u through the element-wise matrix multiplication:
v = E(u)⊗u.

FIGURE 5. ResNet enhanced by SE block [58].

3 Technical Approach
Topology optimization using deep learning has difficulties in

extending to previously unseen boundary conditions because of
the high discreteness of the boundary conditions and the sparsity
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of the input matrices. The high sparsity of the input matrices leads
to a high variance of the mapping function.

As one step toward overcoming this challenge, we propose
a new model called TopologyGAN. The method is based on the
use of various physical fields such as the strain energy field, von
Mises stress field, displacement fields, and strain fields computed
on the initial (unoptimized) design domain as a way to augment
the baseline cGAN with this extra information. In this work, we
denote these as the initial fields f . An illustrative schematic of
how TopologyGAN works is shown in Figure 6. The horizontal
axis is composed of the problem input matrices encoding the
desired VF, displacement BC, and load. The vertical axis is the
resulting structure where three structural designs are generated
respectively by the SIMP method as the ground truth, by the
cGAN as the baseline, and by TopologyGAN as the proposed
model. The baseline cGAN directly maps the inputs to the output

structure: x
cGAN
−−−−−→ y. Our proposed TopologyGAN, on the other

hand, builds a mapping from the inputs x to the initial fields f ,
followed by a mapping from f to the output structure y as follows:

x
FEM
−−−−→ f

TopologyGAN
−−−−−−−−−−−→ y. Note that during run time, the initial

fields are computed only once.
Our hypothesis in utilizing such initial fields is that they pro-

vide useful information regarding the physical state of the original
domain under the inputs x that can be further exploited by the
network. For instance, as shown in Figure 6, both the initial strain
energy density and the von Mises stress maps produce scalar
fields that are richer in information compared to the original prob-
lem input matrices x alone. In particular, the initial fields are
hypothesized to produce information f (green solid curve) that
correlates well with the final structure y (yellow dashed curve),
thereby making the network’s remaining task less daunting com-
pared to the scenario of mapping x to y directly. As will be shown
in Section 5.1, the initial fields indeed help TopologyGAN attain
significantly higher training and test accuracies over the baseline
cGAN.

FIGURE 6. Schematic diagram of TopologyGAN.

3.1 Network Architecture of TopologyGAN
TopologyGAN is based on the conditional Pixel2Pixel GAN

architecture [53] and incorporates the FEM and the SIMP solver,
as shown in Figure 7. The generator of TopologyGAN establishes
a mapping from the initial physical fields f to the estimated
optimized topology ŷ = G( f (x),VF). The ground truth output y is
generated by the SIMP method, as was the case with the baseline
cGAN shown in Figure 3. In TopoloyGAN, both the problem
inputs x and the initial fields f (x) are used as the condition: r(x) =

[x, f (x)].
Both the generator and the discriminator utilize CNN blocks

as shown in Figure 8. For the generator, we propose a hybrid
architecture called U-SE-ResNet. U-SE-ResNet is a U-Net with
the SE-ResNet module in a downsampling-upsampling structure.
In the upsampling, transposed convolution layers are used instead
of pooling layers. According to [53], PatchGAN discriminator is
adopted because the problem of blurry images caused by failures
at high-frequency features such as edges and textures can be
alleviated by restricting the GAN discriminator to only model
high frequencies. The Sigmoid function is used in the generator’s
last layer for outputting a grayscale structure ŷ.

FIGURE 7. TopologyGAN approach to topology optimization.

FIGURE 8. Architectures of the generator G and discriminator D.

3.2 TopologyGAN Loss Function
As shown in Eq.(9) - Eq.(12), the loss consists of three parts:

(1) the loss of TopologyGAN: LTGAN
G,D , (2) the L2 loss of the gen-
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erator: LL2(G), and (3) the absolute error of the volume fraction
of the generator: AEVF.

LTGAN
G,D = E(x,y)∼pdata(x,y)[logD(r(x),y)]+

Ex∼pdata(x)[log(1−D(r(x),G( f (x))))]
(9)

LTGAN
G = Ex∼pdata(x)[log(1−D(r(x),G( f (x))))] (10)

LL2(G) = Ex,y[‖y−G( f (x))‖2] (11)

AEVF
G =| VF− V̂F |=

1
N
|

N∑
e=1

(ye−G( f (x))e) | (12)

G∗ = argmax
D

min
G
LTGAN

G,D +λ1LL2(G) +λ2AEVF
G (13)

where the generator G tries to minimize the combined loss
LTGAN

G + λ1LL2(G) + λ2AEVF
G . At the same time, the adversar-

ial D tries to maximize LTGAN
G,D . r(x) is the condition that contains

the problem inputs x and the initial physical fields f (x). n is
pixel count of the output image. Scalars λ1 and λ2 are used to
balance the three loss functions. The two scalars are determined
empirically using parametric studies. In this paper, λ1 = 10,000,
λ2 = 1.

We select the cGAN as our baseline model. Its structure is
shown in Figure 3. Its loss is shown in Eq.(8).

4 Experiments
The proposed TopologyGAN and the baseline cGAN are

trained on the same data set that is generated by the SIMP method
and then are evaluated and compared on their prediction perfor-
mance.

4.1 Experiment Design
In addition to a comparison of TopologyGAN and the base-

line cGAN, we also study the impact of different physical fields
as inputs. Additionally, we compare different generator structures,
namely U-Net, SE-ResNet, and the proposed U-SE-ResNet.

4.2 Data set
A SIMP-based topology optimization framework called ToPy

[59] is used to generate the data set. The 2D domain consists of
a 64×128 grid structure consisting of square elements. A total
of 49,078 optimized structures are generated using ToPy with the
randomized conditions as follows:

• volume fraction: [0.3 : 0.02 : 0.5]
• displacement BCs: 42 scenarios
• load position: any node on the boundary of the domain
• load direction:

[
0 : π6 : π

]
• SIMP penalty: 2
• SIMP filter radius: 1.5

The data set is divided into training, validation, and test sets
as follows: 4 displacement BCs of the total 42 are randomly
selected as the test set. All data samples from the remaining
38 displacement boundary conditions are shuffled and split into
training (80%) and validation (20%) sets. Note that the boundary
conditions in the test set will not have been seen by the network
during training.

Six samples are randomly selected from the entire data set for
an illustration of the input and outputs in Figure 9. Images in each
row form a sample for TopologyGAN. The first four images in
each row are input variables x(VF,BCs) including volume fraction,
displacement boundary condition and load boundary conditions
along the x-axis and the y-axis. VF is input as a 2D matrix that
has the same dimension as the design domain. The value of each
element in the matrix is equal to the VF value. Displacement
BCs are represented as a 2D matrix by assigning one of the four
integers to each element: 0 represents unconstrained, 1 represents
ux = 0, 2 represents uy = 0, and 3 represents ux = uy = 0. Based on
the input variables, the initial stress (σ = [σ11,σ22,σ12]), strain
(ε = [ε11, ε22, ε12]), and displacement (u = [ux,uy]) fields are com-
puted by FEM. Strain energy density and von Mises stress are
shown as the example physical fields, which are expressed in
Eq(14) and Eq(15). The last image is the output structure y from
SIMP.

σvm =

√
σ2

11−σ11σ22 +σ2
22 + 3σ2

12 (14)

W =
1
2

(σ11ε11 +σ22ε22 + 2σ12ε12) (15)

4.3 Evaluation Metrics
To assess the performance of TopologyGAN, we use the fol-

lowing four metrics: mean absolute error (MAE), mean squared
error (MSE), relative error of volume fraction (REVF) and its ab-
solute value (| REVF |), relative error of the compliance (REC) and
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FIGURE 9. Data samples generated by FEM solver and SIMP solver.
Images in each row form one sample. The first four images in each row
are input variables x(VF,BC,Load), the last image is output y. Strain
energy density and von Mises stress are shown in level sets with contour
lines.

its absolute value (| REC |). Denote ŷ as the prediction from the
generator G:

ŷ = G( f (x)), (16)

and then both the ground truth y and the prediction ŷ are reshaped
into vectors, with the length of 8,192, from 2D matrices, with the
size of 64×128.

MAE shown in Eq.(17) and MSE shown in Eq.(18) are used
to evaluate the model. MAE measures the average magnitude
of the absolute differences between the prediction values and
the ground truth. MSE measures the average squared difference
between the estimated values and the ground truth.

MAE =
1
M

M∑
i=1

| y(i)− ŷ(i) |=
1
M

M∑
i=1

1
N

N∑
e=1

| y(i)
e − ŷ(i)

e | (17)

MSE =
1
M

M∑
i=1

(y(i)− ŷ(i))2 =
1
M

M∑
i=1

1
N

N∑
e=1

(y(i)
e − ŷ(i)

e )2 (18)

where M is the total number of data samples, and N = 8,192 is
the number of grid elements.

In addition to these commonly used metrics, we define two
other metrics for evaluation: (1) REVF is the relative error of
the volume fraction between prediction output and ground truth
output, and (2) REC is the ratio between the compliance of the

predicted structure and the ground truth structure. These are
defined as follows:

VF =
1
N

N∑
e=1

ye (19)

REVF =
V̂F−VF

VF
=

∑N
e=1(ŷe− ye)∑N

e=1 ye
(20)

C(y) = UT KU =

N∑
e=1

(ye)puT
e k0ue (21)

REC =
C(ŷ)−C(y)

C(y)
(22)

where C(y) is the compliance of the predicted structure under the
given loads.

5 Results and Discussions
Our code is written in TensorFlow and trained on an NVIDIA

GeForce GTX 2080Ti GPU. Adam [60] is used for optimization,
combining the advantages of AdaGrad [61] and RMSProp [62].
Under our experiment scenarios, it takes 158 seconds for the
trained TopologyGAN to render all the 4,356 test samples (on
the NVIDIA GeForce GTX 2080Ti GPU), while 105 seconds
for the trained cGAN. In contrast, it takes approximately 145
hours for the topology optimization software ToPy to accomplish
the computation of the same number of test samples (on Intel
i7-6500U CPU).

We find that TopologyGAN outperforms the baseline cGAN
in both the training and test. Furthermore, we analyze the physical
field selection and the network architecture for the generator.
We find that the VF+σvm+W combination performs significantly
better than all other combinations. Moreover, to find the best
generator structure, we compare the U-SE-ResNet, U-Net, and SE-
ResNet. A comparative experiment is conducted using different
generators on the same discriminator and the data set. The results
show that the proposed U-SE-ResNet outperforms the other two
structures.
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5.1 Model Evaluation
Our training results of TopologyGAN and the baseline cGAN

are summarized in Table 1. It can be seen that TopoloyGAN
achieves a 3× lower MSE error and 2.5× lower MAE error than
that of the cGAN. More surprisingly, both the MSE and MAE of
TopologyGAN on the test set are lower than those of cGAN on
the training set.

Loss functions of TopologyGAN are shown in Figure 10,
whereLTGAN

G,D is the discriminator loss of TopologyGAN,LTGAN
G is

the generator loss of TopologyGAN, and G∗ is the whole objective
of the generator. As the training progresses, it can be seen that
LTGAN

G and G∗ decrease gradually, andLTGAN
G,D oscillates and tends

to balance.

FIGURE 10. Loss functions of TGAN, Discriminator and Generator
in training.

FIGURE 11. MAE and MSE of TopologyGAN in training.

5.2 Accuracy and Performance
The accuracy and performance of the trained TopologyGAN

are discussed to show the prediction performance. As shown in
Figure 12, the generated structures from TopologyGAN become

increasingly more defined over the training epochs. Each row
denotes a randomly selected sample from the training set. After
two-hundred epochs, the predictions become virtually indistin-
guishable from the ground truth (GT) structures.

FIGURE 12. Evolution of TopologyGAN predictions during training.

To visually compare the prediction accuracy of the fully
trained TopologyGAN on the training, validation, and test sets,
Figure 13 shows the computed results and the corresponding
ground truth structures. By comparing each set of images, we
find that TopologyGAN performs well on the training and vali-
dation sets. The performance of TopologyGAN on the test set is
expectedly lower.

To further quantify the performance, we compute the VF and
the compliance of the resulting structures and compare them to
those of the ground truth structures. Based on the fully trained
TopologyGAN, we randomly select 640 samples from each of the
training and test sets. For each data sample, this results in two
structures: a prediction ŷ and a ground truth y. The relative error
of the volume fraction REVF and the relative error of compliance
REC are computed respectively using Eq.(20) and Eq.(22).

The sorted REVF values for the training and test sets are
shown in the first diagram of Figure 14. Histograms of REVF

in the training and the test are also shown in Figure 14. REVF

is close to zero for the majority of the samples. Additionally,
the histogram of REVF on the training set is more concentrated
around zero than that on the test set as expected. REC shows as
similar trend as shown in 15.

5.3 Comparison and Selection of Physical Fields
In addition to the combination of von Mises stress σvm and

strain energy density W, various physical field combinations
are studied as the inputs. The comparison is shown in Table
2. The results indicate that №8 - [VF + U +σvm + W] has the
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TABLE 1. Comparison of results between TopologyGAN and cGAN.

Model
MAE MSE

Training Validation Test Training Validation Test

TopologyGAN 0.001808 0.019133 0.070128 0.001340 0.018022 0.059943

Baseline: cGAN 0.088257 0.100565 0.181095 0.085916 0.097966 0.175226

FIGURE 13. Comparison of the predictions of the fully trained
TopoloyGAN on training, validation and test sets.

FIGURE 14. Comparison of volume fraction on training and test sets

best performance on the training and validation sets, but №4 -
[VF +σvm + W] shows a better prediction performance on the test
set.

5.4 Generator Architecture
The most important feature of the U-Net is the skip connec-

tions between mirrored downsampling and upsampling layers to

FIGURE 15. Comparison of compliance on training and test sets.

transfer local information and to merge features at the various
resolution levels. The most distinct feature of SE-ResNet is the
shortcut connection which performs identity mapping added to
the output of the stacked layers to dynamically select the layer
depth for the desired underlying mapping. Served as the generator
of TopologyGAN, the proposed architecture U-SE-ResNet in this
article combines U-Net and SE-ResNet, as shown in Figure 16.
We train the TopologyGAN model with different generator archi-
tectures, which are U-Net, SE-ResNet, and U-SE-ResNet. The
training results are shown in Table 3. U-SE-ResNet has the best
performance of the three. This is due to the fact that the U-SE-
ResNet combines the advantages of the U-Net and the SE-ResNet,
which improves the model flexibility in the local information
transfer and the adjustable network depth.

5.5 Limitations and Future Work
TopologyGAN exhibits good performance compared to the

baseline cGAN and generalizes to previously unseen boundary
conditions. However, there are several limitations. First, there is
no in-built mechanism that ensures a single connected component
(or the avoidance of the checkerboard pattern) outside of the pe-
nalization enhanced SIMP-based ground truth training data the
network observes. Second, while VF is typically employed as
an upper bound for the amount of material that SIMP can utilize,
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TABLE 2. Comparison and selection of physical fields as GAN inputs.

Metrics MAE MSE

№ Physical Fields Training Validation Test Training Validation Test

0 Baseline 0.088257 0.100565 0.181095 0.085916 0.097966 0.175226

1 VF+U 0.001941 0.039551 0.105560 0.002391 0.030464 0.099863

2 VF+W 0.001781 0.039145 0.100626 0.002343 0.033687 0.094903

3 VF+σvm 0.001758 0.040411 0.098619 0.002333 0.035467 0.081702

4 VF+σvm+W 0.001808 0.019133 0.070128 0.001340 0.018022 0.059943

5 VF+σ 0.002339 0.037105 0.101626 0.002382 0.031802 0.095526

6 VF+ε 0.001729 0.034620 0.093073 0.002306 0.029235 0.087086

7 VF+σ+ε 0.010823 0.037518 0.122126 0.001976 0.032496 0.092162

8 VF+U+σvm+W 0.000942 0.019519 0.088748 0.001099 0.031628 0.079184

9 VF+LP 0.001914 0.033079 0.139781 0.00328 0.037652 0.100326

Note: VF is volume fraction, F is external loads, U is displacement field, σvm is von Mises stress,
W is strain energy density, σ is stress field, ε is strain field, and LP is load path vector. Number
marked in yellow is the minimum in each column.

TABLE 3. Training results of the three generator architectures

Architecture
MAE MSE

Training Validation Test Training Validation Test

U-Net 0.002908 0.027434 0.101455 0.002471 0.029133 0.098439

SE-ResNet 0.008597 0.100675 0.142915 0.058231 0.089755 0.157362

U-SE-ResNet 0.001808 0.019133 0.070128 0.001340 0.018022 0.059943

FIGURE 16. Architectures of U-Net, SE-ResNet, and U-SE-ResNet

TopologyGAN treats VF as a condition to match as closely as

possible (minimizing the absolute error of the target and generated
VF) rather than a true inequality constraint. Third, TopologyGAN
is implemented for 2D topology optimization and, while the ap-
proach will be similar in nature, will require modifications to
extend to 3D for generalization.

TopologyGAN only takes advantage of the fields computed
on the original, unoptimized domain. However, theoretically,
there is no restriction on which fields can be used to augment the
network. In particular, a new network could be devised where the
structure generated by TopologyGAN is reassessed to compute
the fields of interest and this information can be fed back to the
network for improved predictions in several iterative (yet fast)
steps. These limitations and observations will be the subject of
our future work.
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6 Conclusions
We present a new deep learning based generative model

called TopologyGAN for topology optimization where the dis-
placement and load boundary conditions, and the target volume
fraction are prescribed as inputs. TopologyGAN uses dense ini-
tial fields computed over the original, unoptimized domain to
augment the conventional inputs. These new fields prove to be
helpful for the network to outperform a baseline cGAN in sig-
nificant ways. In addition, we propose a new hybrid generator
architecture called U-SE-ResNet that combines the features of
U-Net and SE-ResNet. The use of the initial fields, as well as
the U-SE-ResNet model, allows TopologyGAN to significantly
reduce the test errors on problems involving previously unseen
boundary conditions.
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