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Using deep learning to analyze mechanical stress distri-
butions are gaining interest with the demand for fast stress
analysis. Deep learning approaches have achieved excellent
outcomes when utilized to speed up stress computation and
learn the physical nature without prior knowledge of under-
lying equations. However, most studies restrict the variation
of geometry or boundary conditions, making it difficult to
generalize the methods to unseen configurations. We propose
a conditional generative adversarial network (cGAN) model
called StressGAN for predicting 2D von Mises stress dis-
tributions in solid structures. The StressGAN model learns
to generate stress distributions conditioned by geometries,
loads, and boundary conditions through a two-player mini-
max game between two neural networks with no prior knowl-
edge. By evaluating the generative network on two stress
distribution datasets under multiple metrics, we demonstrate
that our model can predict more accurate stress distributions
than a baseline convolutional neural network model, given
various and complex cases of geometries, loads, and bound-
ary conditions.
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versarial network, deep learning.
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1 INTRODUCTION

Structural stress analysis is a critically important foun-
dational tool in many disciplines, including mechanical en-
gineering, material science, and civil engineering, etc. It is
used for computing the stress distribution and the possibil-
ity of structural failure when the structure is subject to the
applied load and boundary conditions [1–3]. Finite Element
Analysis (FEA) is commonly used to solve the governing
partial differential equations on the discretized domain [4–8].
Traditional methods provide high fidelity solutions but re-
quire the solution of large linear systems, which can be com-
putationally prohibitive. With the demand for fast and ac-
curate structural analysis in generative design, topology op-
timization technologies and online manufacturing monitor-
ing, increasing the computational speed for stress analysis
becomes a focus of interest.

Deep learning techniques start to be applied to solve
computational engineering problems to achieve fast mechan-
ical analysis [9]. Several approaches of accelerating mechan-
ical stress analysis by deep learning methods have been car-
ried out and achieved excellent outcomes in terms of compu-
tational speed and accuracy [6, 10–15]. These studies utilize
deep learning models to predict residual stress, shear stress,
maximum von Mises stress, or distributions of the stress ten-
sor. Once trained on large datasets, these approaches are able



to generate accurate stress predictions. However, most pre-
vious work restricts the geometry or the boundary conditions
that are applied, making the models difficult to be general-
ized to new problems.

In this work, we propose a conditional generative ad-
versarial network we call StressGAN for stress distribution
prediction. StressGAN takes as input arbitrary geometries,
load and boundary conditions in the form of different in-
put channels and predicts the von Mises stress distribution
in an end-to-end fashion. A distinguishing feature of our
approach is that we utilize an adversarial learning strategy,
which has shown the advantages of the strategy in generat-
ing high-quality samples of different modalities [16–19].

We evaluate StressGAN on two datasets: a fine-mesh
multiple-structure dataset introduced by this work for the
first time and a coarse-mesh cantilever-beam dataset used
in our previous work [6]. The coarse mesh dataset is used
to compare the performances of our baseline neural net-
work and our proposed network. The fine-mesh dataset
is used to further study the performances of StressGAN in
solving more complex and practical stress distribution prob-
lems. The fine-mesh dataset contains 38,400 problem sam-
ples modeled as 128× 128 meshes. Unlike the cantilever-
beam dataset with identical shape, boundary and load con-
ditions, the fine-mesh dataset includes ten patterns of load
positions and eight patterns of boundary conditions. A sur-
rogate model which can predict fine-mesh stress distributions
fast and accurate will be more critical in practice. Compared
to coarse mesh modeling, fine mesh modeling helps FEA
converges better and generates more accurate stress distri-
butions. Meanwhile, a larger mesh size requires more com-
putational power and time.

To investigate the performance of StressGAN under dif-
ferent scenarios, we design two types of experiments : train-
ing and evaluating the network on the entire dataset and train-
ing and evaluating the network on datasets with conditions
of different categories (generalization experiments). As a
result, StressGAN outperforms a selected baseline model,
StressNet (SRN), proposed in [6], on the datasets. Further-
more, StressGAN has a more robust performance than the
baseline model for most test cases in the generalization ex-
periments with a sparse training dataset.

2 BACKGROUND and RELATED WORK

We focus our review on finite element analysis, then on stud-
ies of deep learning methods with emphasis on their appli-
cations in stress estimation and generative adversarial net-
works with emphasis on their applications in computational
engineering.

2.1 Finite element analysis for stress computation
Typical linear finite element analysis (FEA) for stress

calculations involve:

KQ = F (1)

where K denotes a global stiffness matrix; F denotes a vector
describing the applied load at each node; Q denotes the dis-
placement. K is assembled from elemental stiffness matrices
ke:

ke = AeBT DB (2)

where B is the strain/displacement matrix; D is the
stress/strain matrix; Ae is the area of the element. B and D are
determined by material properties and mesh geometry. Then
the local stiffness matrix ke will be assembled into the global
stiffness matrix. The displacement boundary conditions are
encoded into the global stiffness matrix K by operating on
the corresponding rows and columns. Various direct factor-
ization based or iterative solvers exist for the solution of Q.

After computing the global displacement using equation
(1), the nodal displacement q of each element, followed by
the stress tensor of each element:

σ = DBq (3)

where σ denotes the stress tensor of an element. Then, the
von Mises Stress of each element is computed using the 2-D
von Mises Stress form:

σvm =
√

σ2
x +σ2

y−σxσy +3τ2
xy (4)

where σvm is von Mises Stress; σx, σy, τxy are the normal and
shear stress components.

2.2 Deep learning on mechanical stress analysis
Most of the early attempts to use deep learning in speed-

ing up mechanical stress analysis focus on integrating the
models in a FEA software. These models are to solve
some auxiliary tasks including updating FEA model [20,21],
checking plausibility of a FE simulation [22], modeling the
constitutive relation of a material [23] and optimizing the nu-
merical quadrature in the element stiffness matrix on a per
element basis [24]. Liu et al. [25] combine a neural net-
work and a mechanical system which provides real-time data
for the neural network to lean nonlinear constitutive models.
These works alleviate the complexity of FEA softwares to
some extent. However, our approach can be used as a sur-
rogate model to a FEA software. It avoids the computation
bottlenecks in a FEA software and its computation cost could
be controlled by modifying the architecture.

Deep learning methods are proposed as surrogate mod-
els to approximate residual stress in girth welded pipes [13],
shear stress in circular channels [14] or stress in 3D trusses
[11]. These methods use manually assigned features to rep-
resent a fixed geometry or a part of the geometry. The deep
learning models will estimate a stress value based on the in-
put parameters. In our work, the deep learning method learns
to filter useful features and generates a representation for



each combination of the geometry, external load and bound-
ary condition. A decoder follows the data representation and
predicts a stress distribution on the geometry.

Liang et al. [10] have developed an image-to-image deep
learning framework as an alternative to predicting aortic wall
stress distributions by expanding aortic walls into a topo-
logically equivalent rectangle. Feng et al. [15] propose a
difference-based neural network for predicting the stress dis-
tributions in heterogeneous media. The network learns a
mapping between the difference of input geometry and ref-
erence geometry and the difference of stress distribution and
the reference stress distribution. Khadilkar et al. [12] pro-
pose a two-stream deep learning framework to predict stress
fields in each of the 3D printing process. The network en-
codes 2D shapes of each layer and the point clouds of 3D
models based on a CNN architecture and a PointNet [26].
Madani et al. [27] propose a transfer learning model to pre-
dict the value and position of the maximum von Mises stress
on arterial walls in atherosclerosis. Our model also use an
image-to-image translation model to estimate the stress dis-
tribution. Yang et al. [28] utilize an artificial neural network
to learn the yielding function of representative volume el-
ements which are used to solve boundary value problems.
Wang et al. [29] design a neural network based on CNN and
LSTM to capture the sequence of maximum internal stress
given fracture propagation and initial stress data. We utilize
image-based data representation on both the geometry and
the input conditions. Thus, our model can be used to analyze
arbitrary 2D stress distribution cases after proper training.

Most related to our work, Nie et al. [6] propose an end-
to-end convolutional neural network called StressNet to pre-
dict 2D stress distributions given multi-channel data repre-
sentations of geometry, load and boundary conditions of can-
tilever beams. The network contains three downsampling
convolutional layers, five Squeeze-and-Excitation ResNet
(SE-RES) blocks [30, 31] and three upsampling convolu-
tional layers. Each SE-RES block is composed of two con-
volutional layers and a SE block which utilizes a global pool-
ing and two fully connected layers to learn extra weights for
each channel. Skip connections are used in each block. 9x9
kernels are used in the first and last convolutional layer and
3x3 kernels are used in all remaining convolutional layers.
A dataset composed of 120,960 cases of cantilever beams
modeled using 32×32 meshes is generated by a linear FEA
software to train and evaluate the network. In our work, we
aim at analyzing high-resolution cases and use an adversar-
ial learning scenario additionally to capture features in stress
distributions. More importantly, all previous work of deep
learning methods in stress prediction focus on specific appli-
cation cases lacking variety in geometry, external load and
boundary conditions. Moreover, through testing our model
by geometries or conditions from unseen domain, we show
the potential of our deep learning model as a transfer learning
model for stress field predictions.

2.3 Generative adversarial networks
GANs are an example of generative models. They

model the training of a generative network as a two-player
minimax game where a generator G is trained to learn a dis-
tribution f with a discriminator D [32]. Both of them repre-
sent a differentiable function contolled by the learned param-
eters. In a conventional GAN, the generator G learns to map
a vector sampled from a latent space z ∼ pz(z) to the space
of ground truth samples. In the meantime, the discriminator
D learns to map a sample to a probability that predicts if the
presented sample is real or fake. The Nash equilibrium in
training is that the generator forms the same distribution as
the training data and the discriminator output 0.5 for all input
data [33].

cGAN is built upon the learning algorithm of GAN and
has been widely used to date [16–19]. cGAN develops a
method to control the mapping from input to output by con-
ditioning the standard generator G and discriminator D on
extra information. Figure 1 demonstrates the framework of
cGAN. Further, Isola et al. [16] propose a similar network for
image-based task such as image-to-image translation. In the
comparisons against networks plainly using MAE as a loss
function, it shows the superiority of using cGAN framework
in image-based tasks. Radford et al. [34] reinforce GAN’s
training stability by using all convolutional net [35], ReLU
and LeakyReLU activations and batch-normalization layers.

Fig. 1. Framework of cGAN. The generator G and discriminator D
are conditioned on information X . A latent vector Z and X compose
the input to G. D learns to tell whether its input regarding X is from
real samples Y or output of G.

Nie et al. [36] proposed a cGAN-based model called
TopologyGAN for topology optimization based on interme-
diate representations of the configurations such as stress field
and strain field. Farimani et al. [37, 38] propose a cGAN ar-
chitecture based on the network proposed by Isola et al. [16]
to learn models of steady state heat conduction, incompress-
ible fluid flow, and phase segregation. S. Lee et al. use GAN
in the prediction of unsteady flow over a circular cylinder
with various Reynolds numbers [39]. Paganini et al. [40]
use a revised DCGAN is developed to model electromagnetic
showers in a longitudinally segmented calorimeter. The deep
learning method speeds up the calculations by more than 100
times. K. Enomoto et al. utilize a DCGAN architecture for
cloud removal in climate images [41]. In the field of astron-
omy, GANs are used to generate images of galaxies [42, 43]
and 2D mass distributions [44]. In our work, we use the ar-
chitecture and learning algorithm introduced by Radford et
al. [34] and Isola et al. [16] to build our neural network for



stress field predictions cross varying input geometries and
boundary conditions.

3 METHOD
3.1 Neural Network Architecture

Fig. 2. Architecture of StressGAN. The generator (top) and the dis-
criminator (bottom) are constructed with downsampling blocks (blue)
and upsampling blocks (red). For the last upsampling block of the
generator (yellow), we remove the ReLU activation. The numbers
indicate channel dimensions of the output of each blocks. The pur-
ple triangle means a reshape layer followed by a linear layer and a
Sigmoid activation.

The architecture of StressGAN is shown in figure 2. We
design the generator as an encoder-decoder network that gen-
erates a feature vector with a size of 512 in the bottleneck.
The input of the generator is a case of conditions and ge-
ometry modeled by m×m meshes. Three m×m resolution
images are used to represent geometry, boundary conditions
and the applied load. To increase data intensity, we repre-
sent geometry and boundary conditions on one image. We
use numbers 0, 1, 2, 3, 4 in geometries to represent vari-
ous boundary conditions, where 0 is void, 1 means free solid
node, 2 means node affixed horizontally, 3 means node af-
fixed vertically, 4 means node affixed in both directions. The
remaining two images record magnitudes of vertical or hor-
izontal loads in the corresponding pixel. The output of the
generator is a m×m mesh describing the von Mises stress
distributions. The encoder is comprised of log2(m) down-
sampling blocks with a convolutional layer, a batch normal-
ization layer and a LeakyReLU layer. Similarly, the decoder
is comprised of log2(m) upsampling blocks with a deconvo-
lutional layer, a batch normalization layer and a ReLU layer.
When the network is trained and tested using the coarse-
mesh dataset, we remove four blocks close to the bottleneck
to keep the bottleneck representation of input conditions as a
512 feature vector. We remove the ReLU layer in the last up-
sampling block with the consideration that mechanics analy-
sis results other than von Mises Stress might contain negative

values. The convolutional layers and deconvolutional layers
both have kernel sizes as 5×5 and stride size as 2.

For the discriminator, we adopt a downsampling struc-
ture. The input is a stress distribution case described by
four m×m images including the fake or ground truth sam-
ple stress distribution and its conditions. The architecture
of the discriminator is fixed when experimented on differ-
ent datasets. It outputs a probability value which describes
whether the input analysis result is true regarding the condi-
tions and geometry. Four downsampling blocks are followed
by a reshape layer, a fully connected layer, and a Sigmoid
activation.

3.2 Loss function and metrics
Loss function Our loss function consists of an L2 dis-

tance loss and a cGAN objective function:

LL2(G) = Ex,y[||y−G(x)||2] (5)

where y is ground truth stress distributions; x stands for con-
ditions and geometries, G denotes the generator. Previous
work has shown that utilizing L2 distance (MSE) to train net-
works for predicting stress distributions works well. Thus,
we use L2 distance as a loss in StressGAN’s loss function.

The loss function of cGAN used in our model can be
expressed as:

minGmaxDV(G,D) = Ex,y[log(D(x,y))]+

Ex[log(1−D(x,G(x)))]
(6)

cGAN loss function shows the adversarial relationship
between the generator G and the discriminator D. Note that
in our cases where the network should output a particular
analysis result given the conditions and a geometry, we elim-
inate the Gaussian noise vector z which is usually an input of
the generator to add more variation to the output.

The final loss is:

minGmaxDV(G,D)+λLL2(G) (7)

where a hyperparameter λ is to balance the loss function fol-
lowing [16, 45].

Metrics In addition to MSE, four metrics are introduced
to assess the performance of StressGAN: mean absolute error
(MAE), mean absolute percentage error (MAPE), peak stress
absolute error (PAE) and peak stress absolute percentage er-
ror (PAPE). These four metrics, whether related to MSE or
not, are not an explicit goal of minimizing MSE. Using these
four metrics, we can provide an assessment of stress predic-
tion qualities.

Using MAE and a normalized version of MAE, MAPE,
helps evaluate the overall quality of a predicted stress distri-
bution. MAE is defined as:



MAE =
1
n

n

∑
j=1
|y j− ŷ j| (8)

where y j is the value at element j in a ground truth sample;
ŷ j is the estimated value at element j; n denotes the number
of elements of samples. MAPE is defined as:

MAPE =
MAE

max{Y}−min{Y}
×100% (9)

where Y denotes a set of all ground truth stress values in a
case; max{Y} is the maximum value in a set of ground truth
stress values Y ; min{Y} is the minimum value in a set of
ground truth stress values Y .

PAE and PAPE measure the accuracy of the most con-
siderable stress value in a predicted stress distribution which
is the most critical local value of stress distributions in engi-
neering applications. PAE is defined as:

PAE = |max{Y}−max{Ŷ}| (10)

PAPE is defined as:

PAPE =
PAE

max{Y}
×100% (11)

where Y denotes a set of all ground truth stress values in a
case; max{Y} is the maximum value in a set of ground truth
stress values Y ; Ŷ is the set of all predicted stress values in a
case; max{Ŷ} is the maximum value in a set of all predicted
stress values Ŷ .

4 Experiments
4.1 Dataset and implementation

Fine-mesh multiple structure dataset To provide a
broad evaluation of our network’s performance, we introduce
a stress distribution dataset composed of multiple structures,
each modeled as a 128×128 elements. The dataset is gener-
ated using a 2D FEM software SolidsPy [46]. All elements
in the domain is a 4-node quadrilateral with a size of 1× 1
(mm). Void regions are modeled using a Young’s modulus
of infinitesimal value. The dataset contains 60 geometries,
ten patterns of load conditions and eight patterns of bound-
ary conditions, in total, 38,400 instances. The shapes, load
conditions and boundary conditions are not limited to can-
tilever beams which are affixed on one end and bearing loads
on the other end. Samples of geometry, load and boundary
conditions are demonstrated in Figure 3. Also, for each load
pattern, the orientations of the loads can vary from 0 degrees
to 315 degrees with a step of 45 degrees. We normalize the

load magnitudes in the dataset to reduce the input space since
the linear characteristic of homogeneous and isotropic elas-
tic material results in a linear relationship between the loads
and the stresses.

Fig. 3. Data samples in fine-mesh dataset. a. Geometries. b.
Boundary conditions. c. Load positions.

Coarse-mesh cantilever-beam dataset The course-
mesh stress distribution dataset is proposed by our previous
work [6]. The dataset consists of six categories of geome-
tries, in total, 80 geometries. Examples of categories of ge-
ometry are shown in Figure 4. Load is applied on the right
end of the beam. The left end of the beam is fixed. For each
geometry, load orientation changes from 0 degrees to 355 de-
grees, in 5-degree increments. For each orientation, the load
magnitudes vary from 0N to 100N by a step of 5N. In total,
the dataset includes 120,960 instances with various shapes,
load orientations, and load magnitudes.

Fig. 4. Categories of geometry in coarse-mesh dataset. From left
to right: rectangular beam; rectangular beam with a cellular opening;
trapezoidal beam; trapezoidal beam with a cellular opening; beam
with parabola contours; beam with parabola contours and a cellular
opening

Implementation detail We train StressGAN using a
learning rate of 0.001 by the Adam optimizer [47] with a
batch size of 64. We use 10 or 100 as the value of λ in Stress-
GAN’s loss in the experiments with the fine-mesh dataset and
coarse-mesh dataset respectively. The learning rate, batch
size and λ are decided by the performances of the network
on a small portion of the training dataset which serves as
an evaluation dataset in a grid search on potential values.
In each training epoch, we train the discriminator once and
the generator twice to keep the training stable. In all ex-
periments, we use an NVIDIA GeForce GTX 1080Ti GPU.
Under our experiment setting, each case in fine-mesh dataset
take approximately 0.003 seconds to analyze.



4.2 Experiment Design
Entire dataset training and evaluation In this experi-

ment, we randomly divide both the fine-mesh dataset and the
coarse-mesh dataset into train/test sets of 80%− 20% split
respectively. We then train and evaluate StressGAN on the
datasets to demonstrate its effectiveness. Additionally, we
train and evaluate our baseline model StressNet under the
same scenario to compare their performances. In this experi-
ment setting, we would like to investigate the general predic-
tions capability of StressGAN.

Generalization training and evaluation To further
study StressGAN’s performances in general engineering sce-
narios such as unseen geometries or unseen applied loads,
we set three sub-experiments where training and test sets
belonging to different categories of geometry or load orien-
tation. The whole experiment is set based on coarse-mesh
dataset since it is easier to separate geometries into semantic
categories. In the first and second sub-experiments, we train
and evaluate the networks using samples from different ge-
ometry categories respectively. In the first sub-experiment,
we train the networks with samples in the categories of rect-
angular beams, trapezoidal beams, rectangular beams with
cellular openings and trapezoidal beams with cellular open-
ings, and evaluate the networks with beams with a parabola
contour. In the second experiment, we train the networks
using beams without holes and evaluate the networks using
beams with cellular openings. The third sub-experiment is to
study how the network performs when trained and evaluated
by cases with different load orientations. The load orienta-
tions are split up by quadrants. We randomly select loads in
three quadrants for training and use loads in the remaining
quadrant for testing. We normalize the load magnitudes in
all training and test datasets, which reduces the size of all
training datasets to less than 5000 samples.

5 RESULTS AND DISCUSSIONS
5.1 Entire dataset evaluation

We train and test our model using the fine-mesh dataset
with a split of 80% - 20%. Meanwhile, we train and test
StressNet on the same training and testing dataset. The eval-
uation results of the three networks are shown in Table 1.
The best performance under each metric is shown in bold.
StressGAN attains a MAPE of 0.21% and a PAPE of 1.47%,
which indicates StressGAN can produce accurate fine-mesh
stress distribution given complex cases. The training process
of StressGAN is plotted in Figure 5. The statistical accu-
racy of StressGAN on the test dataset is shown in Figure 6.
The most inaccurate predictions are shown in Figure 7. Even
with the highest MAPE, these predictions still provide use-
ful information. Table 1 shows that StressGAN outperforms
StressNet with a significant margin in all metrics. Figure 8
shows comparisons of the evaluation results of StressGAN
and StressNet. As shown in the visualizations, the predicted
stress distributions of StressGAN are sharper than the pre-
dictions of StressNet, especially around the edges of the void
versus material boundaries. Additionally, StressGAN’s pre-
dictions of the critical areas are comparatively more accurate.

Fig. 5. The training curve of StressGAN trained on fine-mesh
dataset.

Fig. 6. Statistical accuracy of StressGAN on fine mesh dataset. a.
MAPE of each sample and average MAPE on the test dataset. b.
PAPE of each sample and average PAPE on the test dataset.

We visualize the activation layers of a random sample
and test the discrimination of the discriminator. Figure 9
shows the output activation layers of the convolutional lay-
ers in the generator. From the figures in the upper row, it
can be clearly observed that the positions of boundary condi-
tions and external forces are highlighted by the filters, which
demonstrates the ability of the network to capture and trans-
fer input conditions. The figures in the bottom row provide
insights into how the network computes the stress distribu-
tion based on the encoded information. Ground truths and
predictions of test dataset are fed into the discriminator. The
average output of the discriminator given the ground truths
and predictions is 0.899 and 0.002, respectively. This shows
that the discriminator has learned the implicit features of
stress distributions. Even with test data, it is able to distin-
guish the ground truth distribution from the predicted ones.

Table 1. Quantitative evaluation of StressGAN and StressNet with
find-mesh dataset. The best result under each metric is shown in
bold. (Units: mm-MPa-N)

Metric MSE MAE MAPE PAE PAPE

StressGAN 77.31 1.83 0.21% 20.29 1.47%

StressNet 1120 10.88 1.20% 132.6 19.80%



Fig. 7. The predictions of StressGAN on fine-mesh dataset
with largest MAPE values. The MAPE value of each case:
a. MAPE=7.65%; b. MAPE=5.48%; c. MAPE=3.15%; d.
MAPE=2.99%; e. MAPE=2.76%; f. MAPE=2.72%; g. MAPE=2.66%;
h. MAPE=2.56%.

Fig. 8. Evaluation of StressGAN and StressNet on fine-mesh
dataset. Four evaluation cases are shown by each row. From left to
right: 1) Geometry (light blue) and boundary conditions (cyan: hor-
izontal, orange: vertical, red: vertical and horizontal); 2) horizontal
load positions; 3) vertical load positions; 4) predictions of StressGAN;
5) predictions of StressNet; 6) ground truths. The load magnitudes
of each case: 1) q(x) = 0.0N/mm2, q(y) = −88.4N/mm2;
2) q(x) = 125.0N/mm2, q(y) = 125.0N/mm2; 3) q(x) =
100.0N/mm2, q(y) = 0.0N/mm2; 4) q(x) = −68.8N/mm2,
q(y) = 0.0N/mm2. (Units: mm-MPa-N)

We also train and test our model using the coarse-
mesh dataset with a split of 80% - 20% of training and test
dataset. The evaluation results of StressGAN and StressNet
are shown in Table 2. With four layers removed, StressGAN
still outperforms StressNet under all metrics. In the qual-
itative evaluation, StressGAN generates high-quality stress
distributions, as shown in Figure 10.

Fig. 9. Output activation layers of the generator. The output activa-
tion layers of convolutional layers are shown to display the encoding
and decoding processes.

Table 2. Quantitative evaluation of StressGAN and StressNet with
coarse-mesh dataset. The best performance under each metric is
shown in bold. (Units: mm-MPa-N)

Metric MSE MAE MAPE PAE PAPE

StressGAN 0.13 0.19 0.14% 0.48 0.33%

StressNet 0.15 0.20 0.15% 0.50 0.37%

Fig. 10. Evaluation of StressGAN and StressNet on cantilever-
beam dataset. Four evaluation cases are shown by each row. The
visualizations of results of StressGAN and StressNet are identical
to the ground truth stress distributions. From left to right: 1) ge-
ometry (red); 2) predictions of StressGAN; 3) predictions of Stress-
Net; 4) ground truth stress distributions. The load magnitudes
of each case: 1) q(x) = 27.5N/mm2, q(y) = −47.6N/mm2;
2) q(x) = −43.0N/mm2, q(y) = 61.4N/mm2; 3) q(x) =
−3.5N/mm2, q(y) = 19.7N/mm2; 4) q(x) = −54.8N/mm2,
q(y) =−4.8N/mm2. (Units: mm-MPa-N)

5.2 Generalization evalution
We conduct generalization experiments to explore our

method’s performance in situations where the training
dataset is sparse and testing data contains unseen cases. We
include StressNet and StressGAN into this experiment to
compare their performances and demonstrate the character-
istics of each network. The parametric results of the three



experiments are shown in Table 3, 4 and 5. The best per-
formance under each metric is shown in bold. The selected
samples of prediction results are shown in figure 11, 12 and
13 respectively. In general, StressGAN gives a better perfor-
mance concerning the average prediction accuracy. The best
MAPEs in three experiments are 8.23%, 6.80%, and 1.49%
respectively, which are all obtained by StressGAN.

Table 3. Quantitative evaluation of StressGAN and StressNet with
training data of rectangular beams and trapezoidal beams and testing
data of beams with a parabolar contour. The best performance under
each metric is shown in bold. (Units: mm-MPa-N)

Metric MSE MAE MAPE PAE PAPE

StressGAN 28.91 2.80 7.50% 6.85 18.10%

StressNet 43.14 3.28 9.30% 12.55 38.39%

Table 4. Quantitative evaluation of StressGAN and StressNet in the
second sub-experiment with training data of beams without openings
and testing data of beams with cellular openings. The best perfor-
mance under each metric is shown in bold. (Units: mm-MPa-N)

Metric MSE MAE MAPE PAE PAPE

StressGAN 77.20 4.40 6.80% 16.96 24.10%

StressNet 95.36 4.59 7.54% 14.09 23.62%

Table 5. Quantitative evaluation of StressGAN and StressNet in the
experiment of cross-load direction training and evaluation. The best
performance under each metric is shown in bold. (Units: mm-MPa-N)

Metric MSE MAE MAPE PAE PAPE

StressGAN 3.71 0.84 1.49% 3.15 4.86%

StressNet 6.86 1.29 2.58% 6.72 11.66%

In the two cross-geometry experiments, we can study the
characteristics of StressGAN and StressNet including their
advantages and disadvantages. Figure 11 shows the visual-
izations of the ground truth stress distributions and predic-
tion stress distributions in the first cross-geometry experi-
ment. Although the contour information of the input geome-
tries is hard for StressGAN to capture, StressGAN outputs
stress distributions closer to the samples in the dataset, es-
pecially in the regions of high stresses. Additionally, it gen-
erates a sharper (less blurred) prediction. Figure 12 shows
similar trends for the second cross-geometry experiment. On
the one hand, StressGAN failed to predict stresses around the
openings correctly. On the other hand, StressGAN generates
more reasonable stress distributions which are more similar
to the ground truth samples. Additionally, StressNet could

Fig. 11. Evaluation of StressGAN and StressNet on cases of dif-
ferent contours. Four evaluation cases are shown by each row.
From left to right: 1) geometry (red); 2) predictions of StressGAN;
3) predictions of StressNet; 4) ground truth stress distributions. The
load magnitudes of each case: 1) q(x) = −5.7N/mm2, q(y) =
−8.2N/mm2; 2) q(x) = 10.0N/mm2, q(y) = −0.9N/mm2;
3) q(x) = −7.7N/mm2, q(y) = 6.4N/mm2; 4) q(x) =
5.0N/mm2, q(y) = 8.7N/mm2. (Units: mm-MPa-N)

recognize the openings and predict zero stresses in void ar-
eas in some test cases. Since cellular openings have a con-
siderable influence on stress concentrations and the networks
have no explicit training on this phenomenon, large errors
occur when we evaluate the predicted largest stress values as
shown in Table 4.

The results of the cross-orientation experiment are
shown in Figure 13. The output stress distributions from
StressGAN are quite similar to the ground truths. From Ta-
ble 5, it can be seen that among the three generalization ex-
periments, the cross-orientation experiment attains the best
evaluation results. Since we use two images to express the
load positions and magnitudes along with the horizontal and
vertical directions respectively, the deep learning method has
a potential to learn the influence of the horizontal and verti-
cal loads from the training dataset separately (essentially, the
principle of superposition by exploiting the linear nature of
FEA) and synthesize reasonable results when tested on un-
seen load orientations. This is especially useful in compress-
ing the size of the training dataset for data efficiency without
significantly increasing the error rate.

6 CONCLUSION
In this work, we develop a conditional generative adver-

sarial network called StressGAN for von Mises stress dis-
tribution prediction. StressGAN learns to predict the stress
distribution given the geometries, load, and boundary condi-
tions through a 2-player minimax game between its genera-
tor and discriminator. A fine-mesh stress distribution dataset



Fig. 12. Evaluation of StressGAN and StressNet on cases of
cantilever beams with cellular openings. Models are trained with
cantilever beams with openings and tested with cantilever beams
without openings. Four evaluation cases are shown by each
row. From left to right: 1) geometry (red); 2) predictions of
StressGAN; 3) predictions of StressNet; 4) ground truth stress
distributions. The load magnitudes of each case: 1) q(x) =
1.7N/mm2, q(y) = 9.8N/mm2; 2) q(x) = −7.7N/mm2,
q(y) = 6.4N/mm2; 3) q(x) = 10.0N/mm2, q(y) = 0.9N/mm2;
4) q(x) =−9.1N/mm2, q(y) = 4.2N/mm2. (Units: mm-MPa-N)

composed of 38,400 cases of various geometries, load, and
boundary conditions is proposed for evaluating the network’s
performance on complex stress prediction cases. In addition,
a coarse-mesh dataset, which is proposed in our previous
work, is used to fairly compare StressGAN with the baseline
model.

StressGAN achieves high accuracy in both experiments
under multiple metrics, in evaluations of the two datasets.
StressGAN outperforms the baseline model in predicting the
stress distributions under different scenarios. It achieves an
average error rate less than 0.21% on all stress values and
1.47% on the maximum stress value when evaluated on com-
plicated configurations and an average error rate less than
0.14% on all stress values and 0.33% on the maximum stress
value when evaluated on cantilever beams.

Moreover, StressGAN’s performance under general sce-
narios is studied. StressGAN generates stress distributions
more similar to samples in the dataset which shows it is a
more effective learner in capturing the underlying knowledge
of ground truth stress distributions. Furthermore, StressGAN
is more efficient when facing unseen conditions. Although
some cases that lead to stress concentration such as holes
in geometries result in inaccurate predictions from Stress-
GAN, the computed stress distributions still embody useful
information such as the location of the highly stressed re-
gions. The stress distributions are more similar to ground
truths compared to the baseline method regardless of the con-

Fig. 13. Evaluation of StressGAN and StressNet on cases of dif-
ferent load orientations. This figure shows six evaluation cases
of StressGAN and StressNet when trained and tested with load
conditions in different quadrants. From left to right: 1) ge-
ometry; 2) predictions of StressGAN; 3) predictions of Stress-
Net; 4) ground truth stress distributions. The load magnitudes
of each case: 1) q(x) = −4.2N/mm2, q(y) = −9.1N/mm2;
2) q(x) = −4.2N/mm2, q(y) = −9.1N/mm2; 3) q(x) =
−3.4N/mm2, q(y) = −9.4N/mm2; 4) q(x) = −7.7N/mm2,
q(y) = −6.4N/mm2. 5) q(x) = −3.4N/mm2, q(y) =
−9.4N/mm2. 6) q(x) = −4.2N/mm2, q(y) = −9.1N/mm2.
(Units: mm-MPa-N)

ditions. In contrast, our baseline model StressNet is better at
correctly estimating zero stresses in void areas but produces
overall less accurate stress distributions under the same prob-
lem inputs. Furthermore, both StressGAN and StressNet per-
form well given unseen load orientations compared to the
cases where unseen geometries are involved.

In this work, the potential of generalizing the stress pre-
diction ability to different categories is shown in generaliza-
tion experiments. These findings constitute a step toward
generating data-driven analysis approaches that can gener-
alize well to previously unseen problem configurations.

7 LIMITATIONS AND FUTURE WORK
The generalization experiments show that, solving new

configurations is a difficult problem for StressGAN. A po-
tential reason is that our dataset is not sufficient, as the con-



figurations and stress distributions are in high dimensional
space, which requires a large number of samples to repre-
sent the whole distribution. To address the bottleneck, one
solution is to sample more configuration-stress fields pairs
and improve the capacity of our neural network. However,
sampling of high dimensional space can be costly. A com-
plement is to tap into an unsupervised learning and semi-
supervised learning methods. How to use these methods in
training a surrogate model for mechanics problems is a key
point.

Our future work will also involve building surrogate
models for more practical mechanical problems such as non-
linear problems and 3D model analysis. The current model
focuses on stress distribution problems of homogeneous and
isotropic elastic materials. Stress analysis of complex cases
is still a challenge to existing physics-based models in terms
of computational cost and accuracy [48] while for an end-to-
end neural-network-based model, the time complexity of ap-
proximation remains constant. Nevertheless, the complexity
of the problem makes it necessary to come up with efficient
data sampling methods in simulation and wise utilization of
real experimental data.
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