
Proceedings of the ASME 2022 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2022
August 14-17, 2022, St. Louis, USA

DETC2022/CIE-91209

SCALAR FIELD PREDICTION ON TOPOLOGICALLY-VARYING GRAPHS USING
SPECTRAL SHAPE ENCODING

Kevin Ferguson
Visual Design and Engineering Lab

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

James Hardin, Andrew Gillman
Air Force Research Lab

WPAFB, Ohio 45433

Levent Burak Kara∗

Visual Design and Engineering Lab
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

ABSTRACT
Scalar fields, such as stress or temperature fields, are of-

ten calculated in shape optimization and design problems in en-
gineering. For complex problems where shapes have varying
topology and cannot be parametrized, data-driven scalar field
prediction can be faster than traditional finite-element meth-
ods. However, current data-driven techniques to predict scalar
fields are limited to a fixed grid domain, instead of arbitrary
graph/mesh structures. In this work, we propose a method to
predict scalar fields on meshes of arbitrary refinement and topol-
ogy. It uses features that capture shape geometry on a local
and global scale as input to a multilayer perceptron to pre-
dict solutions to partial differential equations on graph data
structures. The proposed set of global features is a vector
that concisely represents the entire mesh as a spectral shape
encoding. The model is trained on finite-element von Mises
stress fields, and once trained it can estimate stress values at
each node on any input mesh. Two shape datasets are investi-
gated, and the model demonstrates decent performance on both,
with a median R-squared value of 0.75. We also demonstrate
the model’s performance on a temperature field in a conduc-
tion problem, where its predictions have a median R-squared
value of 0.98. By predicting from a simple, yet rich, set of
mesh features, our method provides a potential flexible alterna-
tive to finite-element simulation in engineering design contexts.
Code and datasets are available at: https://github.com/
kevinferg/spectral-shape-encoding.

∗Address all correspondence to lkara@cmu.edu

INTRODUCTION
Geometry-based optimization and design problems are

prevalent in engineering. Engineers frequently must design the
shape of a part, then perform an analysis on the part to deter-
mine what aspects of the design should be modified. This iter-
ative process is well-established [1], but it is often inhibited by
the slow speed of the analysis stage, which requires setting up
a finite-element simulation, assigning all of the necessary mate-
rial properties, boundary conditions, loads, and other parameters,
and waiting for a finite element software to mesh the geometry,
assemble stiffness/load matrices, and solve for the requested val-
ues. Techniques to streamline this process are often sought-after
in engineering design settings [2, 3].

One tool that would expedite the design process is a fast
way to locate weaknesses in candidate designs, as this would let
an engineer save expensive computer analyses for a more final-
ized design. Data-driven scalar field prediction methods solve
this problem by predicting desired quantities at every point in a
particular domain. In the case of shape design, for example, this
may take the form of predicting a failure probability or equiva-
lent stress at every node in the part’s mesh. The task is not trivial,
as small geometric changes can result in drastic field changes.
However, by training across many examples, data-driven meth-
ods can learn physical phenomena, forming surrogate models
that can predict finite-element results [4, 5, 6, 7, 8].

Nie et al. [6] and Jiang et al. [7] propose deep-learning meth-
ods that solve for stress fields under varying geometries, bound-
ary conditions, and loads. However, these approaches are image-
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based, so all inputs, including geometry, are encoded as binary
image representations. This approach lacks the flexibility of a
mesh or graph data structure, significantly limiting the method’s
application, as the resolution of every shape is fixed to a single
grid of pixels.

Qi et al. [9, 10] present methods for point cloud classifica-
tion and segmentation. Point cloud segmentation is similar to
scalar field prediction, and the method has been used by Kashefi
et al. [11] for the same purpose. One requirement of this strategy
is that each point cloud must have the same number of points –
a more desirable solution for scalar field prediction can take any
mesh as input, whether or not it shares topology or number of
points with any other mesh. Mesh segmentation techniques have
shown good results on segmenting 3-D datasets [12, 13], provid-
ing evidence that predicting scalar fields on structures should be
a feasible task.

A popular approach to solve similar problems is to use a
graph neural network (GNN) to make predictions on nodes of a
graph [14, 15]. These often make use of “message-passing” by
iteratively aggregating graph neighborhood information at each
node along graph edges, to learn representations of local graph
structure – these are then used for predicting node embeddings
(such as scalar fields). GNNs for physics predictions are used
more often for computing updates of dynamic simulations than
for predicting static scalar values [16]. More recently, Meyer
et al. [17] perform direct-time GNN predictions for Computa-
tional Fluid Dynamics (CFD), which is more comparable to the
scalar field prediction we wish to investigate. GNNs are powerful
in that input graph topology can be arbitrary – however, with a
large graph or fine mesh, the depth of these networks needs to be
very high, leading to substantial computational expenses [18,19].
Furthermore, GNNs tend to over-smooth solutions, and there-
fore may be less apt for predicting fields with steep spatial gradi-
ents [20].

Some other data-driven scalar field prediction methods com-
bine finite element methods with machine learning methods
[21, 22], but these models requires performing a modified finite-
element simulation as part of the prediction, when a pure surro-
gate model is preferred.

In this paper we also explore dimensionality reduction for
2-D geometries. Lower-dimensional representations of 3-D sur-
face meshes are commonly used in computer graphics applica-
tions [23, 24]. Guo et al. [25] represent 2-D designs in a latent
space using a Variational Autoencoder (VAE) for topology op-
timization. Liang et al. [26] use Principal Component Analy-
sis (PCA) to represent human aorta meshes as vectors to predict
stress fields. These representations are learned across a dataset;
the representation we propose can be computed more generally
for any shape.

In this work, a model that predicts the Von Mises stress field
in a static structural problem for a mesh of arbitrary topology
by training on the results of many finite-element simulations is

FIGURE 1. THE 2-D PROBLEM OF INTEREST: COMPRESSION
OF ALUMINUM PART WITH VARIABLE INTERNAL GEOMETRY

described. We propose a set of features that can capture local
geometry at each node; next we define a unique method, spec-
tral shape encoding, for representing an arbitrary geometry on a
domain as a vector of fixed length. The model takes both local
and global features, as well as nodal coordinates and a signed
distance field, to make a prediction of stress at each node using a
multilayer perceptron.

We demonstrate the model’s performance on two large shape
datasets. The R2 values of predictions for meshes in the training
set, as well as for previously unseen meshes, are shown and the
predicted fields are visualized. We then validate the method on a
heat transfer problem and investigate possible weaknesses in the
model.

The paper’s main contributions are:

1. A public dataset of 2-D shapes with complex internal ge-
ometries, which cannot be easily defined by a small set of
parameters

2. A unique dimensionality reduction technique for 2-D ge-
ometries using spectral decomposition of a signed distance
field

3. A method for making node-wise scalar field predictions on
meshes of any resolution using a set of local features and
global features

TECHNICAL APPROACH
Problem

As a test problem, we investigate at a 2-D plane-strain sce-
nario where a distributed load is applied to the top of an alu-
minum square domain that has a fixed bottom boundary, in which
the goal is to predict von Mises stress. The details and dimen-
sions of this problem are depicted in Fig.1. The material and
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dimensions chosen are arbitrary; we assume that predicting the
von Mises stress field for this 2-D problem will yield results of
similar quality to other physical fields without loss of generality.
Stress fields exhibit steeper spatial gradients than, for example,
temperature fields, and should therefore be more challenging to
predict. (To back up this claim, we will also show our model’s
performance on a heat transfer problem in the Results section.)
Additionally, the von Mises stress field has immediate practi-
cal relevance to engineering design problems, as comparing von
Mises stress with material strength is commonly used to deter-
mine whether yielding will occur [27]. Note that the geometry
on the interior of the square domain varies, as predictions will be
made on different meshes.

Datasets
Scalar field prediction models were trained for two 2-D

shape datasets, which will be referred to as the “Voronoi Set”
and the “Lattice Set.” Figure 2 depicts an example mesh from
each, along with their finite-element von Mises stress field solu-
tions. The datasets were designed such that interior geometries
would have varying topology and drastically different qualitative
features. In an engineering design setting, freedom to laterally
explore large design spaces like those in these datasets is desir-
able. For both datasets, a small set of parameters is not sufficient
to fully describe the variation across meshes. Furthermore, the
scalar fields that can exist on these complex geometries are not
trivial to predict, making these datasets a good testbed for ex-
amining the strength of the proposed features. There is not a
one-to-one correspondence between any pair of meshes in either
dataset – the graph structures can be fully arbitrary.

Kou and Tan [28] describe a method for generating porous
structures by computing B-spline curves whose control points
are vertices of Voronoi cells in a 2-D domain, and then randomly
merging these curves to become pores. The Voronoi Set is in-
spired by this method; first, a set of points are randomly sampled
from a square domain and Voronoi cell boundaries are computed.
A buffer around each cell boundary is generated in order to con-
trol the wall thickness between the pores, after which Laplacian
smoothing [29] can be performed to round the corners. The
method is illustrated in Fig.3. In addition to the random point
coordinates, three parameters control this dataset: the number of
holes, wall thickness, and degree of smoothing. In the Voronoi
Set, the parameter ranges are: 3-4 holes, wall thickness from
0.10-0.18, and smoothing degree from 1-20.

The Lattice Set has a more straightforward creation process.
Points are randomly selected from a square lattice, and polygonal
pores are generated at these points. The polygons have between
3 and 6 sides. Here, the three parameters are number of holes,
lattice grid size, and degree of smoothing; all other factors – hole
placement, size, type, and orientation – are random. In the Lat-
tice Set, parameter ranges are: 4-8 holes, lattice size from 3× 3

FIGURE 2. EXAMPLES OF MESHES AND STRESS FIELDS IN
THE VORONOI SET (TOP) AND LATTICE SET (BOTTOM)

FIGURE 3. GENERATING THE VORONOI SET: 1. RANDOM
POINT SELECTION; 2. VORONOI TESSELLATION; 3. CREATING
PORES; 4. SMOOTHING

to 4×4, and smoothing degree from 1-15.
Each dataset is split into three groups: training, testing, and

out-of-sample. We train each model on its respective training set,
and test the models on the testing sets to examine overfitting and
generalization beyond the training set. The out-of-sample sets
consist of geometries where one parameter has values outside
of the range it had in the training/testing sets. For the Voronoi
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FIGURE 4. THE PROPOSED MODEL, AN MLP THAT PERFORMS A SCALAR PREDICTION AT EACH MESH NODE, USING THE NODE
COORDINATES, A SIGNED DISTANCE FIELD, A SET OF LOCAL FEATURES, AND A SET OF GLOBAL FEATURES

Set, this parameter was wall thickness, and for the Lattice Set,
this parameter was hole count. Testing each model on out-of-
sample meshes will help determine how significantly the pro-
posed method is able to extrapolate beyond the geometries seen
during training. The Voronoi Set contains 800 training, 200 test-
ing, and 200 out-of-sample meshes, while the Lattice Set has
800, 200, and 160 respectively. We train one model on each
dataset, and another model on the Combined Set, which contains
all Lattice and Voronoi geometries.

Finite-element solutions were computed using MATLAB’s
PDE toolbox [30] to solve for Von Mises stress for the posed
problem on each geometry.

Model
To perform a scalar field prediction for the problem posed

in Fig.1, the model must take in a mesh as input and output a
set of node-wise predictions. In particular, we propose a multi-
layer perceptron (MLP) that is evaluated on each node of the
mesh separately. As input, the MLP takes in the coordinates of
the given node, its signed distance field value, a set of local fea-
tures describing the geometry near the node, and a set of global
features describing the complete geometry. The local features
are convolutional feature maps interpolated to each node. The
global features, a “spectral shape encoding” are a set of coeffi-
cients representing the geometry. Figure 4 gives an illustration
of the full predictive model; details on local and global features
are in the sections to follow.

FIGURE 5. SIGNED DISTANCE FIELD (SDF) FOR TWO GE-
OMETRIES; SMALLER VALUES ARE BLUE, LARGER VALUES
ARE RED

Signed Distance Field We compute several quantities
at each node to serve as local features. First, x- and y-coordinates
of a node are fed into the model, as these identify a node’s loca-
tion within a mesh. Another relevant quantity we input is the
nodal Signed Distance Field (SDF) value. The SDF of a shape
has a magnitude equal to the distance to the nearest boundary,
and is positive for points on the interior of the geometry, nega-
tive for external/void regions, and 0 on the boundary [31]. On
an arbitrary domain, the SDF can be represented as a solution
to the Eikonal equation [32], which can be computed efficiently
through the fast marching method [33]. Figure 5 shows a visu-
alization of the SDF for one shape in the Voronoi Set and one in
the Lattice Set. The “distance to a boundary” is a useful value for
representing geometry locally, and as such, similar metrics are
frequently used in image processing applications [34]. Hence,
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FIGURE 6. COMPUTING GLOBAL FEATURES – A SPECTRAL SHAPE ENCODING – FROM THE SIGNED DISTANCE FIELD OF A
GRAPH

we use SDF as a distinct nodal feature for scalar field prediction,
along with x and y coordinates.

Local Features In addition to the node coordinates and
SDF, both of which carry information about a node with respect
to the part, we propose local features that contain information
about the region surrounding each node. We consider these sep-
arately from the coordinates and SDF because instead of being
pre-computed, they will be produced during model evaluation by
performing convolution on image representations of the geome-
try.

In image classification and segmentation problems, machine
learning solutions typically employ convolution to learn filters
that produce useful local image features [35, 36]. However, un-
like these applications, we want to predict scalar values at each
node, not on a grid of pixels. Computation of local features there-
fore requires first performing convolution on input geometric im-
ages, and then interpolating the resulting feature maps to each
node.

To start, we define two geometric images: the SDF image,
found by sampling the SDF on grid coordinates, and a binary
image, which is the same size as the SDF image, but has the
value 0 in void regions and 1 on the geometry. In theory, the SDF
image alone contains enough information to reproduce the binary
image; however, to aid in learning high-quality feature maps, we
provide both as inputs with slight redundancy. An example of
each is included in Fig.4.

We perform image convolution using these two images as in-
put channels. For our implementation, all convolutions use 5×5
kernels, zero-padding 2, and stride 1, starting with 32×32 input
images. The output of the convolution is a set of feature maps,
which serve as local features, because the convolutions operate
on the local neighborhood of each pixel. Therefore, we found
that we can use these feature maps directly, without applying
non-linearities using multiple layers of convolution.

To transform these local feature maps into a set of local fea-

tures defined at each node, we interpolate each of them to the
coordinates of each node. Any differentiable image interpolation
scheme can be used for this [37], but we achieved good results
with third-order Hermite interpolation.

Global Features As the model is simply an MLP eval-
uated at each node of a mesh, the local features of the node are
not enough to make a prediction. A predictive model will need a
description of the global geometry in addition to local features,
in order to put a given node in full context. The set of global
features proposed here is a spectral shape encoding. The goal is
to have a fixed-length vector description of the entire geometry
that can be inputted to the neural network as a set of additional
features at each node.

We propose a two-step method to accomplish this: 1. Sam-
ple the SDF on a common graph, and 2. Perform a spectral de-
composition of the graph. The method begins with the SDF be-
cause this field encodes the location of the boundary by default
(its value is zero on boundary points, and it takes on a positive
value at nodes within the geometry). By sampling points on the
SDF corresponding to locations of nodes on a common graph,
in this case a grid of size 16 × 16 with connections to near-
est neighbors and along diagonals, an essentially image-based
thumbnail representation of the geometry is obtained. However,
the prediction is not performed in this coarsely-sampled space,
since the resolution of the original mesh still must be maintained
– Instead, the sampled SDF serves to generate a global shape
descriptor that has consistent size across meshes with disparate
node counts. Generation of a spectral shape encoding using this
two-step process is illustrated for one geometry in Fig.6.

Next, we perform a spectral decomposition of this field on
the common graph. A spectral decomposition is a method for
representing a scalar field not as a set of nodal values, but as a set
of coefficients. First, a Laplacian matrix of the graph is computed
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FIGURE 7. RECONSTRUCTION OF FIELD ON A 10× 10 GRID
USING SPECTRAL COEFFICIENT VECTORS OF LENGTH k

according to:

Li j =


−1

edge length if there exists edge i j

0 if there is no edge i j
−∑i ̸= j Li j if i = j

, (1)

which describes the connectivity within the graph in matrix
form [38]. Laplacian matrices like this are often used for dimen-
sionality reduction of graph structures.

By computing the eigenvectors E = [eee1 eee2 . . . eeeN ] of this
matrix, any scalar field can be represented as a weighted sum of
the eigenvectors eeei [39]. As a matrix equation, this means for a
scalar field yyy,

yyy = E ccc (2)

for some vector of weight coefficients ccc. In this case, ccc can
be computed directly by inverting E and multiplying by y. How-
ever, the eigenvectors corresponding to the smallest eigenvalues
contain the most useful low-frequency information, an idea of-
ten applied in spectral clustering [40, 41], so we can truncate E
into the matrix Ẽ, containing only the k smallest eigenvectors,
i.e. Ẽ = [eee1 eee2 . . . eeek], where yyy ≈ Ẽ ccc. Now, the unknown
vector ccc has length k, yet it still can be used to reconstruct the
original scalar field yyy in a least-squares sense by solving:

ccc∗ = argmin
ccc

k

∑
i=1

(
(Ẽccc)i − yyyi

)2
. (3)

.
This solution can be obtained using gradient descent, ma-

trix factorization, or, for small ccc vectors, pseudo-inverse (ccc =(
E⊤E

)−1 E⊤ yyy). Even without the full-length ccc vector, recon-
struction using Eqn.2 gives a qualitatively good reconstruction
of the target field, which we demonstrate for an arbitrary field on
a 10×10 grid in Fig.7.

The spectral shape encoding vector ccc is computed once for
a graph, and the whole vector is appended to the set of features
at each node, to serve as a global shape description, before it is
plugged into the model.

FIGURE 8. LOSS DURING EACH EPOCH OF TRAINING FOR
ALL MODELS

Training Details
The MLP contained 3 layers of 128, 128, and 96 hidden

neurons, respectively, and used the ReLU activation function at
each hidden layer. For the local features, 16 feature maps were
computed from an SDF resolution of 32× 32. A spectral shape
encoding of length 50 is used for the global features at each node,
from a common grid of size 16×16.

Each model was trained for 50 epochs using the Adam opti-
mizer [42] in PyTorch [43]. Technically, the final MLP evaluates
on each node individually, but we pass in each mesh during train-
ing as a mini-batch, which should induce more efficient training
than pure stochastic gradient descent [44]. Each epoch is there-
fore a randomly-ordered pass through all training set meshes, in-
putted batch-wise into the model, one by one. Loss is the mean-
squared error (MSE) in von Mises stress prediction across the
entire mesh, given by

L(σσσ , fff ) =
1
n

n

∑
i=1

(σi − fi)
2 (4)

where σi is the ith element of ground truth field values σσσ , fi
is the ith element of predicted field values fff , and n is the num-
ber of nodes in the mesh. Because this loss function operates
across all nodes, it may be preferred over a loss function that
averages across pixel/voxels. It penalizes incorrect predictions
without compromising resolution of fine details, and it allows ar-
eas of low node density to be considered less important to the
final prediction.

Figure 8 shows the convergence of loss during training for
both datasets. Note that although there is some difference be-
tween training and validation loss, both exhibit convergence. Be-
tween datasets, however, the model trained on the Lattice Set
converged to a smaller loss than the Voronoi Set model. This
may indicate that our method performs better on certain types
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FIGURE 9. DISTRIBUTIONS OF R2 FOR THE MODEL
TRAINED ON THE COMBINED SET

of shapes than others. However, the typical magnitude of von
Mises stress fields was lower for meshes in the Lattice Set than
for the Voronoi Set. Hence, a comparison of MSE values may
be misleading, so we instead look at R2 for comparable model
evaluation.

Training a single model on the Combined Set took 42 min-
utes on an Intel Core i7-11700 CPU. Generating a 2000-mesh
finite-element stress dataset in MATLAB took approximately 13
minutes. Using the model to predict all 2000 stress fields takes 12
seconds. Thus, once trained, using the model as a finite-element
method surrogate results in about 65× speedup, a figure which
will likely be more drastic for a field that requires a more inten-
sive simulation to compute.

RESULTS AND DISCUSSION
Here we present our results for stress field predictions, be-

fore investigating the contributions of local and global features,
demonstrating the model’s upsampling ability, and finally veri-
fying that it can make predictions of another field (steady-state
temperature).

Stress Field Prediction
Because some structures result in much higher peak stresses

than others, in this section we compare models using the R2

goodness-of-fit measure [45],

R2 = 1− ∑
n
i=1 (σi − fi)

2

∑
n
i=1 (σi −σ)2 , (5)

where σi is the ground truth field value at node i, σ is the
mean of all ground truth field values, fi is the predicted field
value at node i, and n is the number of nodes in the mesh. To

Dataset
Median R2

Training Testing Out-of-sample

Voronoi Set 0.850 0.784 0.635

Lattice Set 0.887 0.866 0.843

Combined Set 0.780 0.748 0.637

TABLE 1. MEDIAN R2 FOR STRESS PREDICTIONS ON
VORONOI, LATTICE, AND COMBINED DATASETS

supplement an R2 value, we will also plot predicted-vs-actual
stress for several examples. A good model will have an R2 value
close to 1 and a predicted-vs-actual plot that is approximately
linear with a slope 1 and y-intercept 0.

Figure 9 is a box-and-whisker plot showing the spread of R2

values for the model trained on the Combined Set. The plot has
several outliers (shown as circles), but the typical R2 values are
close between the training and testing sets. This indicates that a
trained model can be expected to perform roughly the same on
geometries in the training set as it can on a random geometry
generated with the same parameters. Out-of-sample evaluation
reveals that our model may struggle to capture geometries that
significantly differ from those in the training set. For reference,
the median values of R2 on all three partitions of both datasets
are tabulated in Tab.1.

A testing set median R2 of 0.748 for the model trained on
the Combined Set demonstrates that each model has good overall
performance, although there is room for further improvement to
be made. Interestingly, there is not a significant decrease in pre-
diction quality for the model trained on both Voronoi and Lattice
sets, compared to the models trained on the individual datasets.
This reveals that a single model can indeed make predictions for
multiple types of shapes, and it will be limited mainly by the
diversity of shapes in its training dataset.

Figure 10 shows the predicted field, ground truth field, error,
and predicted-vs-actual plots for the best-case, median case, and
the worst-case graphs in the testing sets for both shape datasets–
these graphs have not been seen during training, but are gener-
ated using the same parameters.

A typical prediction captures the qualitative behavior of the
stress field, accurately predicting the locations of the peak stress.
For example, all four predictions shown in Fig.10 have high-
stress locations that closely match their corresponding locations
on the ground truth mesh, although their values may not match
perfectly.

Individual contributions of local and global features
To examine the contributions of local and global features, we

trained additional models on the Combined Set: models whose
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FIGURE 10. STRESS PREDICTION, GROUND TRUTH, ERROR, AND PREDICTED-VS-ACTUAL PLOTS FOR TESTING SET MESHES ON
WHICH THE MODEL PERFORMED (FROM TOP TO BOTTOM): 1. BEST; 2. NEAR-MEDIAN, VORONOI; 3. NEAR-MEDIAN, LATTICE; 4.
WORST. STRESS VALUES ARE IN 104× PASCALS.

inputs only contain a subset of the inputs to the MLP. That is, we
trained one model without any local features, one model without
global features, and one model without node coordinates or SDF.
By comparing the R2 values, we can intuit how much each set of
features impacts model predictions. This process lets us verify
the efficacy of the spectral shape encoding as a global feature

vector for the two datasets. Table 2 shows the median R2 values
across both testing datasets for the models described.

Overall, models with either local features or global features,
perform markedly worse than a model trained with both. Clearly,
both features are essential to achieving maximum performance.
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FIGURE 11. PREDICTION, GROUND TRUTH, ERROR, AND PREDICTED-VS-ACTUAL PLOTS FOR COARSE (TOP) AND FINE (BOT-
TOM) MESHES. STRESS VALUES ARE IN 104× PASCALS.

Input Features Median R2

(x,y, SDF) Local Global Test Train Out

✓ ✓ - 0.650 0.638 0.540

✓ - ✓ 0.544 0.525 0.353

- ✓ ✓ 0.684 0.663 0.529

✓ ✓ ✓ 0.780 0.748 0.637

TABLE 2. MEDIAN R2 FOR TRAINING, TESTING, AND OUT-
OF-SAMPLE SETS, FOR MODELS TRAINED WITH DIFFERENT
INPUT COMBINATIONS ON THE COMBINED SET

Upsampling to a higher mesh resolution
We claim that the mesh-independence of our method enables

a model trained on a coarse-resolution mesh to make a prediction
on a fine-resolution mesh without any additional training. After
all, the model performs separate predictions for each node, and
each node has a set of features, the spectral shape encoding, that
describes the entire geometry regardless of mesh refinement. Th
local features similarly have no dependence on mesh resolution.
On the original datasets, the maximum edge length on each mesh
was set to 0.025m. Generating a mesh on the Voronoi Set with a

maximum edge length of 0.01m (roughly 6 times as many nodes
per mesh), we can make a stress field prediction on the finer mesh
because interpolation is built into the network for computation
of local features. Figure 11 shows a visualization of a coarse
and fine mesh for the same Voronoi geometry, evaluated by the
model trained on the Combined Set. Note that the field generated
is similar for both, demonstrating the interpolation capabilities of
our method.

While we cannot expect that training only on coarse meshes
will enable the model to make predictions on fine meshes ac-
curately (this is not comparable to a mesh convergence study),
this analysis demonstrates the flexibility that the method offers.
Once trained for a physical problem, an engineer can use any
mesh generation technique and any mesh resolution, and the
model will make a prediction according to the physical problem
on which it was trained.

Alternate scalar field: Predicting temperature
We have posited that by demonstrating on a von Mises stress

field, results of predicting scalar fields in other engineering disci-
plines will be similar. As an example, we will also show that our
method is effective at predicting a temperature field in a steady-
state heat transfer scenario. We therefore pose another problem
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FIGURE 12. TEMPERATURE FIELD PREDICTION, GROUND TRUTH, ERROR, AND PREDICTED-VS-ACTUAL PLOTS FOR NEAR-
MEDIAN PREDICTIONS ON VORONOI (TOP) AND LATTICE (BOTTOM) TESTING SETS. TEMPERATURE VALUES ARE IN ◦C.

Dataset
Median R2

Training Testing Out-of-sample

Voronoi Set 0.987 0.980 0.941

Lattice Set 0.988 0.986 0.976

Combined Set 0.983 0.980 0.958

TABLE 3. MEDIAN R2 FOR TEMPERATURE PREDICTIONS ON
VORONOI, LATTICE, AND COMBINED DATASETS

on the same 2-D domain: The part has the thermal conductiv-
ity of aluminum, and all four outer boundary walls have a fixed
temperature constraint of 0 ◦C. Each pore now acts as a heat
source with constant heat flux 100 W/m2. We assume unit part
thickness. These quantities are once again chosen arbitrarily, and
although they result in very low temperature values across the
mesh – from 0 ◦C to about 0.6 ◦C – the distribution has enough
variation that we can still judge whether our method is capable
of predicting a temperature field.

Table 3 contains the temperature prediction R2 values for all
three partitions of models trained on the Voronoi, Lattice, and
Combined Sets. Clearly, this field is less demanding to predict,

with testing set median R2 values of 0.980 and 0.986 for the in-
dividual datasets’ models and 0.980 for a model trained on both.
We believe the smoothness of the temperature field (i.e. the lack
of steep spatial gradients) makes capturing its behavior easier for
the network. This can be observed in Fig.12, which depicts two
typical predictions in the testing set for the “combined” model.

LIMITATIONS AND FUTURE WORK
The current model has several limitations we wish to ad-

dress in future work. One drawback is that each trained model
can make predictions of one field for one material in one load-
ing case. Future work will look at parametric variation of loads
and boundary conditions. Material properties, including those
for nonhomogeneous materials, can also be inputted as features.
Prediction of other fields, including vector fields or even dynamic
fields, may be investigated as well.

Since 3-D geometries are more common throughout engi-
neering, we are interested in adapting the model to make predic-
tions on 3-D meshes. This will add complexity to the compu-
tation of the SDF and may require reformulation of the spectral
shape encoding to better operate on a 3-D structure.

Restriction of the geometry to a 1m×1m square envelope is
also a severe geometric constraint, but this type of constraint is

10 Copyright © 2022 by ASME



reasonable in that it mimics many real design decisions in engi-
neering. In spite of this, we are still interested in expanding the
spectral shape encoding framework to operate on shapes with
fewer restrictions.

CONCLUSION
In this work, we proposed a model that makes predictions

for scalar fields by computing a set of local and global features at
every node on a mesh. Both sets of features are shown to be im-
portant to making field predictions, and the set of global features
– a spectral shape encoding – provides a succinct description of
the geometry that efficiently represents the global shape at every
node.

A model was trained, on a large dataset of complex shapes,
to predict the von Mises stress field for a part undergoing com-
pression. Our model achieved an overall median R2 of approx-
imately 0.75 for stress field prediction on the testing set. Val-
idating on a steady-state temperature problem, the model has
even stronger performance, yielding R2 values above 0.98. Thus,
the proposed method demonstrates the potential to replace finite-
element computations with less expensive surrogate model eval-
uations in an engineering design setting.

Future work will explore variation of boundary conditions
and expansion to 3-D geometries, for a more robust field predic-
tion model.
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