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ABSTRACT
We present an automatic power plane generation method to

accelerate the design of printed circuit boards (PCB). In PCB
design, while automatic solvers have been developed to predict
important indicators such as the IR-drop, power integrity, and sig-
nal integrity, the generation of the power plane itself still largely
relies on laborious manual methods. Our automatic power plane
generation approach is based on genetic optimization combined
with a multilayer perceptron and is able to automatically gener-
ate power planes across a diverse set of problems with varying
levels of difficulty. Our method consists of an outer loop genetic
optimizer (GO) and an inner loop multi-layer perceptron (MLP)
that generate power planes automatically. The critical elements
of our approach include contour detection, feature expansion, and
a distance measure to enable island-minimizing complex power
plane generation. We compare our approach to a baseline solu-
tion based on A*. The A* method consisting of a sequential island
generation and merging process which can produce less than
ideal solutions. Our experimental results show that our method
outperforms A* in 71% of the design problems with varying levels
board layout difficulty. We also present ablation studies demon-
strating the influence of various algorithmic choices. Finally, we
provide insights into how the power planes evolve with our model
parameters to form feasible and desirable space partitions.

∗Address all correspondence to this author.

1 Introduction
Following Moore’s Law [1], modern electronics designs are

getting increasingly more complex. Printed Circuit Boards (PCB)
design, as one of the critical steps in electronics design is also
getting increasingly more complex and time-consuming with the
increasing size of boards, more complex design rule constraints
(DRCs), as well as signal integrity (SI) and power integrity (PI)
requirements. One of the most critical steps that hamper PCB
design development is the generation of a power plane [2], which
aims to configure the various metal planes’ layout on a PCB.
Although there has been significant development in automatic
solvers for the critical objectives of PCB design related to power
plane generation such as IR-drop solver [3, 4, 5], power integrity
solver [6,7], and signal integrity [8,9,10], the generation of power
plane itself still relies on the manual effort of electronics designers.
Thus, automatic power plane generation is needed to address an
unmet need in PCB design.

In this work, we present an evolutionary automatic power
plane generation method based on a multilayer perceptron (MLP)
and genetic optimization (GO), which we refer to as GOMLP.
This method is based on a nested combination of a multilayer
perceptron and genetic optimization, with critical components
including contour detection, feature expansion and customized
distance metrics. Systematic experiments are conducted to study
the contributions of the critical components and also stress test the
method on a diverse set of problems with varying difficulties. The
method is compared against a baseline solution based on A* [11].
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FIGURE 1. Power plane generation on a PCB board. Middle: Pins belonging to the same net are colored similarly. Right: Planes belonging to the
same net are colored similarly. Note that some nets are split into multiple islands.

To the best of our knowledge, this work is the first effort to solve
power plane generation with fully automated methods.

2 Background
2.1 Problem Formulation: Power Plane Generation

Power plane generation is a critical step PCB design, where
the layout of metal planes connecting critical components is
configured on each layer of the PCB board [12, 2]. As shown
in Fig 1, a layer of the PCB board contains a set of m nets
{N1,N2,N3, ...,Nm}. Each net is composed of a potentially large
number of pins (the I/O ports of the components on the board)
PNi = {p1, .., pqi}, where qi is the total number of pins for Ni.
p j ∈ R2 encodes the x and y coordinates of a pin. Net information
and corresponding pin locations are determined in a previous
step of board design and component placement. As such, all pin
locations are fixed and are not subject to change. The objective is
to group together all the pins with the same label (net assignment)
through a metal plane, while excluding all other pins.

Power plane generation can be formulated as a mutually
exclusive space partitioning of the board Ω into m distinct power
planes Ω1, ..,Ωm such that:

Ω = Ω1 ∪Ω2 ∪ ...∪Ωm and Ωi ∩Ω j = /0 (1)

Plane Ωi corresponds to net Ni, which means the number of planes
is equivalent to the number of nets. Each plane Ωi may consists of
several islands: Ωi = I1

i ∪ I2
i ...∪ Isi

i , where si is the total number
of islands of plane (or net) i.
Design Constraint: All pins of Net Ni must be located inside Ωi
(possibly spread over multiple islands) and no pin from another
net can appear in Ωi:

PNi = {p1, .., pqi} ∈ Ωi (2)

Design Objective: The power plane generation problem formu-
lation described above is the basic form. For each plane Ωi, it is
preferable to generate a singly connected plane consisting of a
single island. Otherwise, disconnected islands belonging to the
same plane will have to be connected on a separate layer of the
PCB using extraneous connections and vias. Mathematically, this
can be stated as finding an optimized space partitioning Ω∗ which
minimizes the total number of split islands:

Ω
∗ = argminΩ

m

∑
i=1

si (3)

Given a board, we denote a set of power planes that satisfy the
design constraint as feasible, and for each net, those that have a
minimum number of islands as desirable. Fig. 2 shows examples.
For the example design, there are two nets {N1,N2}, where N1
has two pins and N2 has one pin. The desirable designs (E and
F) are with singly connected partitions that are feasible. Designs
C and D, while feasible, split one of the nets into two separate
islands. Compared to E and F, these designs are not desirable.

The objective of minimizing the number of islands for each
net makes the problem non-trivial since planes corresponding to
different nets have to compete for the shared design space while
satisfying the design constraint. Intuitively, power plane genera-
tion is analogous to a 2D multi-class image segmentation problem
aimed at minimizing the number of islands for all nets while
ensuring that no pin is misclassified. While approaches such as
image segmentation [13, 14, 15] and space partitioning [16, 17]
have been extensively studied, these approaches do not put em-
phasis on split island minimization. To the best of our knowledge
the power plane generation is an open problem not only in the
scope of PCB design but also in the broader context of space
partitioning problems.
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2.2 Scope
Our approach seeks to find a feasible solution that minimizes

the number of islands. In this work, the priority is on identifying
power planes that match this desire. However, we do not optimize
the outer contour geometries of the planes and reserve this consid-
eration for future work. As such, in the presented work, designs
E and F in Fig. 2 are identical in quality.

In industrial PCB design, there exists other constraints and
objectives for space partitioning. These include considerations
around IR-drop, power integrity, and signal integrity of the par-
titioned board. For instance, it is common to impose an upper
bound on the admissible IR-drop for each source-drain pin pair
within a plane, which favors planes with the least number of thin
regions. For each power plane candidate, the evaluation of the IR
drop involves a physical simulation that can be prohibitive. In this
work, we thus exclude such considerations in favor of establishing
the foundations for island minimizing partitioning. Future work
will have to account for such criteria.

Additionally, current work only considers a single layer of
the PCB, while in practical settings the nets and associated pins
can be assigned to different layers in a stacked PCB. From this
perspective, the presented work aims to identify an optimized
solution to the nets and pins already assigned to a specific layer
(i.e., net and pin assignment is assumed to have been completed).

3 Methods
We parameterize the problem using a set of handles defined

for each plane Ωi as HNi = {h1, ..,hki}, where h j ∈ R2 encodes
the x and y coordinates of the handle on the board. These handles
serve as labelled movable points on the board such that an opti-
mized placement of the entire set of handles HNi , i : 1..m produce
a partitioning of the board where all original (and static) pin sets
PNi , i : 1..m are correctly grouped, and the number of power plane
islands is minimized.

We refer to our method as GOMLP, which is summarized in
Fig. 3. Our method consists of an outer loop genetic optimizer
(GO) that identifies the best handle placements. To evaluate a
candidate solution, we use an inner loop multi-layer perceptron
(MLP) that produces a 2D segmentation of the board using HNi

and PNi , i : 1..m as the labelled data to be classified. The MLP
uses an expanded feature space and, is allowed to overfit to the
data so as to ensure all pins are correctly classified (i.e., satisfying
the design constraint). A separate module then identifies the total
number of islands together with the pairwise distances between
the islands of the same net. These quantities are appended to
GO’s fitness function to drive the optimal handle placement.

3.1 Genetic optimization for handle placement
Genetic Optimization (GO) has found extensive use in prob-

lems where the gradients of the objective function and constraint

FIGURE 2. Plane feasibility vs. desirability.

FIGURE 3. Proposed method.
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are not readily available [18, 19, 20]. In this work, we use GO to
optimize the handles’ locations, which then are used as input to
the MLP to produce the space partitions . The primary motivation
for applying GO instead of other gradient-based optimizers is that
the objective function in the power plane generation problem is
not readily differentiable.

In our GO, a population consists of M chromosomes, where
each chromosome encodes the handle coordinates as a vector of
genes. Thus, each chromosome is a candidate solution for Ω.
Each gene has two scalars x,y encoding the 2D coordinates of a
handle. For each Ωi, i : 1..m, we instantiate k handles, where k is
calculated as follows:

k =
2 ·∑m

i=1 qi

m
(4)

where qi is the total number of pins for net i. Each chromosome is
thus a 2 · k ·m×1 real vector, with the handles belonging to each
net occupying a 2 · k×1 block. Handles are randomly initialized
in the first generation of GO. We use a fitness-proportional parent
selection, uniform mutation and probabilistic random swap for
crossover operators [21, 22]. Fig. 3-top shows the collection of
pins (letters) and handles (circles) for a 5-net design problem.

3.2 Power plane generation using MLP
Given a chromosome, we use an MLP to construct the parti-

tioned power planes. The MLP takes as input the labelled training
set PNi ∪HNi , i : 1..m and creates a region segmentation of the
board using the multi-class cross entropy loss. Fig. 3-middle
shows the current space partitioning result. For each item in
the training set, we expand its x,y coordinates into a 15 × 1
vector: {x,y,x · y,sin(2π · x),cos(2π · x),x2,sin(2π · y),cos(2π ·
y),y2,sin(3π · x),cos(3π · x),x3,sin(3π · y),cos(3π · y),y3} to en-
able complex boundaries. The MLP is trained with these features
as input and the net classification as output is then used to gener-
ate space partition Ω by predicting the plane assignment for every
coordinate from the meshgrid on the PCB board layer.

The MLP consists of three hidden layers, with 50 neurons
in each layer and the tanh activation function. Adam optimizer
with a learning rate of 0.002 is used. It is desirable to overfit to
the training data, so as to favor all pins to satisfy the feasibility
constraint of Eqn. 2. Nonetheless, the resulting partitioning may
result in disconnected islands, and may not satisfy Eqn. 2.

3.3 Fitness calculation
To evaluate each solution’s fitness, we determine the total

number of islands si of each plane Ωi generated by the MLP using
a contour detection algorithm [23].

F island =−
m

∑
i=1

si (5)

Additionally, we append the fitness function with a measure to
distinguish the islands of a plane Ωi that are far apart from those
that are proximate. This helps GO acquire guidance in handle
placement for the subsequent generation (Fig. 3-bottom). For Ωi,
we define:

Fdmin
i =−

si

∑
a,b

||Ia
i − Ib

i ||min (6)

where Ia
i , I

b
i denote islands a and b belonging to Ωi, and ||.|| is the

Euclidean norm. Fdmin
i captures the sum of minimum distances

between the pairs of the disjoint islands of Ωi.
While min. distances are useful in signaling nearly connected

islands, they typically favor the generation of elongated thin con-
nections. To additionally drive the islands toward one another, we
define a centroid distance as a part of the fitness function:

Fdcent
i =−

si

∑
a,b

||Ia
i − Ib

i ||cent (7)

Fig. 4 illustrates the above two islands distance calculations. For
a segmentation solution produced by the MLP, the final fitness
maximized by the GO is:

F = F island +
m

∑
i

Fdmin
i +

m

∑
i

Fdcent
i (8)

4 Method: A* Baseline Method
A* is one of the most frequently used search algorithms in

graph traversal and path finding. In this work, A* search is used
as the backbone of our baseline power plane generation algorithm,
which we refer to as A*. It has been proven that with admissible
heuristics, the A* can find the shortest path between two vertices
in a graph [24]. Fig. 6 shows the flowchart of the A* baseline.
The reason for selecting the A* as our baseline is that it has
been the most frequently used algorithm practice to solve routing
problem [25, 26, 27]. In the baseline method, the solution consists
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FIGURE 4. Contour detection and distance metric calculations of
space partitions.

FIGURE 5. Details of GO structures and flow

of multiple steps and one of the key steps (Island Connection) can
be formulated as a routing problem.

The input of the power plane generation problem is clusters
of pins belonging to each net {N1,N2, ...,Nm}. For A*, the first
step is the Island Generation. At this step, for each net Ni, a min-
imum spanning tree (MSTNi ) among all the pins PNi belonging to
net Ni is generated with using Kruskal’s algorithm [28]. After the
MST for all nets {MSTN1 ,MSTN2 , ...,MSTNm} are generated, edge
pruning is applied to all the MSTs where any edges of the MSTs
that intercept edges of other nets are pruned. After pruning, there
is a set of disconnected trees (pins connected with edges) for each
net, which is represented by an island that includes all the pins
belonging to the tree while excluding all other pins not belonging
to the tree. For instance, if island generation produces si discon-

Algorithm 1: GOMLP power plane generation
Input :Netlist of designs: {N1,N2, ...,Nm}
Output :Space partitions: {Ω1,Ω2, ...,Ωm}
Initialize handles {h1,h2, ...,hki} for each net Ni as the

first population for GO;
for generation=1,...,N do

MLP fitting all fixed points {P1,P2, ...,Pqi} and
handles {H1,H2, ...,Hki} for each net Ni with
augmented features;

Contour detection and distance metric calculations
for all planes {Ω1,Ω2, ...,Ωm} ;

Calculating fitness scores for all chromosomes based
on MLP fitting results;

Generating new population with crossover and
mutation based on selected elites;

end

nected trees {T1,T2, ...,Tsi} for Net Ni, then the disconnected trees
are represented by a corresponding set of islands {I1

i , I
2
i , ..., I

si
i },

where the area of I j include all the pins of tree Tj but not include
pins belonging to other trees of net Ni or other nets. Based on the
Island Generation step, each net is represented as a set of islands.
The islands for all the nets are fed into the downstream Island
Connection step, where A* algorithm is applied to route all the
disconnected islands for each net to generate a connected tree for
each net. Specifically, given an order of the nets, for each net
Ni with disconnected island set {I1

i , I
2
i , ..., I

si
i }, A* works on con-

necting the disconnected island set. For the disconnected island
set with s islands, (s−1) pairs of islands are generated, and then
A* will sequentially connect all the pairs of islands by searching
through a graph consisting of upsampling nodes distributed on the
board. The Island Connection is finished when all the island pairs
belonging to all the nets have been attempted to be connected
with A*.

Since all the island pairs of one design have to share the same
space when connected with A*, it is not guaranteed that all of
them can be connected. If the Island Connection step is successful,
then a set of trees {TN1 ,TN2 , ...,TNm} will be generated where TNi

connected all the pins belonging to net Ni. If some islands are
not fully connected, some nets will end up having more than one
tree. Based on the generated tree set from the Island Connection
step, the final power plane is generated by inflating the tree edges
of each tree. Specifically, densely located nodes are sampled on
all edges of the trees so that each tree TNi can be represented as
a set of nodes. Then the space partition is generated by running
K-nearest Neighbors (KNN) [29] algorithms based on the nodes
from all trees with the number of neighbor k set as 1.

The A* baseline approach provides a practical solution flow
to generate a power plane. However, a downside of A* is its
greedy manner [30,31]: it focuses on finding out the optimal solu-
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FIGURE 6. Flowchart of A* Power Plane Generation Method.

tion for only one search problem. In power plane generation, there
are cases where multiple search problems that need to be solved
on the same graph sharing limited graph space. Under such case,
A* would struggle to consider all the problems simultaneously.
Thus, there are at least the following combinatorial optimization
challenges to be addressed to make it an applicable approach:

Sequence of nets: in the Island Connection step, the A*
has to be applied to the nets sequentially. Thus, an optimal
sequence of nets needs to be determined. Otherwise, the
method will be unfavorable to the nets that are routed later
because the nets routed earlier have occupied part of the
search graph.
Sequence of island pairs: similar to the sequence of nets
challenge, within each net, the island pairs also need to be
sequenced before A* is applied. The sequence is a non-trivial
combinatorial optimization problem.
Design of upsampling nodes: to run the A* algorithm ef-
ficiently, the search graph size need to be reasonably small,
and thus designing the distribution of upsampling nodes is
another combinatorial optimization challenge that needs to
be solved.

5 Evaluation
To systematically study the performance of our approach,

extensive experiments are performed, which can be divided into
two parts. In part one, GOMLP is applied to solve problems with
and without the key components to show the effect of the key
features of our method, which include the following:

Algorithm 2: A* power plane generation
Input :Netlist of designs: {N1,N2, ...,Nm}
Output :Space partitions: {Ω1,Ω2, ...,Ωm}
Tree generatoin {MSTN1 ,MSTN2 , ...,MSTNm} with MST

for each net;
Island generation by tree pruning for each net Ni:
{T1,T2, ...,Tsi};

for net for i=1,...,m do
Running A* to connect the isolated islands
{I1

i , I
2
i , .., I

si
i } for net Ni, forming complete tree

edges for each net
end
Generating final space partitions by running KNN on the

upsampled nodes from edges of different net

Effect of GO on MLP: Given the same design problem, power
planes are generated with standalone MLP and MLP with GO to
investigate the effect of GO upon MLP.
Effect of feature expansion on GOMLP : Given the same design
problem, GOMLP is applied with and without expanded features
to investigate the effect of feature expansion.
Effect of distance metric on the GOMLP: Given the same
design problem, GOMLP is applied with and without the distance
metric to investigate its effects on performance of the GOMLP.

In the second part of the experiments, we apply GOMLP as
well as the baseline A* method to a set of power plane gener-
ation problems with different configurations and difficulties to
systematically study the performance of our method.

5.1 Dataset
To generate the problems, given a layer of design on a PCB

board, we vary the number of nets from 6 to 8, with more nets cor-
responding to more challenging problems. For each net number,
combinations of nets are selected to generate distinct problems.
With the variations, there are altogether 129 different problems
with varying difficulties. The GOMLP as well as the baseline A*
are applied to each of the problems with maximum run time for
solving each problem set as 30 minutes for a fair comparison.

Cross entropy is used as the loss function. For the GO, the
maximum number of generations is set as 20, population size is
30 and elite size is 10. An industry real PCB board design Bea-
glebone is used, and different design problems in the experiment
come from different design problems on different layers. Since
the objective in this work is to minimizes the total number of split
islands, in evaluating the quality of generated power planes, the
primary metric used is Extra Islands (EI), which is defined as
follows:

EI =
m

∑
i=1

si −m (9)
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FIGURE 7. Power plane generation on 5 nets PCB layer design case
using MLP vs GOMLP. MLP: 6 partitions with 2 disjoint partitions
belonging to net E , evolutionary MLP : 5 partitions with no disjoint
partitions

6 Results and Discussions
6.1 Comparison between MLP and GOMLP

Fig. 7 , shows the results of MLP and GOMLP on a 5 net
case. On the left, the partitions are generated using only MLP. Al-
though the MLP can generate a power plane design that correctly
classifies the nets. It fails to converge to the most desired power
plane partitioning where the partition for each net is connected.
As a result, the partition corresponding to net E is divided into two
islands. On the right side, the partition is generated using GOMLP.
It was executed for just 2 generations and generated the desired re-
sult which satisfied constraints. Also, more importantly, the space
partitions for each net are all single connected planes. The result
demonstrates that the power plane generation is a nontrivial space
partition problem that can not be solved directly with a classifier.
The challenge for a single classifier to generate a feasible power
plane is due to the difficulty of encoding the design objective
of overall island minimization as a differentiable function into
the loss function of MLP. While Euler number [32] allows the
determination of the number of disconnected islands, connecting
that loss to the handle parameters is not readily achievable.

In our GOMLP, the combination of MLP and GO solves
this challenge by optimizing the handle locations to control the
shape of the MLP generated space partitions. Since handle opti-
mization seeks to minimize the number of islands, GO will work
on connecting isolated islands of the MLP-generated partitions
implicitly.

6.2 Comparison between GOMLP with and without
distance based cost

Fig. 8 shows the experiment results of the GOMLP with and
without the distance metric described in the Method part. A 6-net
PCB board layer design is given and the GOMLP is applied twice
to solve the problem: the first time with the distance metric and
the second time without the distance metric. The distance metric
describes the proximity of isolated islands for each net. On the
left of Fig. 8, the generated power plane is based on GOMLP

FIGURE 8. Power plane generation on 6 nets PCB layer design using
GOMLP with and without distance metric.

without including distance metric, which means only the number
of isolated islands are used to describe the layout of the space
partition. On the power plane, the space partition of net E is
divided into two isolated islands on the left and right sides of the
plane. While on the right of Fig. 8, the generated power plane is
based on GOMLP with the distance metric included. In this case,
the space partition corresponding to net E is connected as a single
U-shaped plane during the iterative optimization procedure of the
GOMLP.

The improved performance with the introduction of the dis-
tance metrics compared to cases where the only number of iso-
lated islands are used in cost function can be explained as follows:
in the optimization process of the GOMLP, the space partition
is controlled by the layout of the handles. The handles are iter-
atively optimized to generate higher fitness scores through the
GO operation. This mechanism means that the GO is working
on optimizing the planes implicitly through the handles’ move-
ment. As a result, in cases where the handles for one net are
distributed as distant clusters, for instance, the case in Fig. 8, it
would be challenging for the GOMLP to provide the handles with
a good moving direction without the introduction of distance met-
ric. In other words, the number of isolated islands is not enough
to provide enough guidance for driving the handles to gradually
move and form connected space partitions for each net. The dis-
tance metric provides something similar to gradient information
to guide the handles gradually move in order to connect isolated
islands for each net.

6.3 Comparison of GOMLP with and without feature
expansion

Fig. 9 shows the results GOMLP with and without feature
expansion on a 6 net PCB layer design. On the left, the partitions
are generated with GOMLP without the use of feature expansion.
Without the expanded features, the model is unable to generate
complex space partitions that are feasible and desirable. In the
generated power plane, ΩD is separated into two isolated islands,
which makes it undesirable. Whereas on the right of Fig. 9, the
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FIGURE 9. Power plane generation on 6 nets PCB layer design using
GOMLP with and without feature expansion. GOMLP: 7 partitions
with 1 disjoint partitions belonging to net D, with feature expansion: 6
partitions with no disjoint partitions.

partitions are generated by GOMLP with feature expansion. With
the additional higher order features as input, the MLP can learn
more complex space partitions and curved space partitions which
leads to desirable power plane generation. In the generated power
plane, the partition for ΩD is a singly connected plane with a
thin channel connecting the two isolated regions of net D. The
comparative results demonstrate the effect of feature expansion in
our method. The introduction of high dimensional features makes
it easier for the MLP to generate complex space partitions such
as zig-zag-shaped planes.

6.4 Scalability of GOMLP
As described in the Experiment part, the second part of the

experiments includes the applications of both the GOMLP and A*
method to problems with different configurations and difficulties
to systematically assess the performance and scalability of the
GOMLP and A*. For the 129 problems experimented, the number
of nets ranged from 6 to 8, and problems with more tend nets
problems tend to be more difficult. Given a solution, EI is used as
the primary metric. Only when EI equals 0, the generated power
plane is desirable.

Fig. 10 shows the results of GOMLP and A* on the set of 129
problems. The plot shows the number of extra islands for solutions
of GOMLP and A* in the ascending order of evolutionary MLP
results, as well as their gaps. The plot shows that GOMLP is
significantly better in generating high quality power planes with
fewer extra islands. Among all the 129 experiments, GOMLP
outperforms or has the number of extra islands as A* in 71% of
cases. For problems where A* and GOMLP perform similarly,
both methods tend to identify the optimal power planes (EI = 0).
A paired t-test of GOMLP and A* on our 129 board dataset
indicates that GOMLP is statistically better than A* (p<0.001).

A* outperforms GOMLP in only 4 out of the 129 experiments.
Detailed studies are conducted on those rare cases where A*
outperforms GOMLP. The primary reason that GOMLP did not
perform as well as A* in these cases is due to the presence of

FIGURE 10. GOMLP vs A* for the 129 different board problems.
Vertical axis shows the extra islands. GOMLP is better than A* in 71%
of the cases.

very near-by pins that belong to different nets, challenging the
MLP to correctly classify these pins. However, these cases will
not likely be encountered in realistic PCB board designs given
the multilayer flexibility of the problem: designers would move
some of the very close pins belonging to different layers of the
PCB board to avoid such corner cases. To sum up, GOMLP has
good scalability to non-trivial power plane generation designs and
performs significantly better than A* baseline.

Finally, to give a more intuitive demonstration of how the
GOMLP works, Fig. 11 and Fig. 12 show the evolution of space
partitions and the handles across generations. In Fig. 11, the
pins (annotated with alphabets) are correctly classified in the very
first few generations, however, the space partition for net E is
divided into two separated islands in the left and right side of
the board. As the evolutionary MLP keeps optimizing the space
partitions, the two islands for net E start to approach and then
finally merged into a desired one single plane. The handles are
the implicit driving force for the evolution, as shown in Fig. 12,
where the handles, pins, and the planes are plotted together. The
handles locations changed across generations to implicitly change
the space partitions generated by the MLP. It is worth mentioning
that the moving patterns of the handles are not as intuitive as we
expected. For instance, during the merge of two islands for net
E, the handles for net E on two different islands are not directly
moving towards the other islands. This is because the relationship
between handles and the space partitions is highly nonlinear and
it is part of our future work to further study the evolutionary
patterns of the handles. For design C,D,E and F in Fig. 12, they
are all converged solutions for the same problem, showing another
advantage for GOMLP: generating multiple solutions for the same
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FIGURE 11. Resulting power planes for a 5-net design problem

problem. Fig. 13 shows the generated power planes by GOMLP
and A* on the same set of the problems with 6, 7, and 8 number of
nets. For the three problems, GOMLP is able to generate desirable
power planes, while A* method generates power planes that have
more EI numbers.

6.5 Discussions
In comparing GOMLP and A*, one obvious advantage that

contributes to the better performance of GOMLP is that it can
avoid the combinatorial challenges that A* faces: net sequencing,
sequence of islands pairs as well as the design of upsampling
nodes. It has been shown [33] that there is no heuristic for net
ordering that is universally better for all possible problems. This
means that methods like A* need to solve the NP-hard combina-
torial problem. Even if optimized net sequences or upsamplings
are given, the sequential nature of such a method means that the
subproblems solved first are prioritized over those solved later,
which is not desirable in partitioning problems of this sort [34].
GOMLP provides a good alternative to avoid such combinatorial
challenges. Another advantage of the GOMLP over A* is the
flexibility to add complex objectives into the method. The A*

method is based on generating skeletons of each net using search,
which solely focuses on finding the shortest paths, this makes
adding more complex objectives such as IR-drop to A* challeng-
ing. On the other hand, GOMLP optimizes over the fitness score
in GO, which means the objectives do not have to be explicit and
differentiable. This will make sure that the GOMLP can be easily
extended to more complex objectives.

7 Conclusion
In this work, we present a GOMLP automatic power plane

generation method based on the combination of MLP and GO.
The method is compared against a baseline A* solution. The
GOMLP is based on a combination of multilayer perceptron and
genetic optimization, with critical components including contour
detection, feature expansion as well as the customized distance
metric. The GOMLP demonstrates the ability to automatically
generate power planes across a diverse set of non-trivial problems
with different levels of difficulty. Comparative study also shows
the GOMLP is significantly better (in 71% cases) than A* and
those critical components including feature expansion, distance
metric as well as the combination of multilayer perceptron and
genetic optimization contribute to the competitive capabilities of
the GOMLP in automatically generating power planes. Future
works include extending the GOMLP to multilayer PCB power
plane generations and adding more complex objectives such as
IR-drop.
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