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ABSTRACT
We present a new data generation method to facilitate an au-

tomatic machine interpretation of 2D engineering part drawings.
While such drawings are a common medium for clients to encode
design and manufacturing requirements, a lack of computer sup-
port to automatically interpret these drawings necessitates part
manufacturers to resort to laborious manual approaches for in-
terpretation which, in turn, severely limits processing capacity.
Although recent advances in trainable computer vision methods
may enable automatic machine interpretation, it remains chal-
lenging to apply such methods to engineering drawings due to a
lack of labeled training data. As one step toward this challenge,
we propose a constrained data synthesis method to generate an
arbitrarily large set of synthetic training drawings using only a
handful of labeled examples. Our method is based on the ran-
domization of the dimension sets subject to two major constraints
to ensure the validity of the synthetic drawings. The effectiveness
of our method is demonstrated in the context of a binary com-
ponent segmentation task with a proposed list of descriptors. An
evaluation of several image segmentation methods trained on our
synthetic dataset shows that our approach to new data genera-
tion can boost the segmentation accuracy and the generalizabil-
ity of the machine learning models to unseen drawings.

INTRODUCTION
2D engineering part drawings are a common, systematic

medium for encoding design and manufacturing requirements.
In such drawings, major components are the contour lines, di-
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FIGURE 1. (a) Common component types in an engineering drawing.
(b) Our target binary segmentation. Dimension sets are shown in blue.
Contour lines are shown in black.

mension lines, extension lines, and measurements (Fig. 1(a)).
Contour lines, which can be straight lines, curves, or circles, rep-
resent the outer shape and internal structures of the part. Other
elements in the drawing quantify the corresponding dimensions,
the basis for measurement and manufacturing requirements. The
collective information from these elements serves as the basis
of various engineering tasks including content-based part index-
ing [1, 2], cost estimation [3] and process planning [4]. While
such drawings are often trivial for humans to interpret, it remains
prohibitively challenging to automate a computer interpretation
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of them, severely restricting part manufacturers’ bandwidth to
fulfill the tasks mentioned above.

The majority of part drawings utilized in the industry are
encoded in the form of vector or raster images [5]. The draw-
ings are usually constructed in vector format with modern CAD
systems and converted to raster images during information ex-
change. While computerized interpretation is much less chal-
lenging with vector data, raster data in the form of black and
white images or PDF files still take up the majority in industrial
settings. According to a survey on projects and issues in Japan’s
manufacturing industry [5], 84% of the customers use 2D raster-
based drawings in PDF, paper or fax format when placing an
order for manufacturing.

In this work, we focus on the challenge of interpreting raster-
based part drawings. Specifically, we aim to develop methods to
automatically extract component-level information from raster-
based part drawings. As a first step toward this goal, we focus on
a binary segmentation of a drawing into a group of contour lines
versus the remaining dimensional elements (Fig. 1(b)). Our cur-
rent work excludes other critical elements of technical part draw-
ings including tolerance, material and surface finish specs, cross-
sectional views, assembly drawings, tabulated data, and mixed
2D / 3D views.

While trainable computer vision techniques such as object
detection [6–8], semantic segmentation [9–11], and visual ques-
tion answering [12–14] have shown great promise in analogous
image interpretation tasks, a lack of adequately labeled part
drawing data severely restricts the adoption of such methods. In
particular, the acquisition of labeled data for such drawings is
a major challenge as it requires humans with requisite technical
training to take part in the labelling process.

To address this challenge, we present a new method to auto-
matically generate a large corpus of labeled 2D raster drawings
by parsing and generatively randomizing the dimension sets of a
few, labeled vector drawings. The initial labeled vector drawings
are obtained by manually creating a limited set of part drawings
in the vector-based Drawing Exchange Format (DXF format).
From these limited number of DXF files, we separate the dimen-
sional elements from the object contour lines, then expand the
drawing set by generating new drawings wherein new dimen-
sional elements are generated and placed in novel configurations.
Finally, each of the new part drawings is rasterized to strip them
off any vector information, thereby producing a large set of la-
beled rasterized training data.

The synthetically generated data augments the existing data
to expand the amount of raster-based training data significantly.
To ensure the validity of the generated dimension sets, we present
two geometric constraints that prevent overlapping and improper
dimensioning. We test the performance of our data expansion ap-
proach using three ML models for binary segmentation. We also
present a set of twelve features we use to facilitate segmentation
as part of the evaluation. These features are extracted from a vec-

torization applied to the input raster images. We note that while
our featurization for ML involves the vectorization of the input
raster images; this vectorization is entirely unrelated to how the
expanded dataset is generated from DXF files. As such, the in-
put to the ML models are raster images, consistent with the stated
goal of this work.

Our results indicate that the synthetic expansion of the la-
beled training set enables a 30% increase in the binary segmen-
tation accuracy on the validation set over a training set that does
not utilize data expansion.

Our main contributions include:

• A method to synthesize new labeled 2D part drawings based
on constrained dimension randomization of existing exam-
ples.
• An algorithm to extract features as representations for data-

driven methods from engineering drawings at the component
level.
• A practical system to construct a large dataset for training

a data-driven model in the task of component segmentation
with a handful of labeled data using the above two ideas.

RELATED WORKS
In this section, we review the background of our work in

terms of data augmentation methods on images and data-driven
methods for image semantic segmentation. Additionally, we
also highlight recent advances in the methods of general diagram
recognition.

General Data Augmentation Methods in Computer Vi-
sion Tasks

As data-driven methods, especially deep learning methods
perform remarkably well in modern computer vision tasks, var-
ious data augmentation methods are introduced to improve the
generalizability of the models as well as to avoid overfitting. In
early works, a common strategy was to conduct a series of im-
age manipulations. Despite the most frequently used geomet-
ric transformations such as flipping, cropping, rotation, transla-
tion and homographic warping, other manipulations include ker-
nel filtering [15], random erasing [16], color space transforma-
tion [17] and mixing images [18]. These manipulation methods
are shown to be effective in the majority of computer vision tasks
including image semantic segmentation. Unfortunately, most of
these manipulations will result in invalid image data in the con-
text of engineering drawings. For example, the drawings are in-
complete after random cropping, making it impossible to read,
even for human experts.

In other scenarios like autonomous driving, robotic control,
and chemical/physics experiments, the data acquisition is lim-
ited because the necessary studies are often unsafe, expensive,
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and/or impractical. Instead, simulations are utilized as an alter-
native to experiments for generating large amounts of data with
numerous experiment conditions. For instance, an agent can be
trained within a simulated environment to drive a car (CARLA
[19], Udacity [20]) or control a robotic arm (Kuka [21]). Im-
age clips or 3D scenes are fed to the agent model as perception
inputs. Simulations also serve as surrogate models to provide
training data for predicting a physical process such as fluid dy-
namics [22,23] and weather forecasting [24]. The simulated data
can be generated with flexible experiment conditions in a reason-
ably short time. Following a similar approach, we aim to create
a parametric drawing generator that can synthesize a pool of new
drawings in a simulated manner with a handful of existing draw-
ing examples.

Data-driven Methods for Image Semantic Segmenta-
tion

Early works in semantic segmentation combined feature ex-
traction (Edge, HOG, SIFT and etc) with weak classifiers. Clas-
sifiers like Thresholding [25], SVM [26,27] and KMeans [28,29]
are shown to be effective in classifying the detected features. To
further improve the results, a Markov Random Field (MRF) can
be introduced to the task as a post-processing step [30–34], as-
suming that the object/class exists as a continuous smooth shape.

With rapid advances in machine learning approaches for
computer vision in recent years, a large body of work proposes
end-to-end learning frameworks that directly map an input image
to a label map. Long et al. [9] introduce the first deep learning
framework that yields hierarchies of features in image segmenta-
tion. Ronneberger et al. [10] proposed a novel network architec-
ture with skip connections and demonstrated its effectiveness on
a biomedical image segmentation task. In most works on deep
learning-based methods, CNNs are the best option to serve as
an effective automatic feature extractor. In our task, the raster
space is sparse in terms of color and textural information. The
local features in the pixel level cannot guarantee enough evidence
for predicting the component type. An alternative that considers
connections between different features at the component level
is necessary. As such, we build on these frameworks on image
segmentation and extend it to the segmentation of graph of com-
ponents using data driven models.

Methods for General Diagram Recognition
Similar to engineering drawings, diagrams and flow charts

are also common media in electrical engineering, mechanical en-
gineering and many other scenarios to indicate the structure of
a system design or the steps of a series of processes. Electric
circuit diagram recognition has been explored with finite state
machines [35], dynamic programming [36] and various template
matching methods. Schäfer et al. [37] propose Arrow R-CNN
for flow chart recognition. Other applications include floor plans

FIGURE 2. Control points for the proposed dimension set generation.
All possible key points are marked as green circles. The base points for
each dimension measure are marked as purple dots.

[38], vibratory mechanical systems [39].
Among these works on diagram recognition, template

matching methods can usually yield good performance as the
symbols and diagram styles are consistent across the same ap-
plication domain. However, in technical drawings, lines and text
are the primary essential elements that comprise different shapes
and annotations. The individual recognition of unified symbols
cannot provide a full interpretation of the drawings, but it can be
used for feature extraction.

TECHNICAL APPROACH
In this work, a handful of engineering drawings in DXF for-

mat are utilized as the base for synthetic generation. Note that
all the drawings should be constructed with consistent styles and
layers in the CAD tool. Then, the component-level information
can be parsed and saved in a compact format (JSON) for the
convenience of further editing. In engineering drawings, many
features are independent of the shape of the part itself, such as
dimension label placement, part location on the page, and over-
all style. Therefore, we develop a data augmentation method
by randomizing the dimension set generation without changing
the contour shapes. Eventually, a synthetic dataset is generated
with our proposed method for the task of component segmen-
tation. To overcome the issue of sparse information space and
lack of contextual indication, a component-based representation
is introduced with vectorization and feature engineering.1

DXF Parsing
For a given DXF drawing, the parametric information of

each component is defined and stored in a unified data format

1The repository of our method is available at https://github.com/
teddyz829/Data-Augmentation-Engineering-Drawing
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using existing CAD software. A common way to modify this in-
formation requires manual inspection and operations in the same
software environment, which makes it impossible for the use of
an automatic drawing synthesis process. As such, our goal is to
directly access and parse the geometric and categorical informa-
tion stored in the DXF files and generate a lightweight interme-
diate data format (JSON) to enable a convenient modification of
the existing drawings.

In the DXF reader module, we focus on four component
types: lines, circles, arcs and dimension sets. For lines, the x
and y coordinates of the start and end points are written as the
parameters in the JSON file. The line type (solid/dashed) is also
recorded. Circles are saved as center coordinates and radius. As
a supplement, two perpendicular center lines are also recorded
at the center of the circle. Similarly, the arcs are stored with the
center coordinates, radius, start angle and end angle. All three
types mentioned above are commonly labeled as contour lines.
For the dimension sets, linear dimensions and diameter dimen-
sions are considered in our current scope of the work. The linear
dimensions are recorded based on two key points for dimension,
an orientation and a base point for text measure, see Fig. 2. The
diameter dimensions are attached to a circular object with the
same center and radius and a base point for text measure.

Through this parsing process, each component’s geometric
and categorical information is read and saved in the JSON file
with only a few parameters. Then a generation module is de-
signed to create new parameter sets as the dimension sets based
on given examples. We also implement a rendering module, in
which a parametric JSON file is parsed and rendered back to an
colored engineering drawing.

Dimension Sets Randomization
For a given drawing, all parametric component information

is extracted and saved in JSON format through the reader mod-

FIGURE 3. An example of our dimension placement strategy. For
two chosen key points (shown as green circles), there are two directions
to generate a linear dimension set. Based on the bounding box of the
contour shape (shown in yellow dashed lines), the left one is generated
since it lies along the near side.

Algorithm 1 Dimension Sets Randomization Algorithm for Lin-
ear Dimension sets(DSR)

1: Input: a Json file containing all the information read from
the original DXF file

2: Parameters: Ndg, the total number of generated dimension
sets. Ndo, the total number of dimension sets in the origi-
nal drawing. PoolKP, the pool of key points read from the
original DXF file.

3: Output: a synthetic DXF file with newly generated dimen-
sion sets

4: procedure DSR(Ndg,Ndo)
5: Ndg← Int(random(0.8Ndo,1.2Ndo))
6: while i≤ Ndg do ▷ iteratively generate a new dimension

set
7: Ki

1,K
i
2← Sample(PoolKP) ▷ randomly pick two key

points from the pool
8: randomly pick an orientation (Vertical/Horizontal)
9: calculate the two distances for two placements:

dp1 = d(Ki
1,Ccontour), dp2 = d(Ki

2,Ccontour)
10: Select the near side as the direction for the dimension

set argmin(dp1,dp2).
11: Sample a distance di

b ∈ [0,dmax], dmax is determined
by the key points location and page size. The base point for
measure Pi

b is determined given the key points, orientation
and direction. The bounding box Bi

b of text measure for Pi
b

is recorded as [Pi
b,h f ,Hi], where h f is the font size, Hi is the

horizontal distance between Ki
1,K

i
2.

12: Check if Bi
b∩Bm

b ̸= /0, where Bm
b is the bounding box

of any dimension set in the hashset Sb. If yes, go to 11.
13: Check if Pi

b ∈Ccontour. If yes, go to 11.
14: Save Ki

1,K
i
2,P

i
b, orientation(binary) to the Json file.

Save Bi
b to the hashset Sb.

ule. Then a randomization algorithm is introduced to synthesize
new dimension sets in the parametric space. In this work, the end
points of each line and the centers of the circles are considered
as key points for the generation of dimensions sets (Fig. 2).

To maintain a similar data complexity in the dimensioning,
the total number of linear dimension sets is randomly chosen
within the range of ±20% of the number in the original draw-
ing. During our experiments, 5%,10% and 20% are explored
and compared through visual inspections. As a result, 20% is
selected to ensure adequate diversity in the generated drawings.
In an iterative manner, a linear dimension set is generated with
a randomly selected pair of key points. The orientation is ran-
domly set (horizontal/vertical) if two key points are not aligned
horizontally or vertically. Here, we compare the distance from
the key points to the bounding box of the entire contour shape
and place the dimension on the near side (Fig. 3). This algo-
rithm is detailed in Alg. 1. Similarly, the circular dimensions are
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FIGURE 4. Comparison between synthetic data generated under four different conditions: (a) Unconstrained, (b) C1 only, (c) C2 only, (d) Fully
constrained

generated with a selected radius center and base point. Although
it provides substantial flexibility in the synthesis, the generated
drawing can still be too invalid or unrealistic if no constraints are
applied. So, we also define a series of rules adaptive to the origi-
nal labeled data to ensure the quality of the synthetic drawings.

In real drawings, the overlap between different text la-
bels should be avoided to prevent confusion for human reading.
Therefore, the first constraint (C1) is that there should not be
overlapping among the generated dimension sets. In the itera-
tions of dimension randomization, the bounding box of existing
dimension digits is stored in a hashset. Each time a new dimen-
sion set is generated, it must pass a conflict check with the ex-
isting bounding boxes in the hashset. If a conflict is identified, a
new dimension set will be regenerated until it passes the check.

Apart from the overlapping among the dimension sets, hu-
man designers usually avoid dimension sets within the contour
shape. Most of the dimension sets are placed around each view
of the part. Therefore, another constraint (C2) is added to our
synthesis algorithm that the dimensions should locate outside of
the contour shape if possible. In the implementation, the bound-
ing box of the contour shape is extracted from the DXF file and
serves as a restriction area for dimension generation. A visual
comparison of sample synthetic drawings under different con-
straints is demonstrated in Fig. 4.

Another rule of dimensioning is to place the longer dimen-
sions outside of all intermediate dimensions to avoid the cross-
ing between extension lines and dimension lines. However, in
preparing the datasets for training a data-driven model, we don’t
enforce this rule as a constraint; neglecting this rule produces
more challenging cases in the training set while preserving the
readability. From a computational perspective, this rule is stricter
than the previous two constraints because it requires correct
placements for a series of dimension sets, which prolongs the
runtime needed to synthesize a valid drawing.

Synthetic Dataset Generation
With the strategy mentioned above, we are able to syntheti-

cally generate 100 drawings with various dimension set layouts
out of each existing DXF drawing. This number can be adjusted
based on the need for training. A parametric study is also con-
ducted to explore the effect of this number on the final model
performance. A sample synthesis result is shown in Fig. 7. More
results are demonstrated in Appendix A. In our work, 32 sheet
metal part drawings are given as exemplar shapes, which are split
into 25/7 as train/validation set. After the synthesis process, 2500
synthetic drawings are generated for training. The remaining 700
synthetic drawings and 7 original drawings with different con-
tour shapes are utilized separately in the validation. Next, the
generated DXF files are converted to PNG files with two colors
to indicate the ground truth type of the components (Fig. 6a). For
consistency, all the drawings are resized and placed in the middle
of a 600×600 white canvas with an offset [a,b], where a and b
are randomly sampled from [−30,30]. These files are served to
automatically obtain the labels for the synthetic data. Another
set of grayscale PNG files is consecutively generated as the input
data for data-driven models.

Component Feature Extraction
Due to the differences between engineering drawings and

natural images mentioned in the introduction, it is extremely

FIGURE 5. Sample vectorization results for Hough line detection
(Left) and island detect (right).
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TABLE 1. List of features proposed in our feature extraction process.

Index Symbol Notion

1 X1 x coordinate of the upper left corner points of the bounding box.

2 Y1 y coordinate of the upper left corner points of the bounding box.

3 X2 x coordinate of the lower right corner points of the bounding box.

4 Y2 y coordinate of the lower right corner points of the bounding box.

5 L Diagonal length of the bounding box of the component. The length is normalized by the
diagonal length of the image.

6 r Aspect ratio of the bounding box. length (x range)/height (y range) is used for consistency.

7 Pb Percentage of black pixels within the bounding box.

8 Pbp Percentage of black pixels in the projection of the components. The components are projected
along the axis with smaller range.

9 Da Average distance of the 4 nearest neighboring components.

10 Dstd Standard deviation distance of the 4 nearest neighboring components.

11 COV Coefficient of variation. The standard deviation of the distances from the black pixels in a
component to its center of gravity. This feature is introduced to indicate the symmetry.

12 MZ Zernike Moments of the components. 8 degrees are utilized to generate 25 response features.
These features are able to indicate the local gradient orientation of the components.

FIGURE 6. The process to assign the ground truth label for each ob-
tained vector. By indexing the color information in the same region
from a generated drawing image (a), contour vectors (b) and dimension
set vectors (c) are labeled by majority voting.

challenging to get both component and contextual information
from the pixel space using an end-to-end framework like CNNs.
In this work, we are inspired by the way human designers read

such drawings. First, the lines, circles and text information are
detected as the basic elements that form different components.
Then a set of descriptors are constructed based on the location,
size and information from neighboring elements. Our proposed
feature extraction process contains vectorization and featuriza-
tion.

Vectorization: In engineering drawings, line segments are
the most frequently used basic elements that form contour lines,
extension lines and dimension lines, etc. Therefore, our vector-
ization method mainly focuses on machine vision-based line de-
tection for all the line elements. A fine-tuned Hough line detec-
tor from OpenCV is utilized to find straight lines in the drawing.
During parameter tuning, two critical parameters, the minimum
line length and the maximum line gap, are adjusted to avoid vec-
torizing the strokes of the text. The parameters of our imple-
mented line detector are detailed in Appendix B. The resulting
detected lines are then filtered based on size heuristics (1/150
of the page size) to remove the isolated lines that are either re-
dundant or too short. During this step, we also combine the line
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FIGURE 7. Sample data results generated from our proposed constrained data synthesis method. Left: A given drawing in DXF format. Right: 4
synthetic drawings with dimension set randomization.

segments that lie on the same underlying straight line and split
a line when there is an intersection point. Eventually, we can
get the line segments in the drawing (See Fig. 5 left). Then, all
the detected line segments are removed by coloring the line re-
gion with white so that the non-line elements can be extracted as
isolated islands in the remaining pixel space (See Fig. 5 right).
In the scope of our current dataset, the islands include circles,
arcs, arrow heads, text information and line segments that are
missing in the previous detection step. The islands are detected
using a contour detector based on a flood-filling algorithm from
OpenCV. The obtained contours are then filtered and grouped by
a size and distance heuristic similar to the line detection. Finally,
each detected line segment or non-line island is treated as a basic
component in the drawing. The ground truth label for each com-
ponent is determined by indexing the color of the same region in
the original drawing (See Fig. 6).

Featurization: After vectorization, pixel information in the
original drawing is converted to either line segments or non-line
islands. Inspired by [40–42], a set of features are specifically
designed according to our vectorization results for providing the
basic geometric and contextual information. The feature list is
detailed in Tab. 1. In summary, features 1 to 6 are introduced
to capture the basic geometric information like the location, size
and orientation of the component. Features 7 and 8 provide the
density information of the component, which can usually indi-
cate a dashed line. Features 9 and 10 are based on the nearest
neighbors of each component so that the context information is

taken into account. Lastly, the coefficient of variation (COV) and
Zernike Moments are introduced to demonstrate the symmetric
and local gradient information so that the circles, arcs and text
information can be easily distinguished.

RESULTS
This section illustrates the effect of our proposed drawing

synthetic algorithm with multiple common classification models.
To further validate the necessity of our designed constraints, we
also demonstrate the results using various constraint conditions.
Finally, a parametric study is conducted to show the effect of the
number of synthetic drawings on the model performance.

Component Segmentation Performance Using Com-
mon Classifiers

In Tab. 2, the validation accuracy on two test sets using MLP
(Multi-layer Perceptron), DT (Decision Tree) and RF (Random
Forest) models are demonstrated. For the MLP model, a sin-
gle hidden layer fully connected neural network with 100 hid-
den nodes and ReLU activation is utilized. The model is trained
with Adam [43] optimizer and learning rate of 0.001. An early
stopping strategy is adopted with the maximum number of itera-
tions 10,000. For the DT model, a decision tree model with 10
as maximum depth is trained using Gini impurity as the metric.
The minimum number of sample split is 3. For the RF model,
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TABLE 2. Comparison between our classification methods in two test
scenarios. MLP: Multi-layer Perceptron. DT: Decision Tree. RF: Ran-
dom Forest. The test performance is measured on unseen original:
seven unseen original drawings in the test set and unseen synthetic:
700 synthetic drawings from the seven real drawings.

Validation Accuracy % MLP DT RF

Unseen Synthetic 76.84 86.29 87.52

Unseen Original 74.72 82.71 83.78

the basic tree model is the same as the DT model. The maximum
number of features selected for each tree is the square root of
the total number of features. 40 such tree models are trained and
combined in a bootstrap manner. Finally, the performance of all
trained models is evaluated by the accuracy of predicted labels
for each component in the test drawing sets.

As shown in Tab. 2, the tree-based methods yield better re-
sults than the simple MLP model. The difference may result from
the fact that some of the numerical features are close to categori-
cal features in the drawings. For example, the aspect ratio of the
component bounding box is highly quantized since over 80% of
the components are either horizontal lines (r close to 0) or ver-
tical lines (r close to infinity). Tree-based methods are known
to handle categorical/discrete features better in classification and
regression tasks. Additionally, we can conclude that the perfor-
mance on the unseen synthetic dataset is better than on the un-
seen real dataset as expected. Still, this demonstrates the effect
of our synthetic methods on improving the generalizability of
any model to a broader set of unseen data with only a handful of
labeled examples.

Model Performance Using Datasets with Different Con-
straint conditions

From Tab. 2, it can be concluded that the RF model yields
the best performance out of three methods. Therefore, it is used
in the extensive experiment to analyze the effect of our designed
constraints for data synthesis. Five different constraint condi-
tions are analyzed in the experiment. The baseline model is
trained only on the real labeled drawings to provide accuracy if
we do not conduct any synthesis for data augmentation. Then,
another model is trained from the synthetic dataset generated
without any constraints. Two other comparison models trained
from partially constraint conditions (only C1 or only C2) are also
introduced to illustrate the influence of each constraint individu-
ally.

Tab. 3 summarizes the validation accuracy of models trained
from the aforementioned data synthesis constraints. A major im-
provement (like 87.52 vs 58.19 for RF) can be seen when our
proposed synthesis method is introduced. Note that the accuracy

on the unseen validation set is only slightly better than the ran-
dom baseline (50%) if we only train with several real drawings
with the tree-based methods. The change in accuracy demon-
strates that our proposed synthetic data augmentation greatly im-
proves the diversity of the dataset and the generalizability of the
trained model to unseen new data.

As we compare the accuracy of models using fully con-
strained, partially constrained and unconstrained datasets, it can
be concluded that both C1 and C2 contribute to a marked im-
provement by regularizing the random dimension sets with valid
prior assumptions. Specifically, C1 results in a larger increase
in accuracy compared to C2. A potential reason is that the over-
lapping region between the dimension sets usually leads to poor
vectorization results.

Parametric Study on the Number of Necessary Draw-
ings to Synthesize

Theoretically, an infinite number of drawings can be gen-
erated using our method with each given example. However,
the variation of the synthetic dataset is still upper bounded by
the number of drawings being used since the contour shapes re-
main unchanged. To explain the relationship between the number
of synthetic drawings and the resulting model performance im-
provement, a parametric study is conducted with models trained
from four synthetic datasets. The distinctions are the number
of synthetic drawings generated from each real given drawing
(5,20,50,100). Each model is trained five times with different
random initialization, and the mean and standard deviation of
the accuracy are shown with lines with error bars on each data
point.

For Fig.8, it can be inferred that all three models share a
very similar trend in accuracy as the number of drawings in-
creases. This means that the variation of the synthetic dataset
has a consistent influence across different classification models.
In the figure, the rate of the increase in accuracy gradually levels
out as more synthetic drawings are generated. The model perfor-
mance sees negligible improvement beyond 50 synthetic draw-
ings. Another interesting finding is that the standard deviation
of tree-based methods is much less than MLP models since the
split of the tree-based models usually only depends on a small
subset of critical boundary data during classification. The stan-
dard deviation of the MLP models decreases as more drawings
are generated, which aligns with our expectation that more draw-
ings help improve the accuracy.

DISCUSSIONS AND FUTURE WORK
In our current work, the effectiveness of our synthesis

method is validated in the task of binary component segmenta-
tion. As an initial effort, it is beneficial to understand the con-
tour shape and relevant dimensions with our current framework.
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FIGURE 8. Effect of number of synthetic drawings (derived from a single example) on the validation accuracy

TABLE 3. Comparison between the model trained from synthetic
datasets under different constraints. The test performance is measured
on unseen synthetic drawings.

Validation Accuracy % RF DT MLP

No synthesis 58.19 56.50 45.74

Unconstrained 66.56 64.12 58.03

C1 only 82.12 81.31 70.65

C2 only 80.27 77.84 67.49

C1+C2(fully constrained) 87.52 86.29 76.84

For a broader practical use, tolerance, material and surface finish
specs should also be taken into consideration because they usu-
ally carry critical information about manufacturing requirements.
This will be our immediate next step in further study.

From the results section, it can be concluded that the valida-
tion accuracy is bounded by a maximum no matter what type of
classifiers are used. The maximum is determined mainly by the
variation in the given examples and the accuracy of the prepro-
cessing (vectorization) step. Since our framework is sequential,
the overall accuracy is upper-bounded by the weakest module.
The Hough line detector we currently use yields much worse re-
sults when there exist many large circles and arcs in the drawing.
To address this issue, a better vectorization method should be
used, taking into account the straight lines as well as curves.

Finally, the components/elements we extracted in the vec-

torization step are still treated as independent entities, although
some of the neighborhood information is considered with two
designed features. A more effective way is to construct a com-
ponent graph based on the connectivity and distance among the
components and analyze the graphs to better understand the en-
tire drawing.

CONCLUSIONS
In this work, we present a novel method to synthetically

generate a large amount of engineering drawing images for the
purpose of training a data-driven model on drawing component
segmentation. The method relies on the randomization of the
dimension sets in existing vector-based drawings under two self-
defined constraints. Results show that the capacity of the trained
model to generalize to unseen new geometries is considerably
improved when the proposed synthesis method is used for data
augmentation. The model performance is enhanced logarithmi-
cally as the number of synthetic drawings increases and con-
verges to an upper bound determined by the content diversity
of the original data. A similar synthesis framework can also be
applied to the training of other data-driven models on engineer-
ing drawings. It is possible to extend our proposed method to
various tasks such as similarity search, drawing classification,
drawing indexing and manufacturing process identification as an
effective way of data augdmentation.
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Appendix A: More Results on Drawing Synthesis
As a supplement to the synthetic drawings shown in the

Results section, more generated drawings by our augmentation
method are demonstrated in Fig. 9.

Appendix B: Parameters of the Hough Line Detector
The line detection process consists of three major steps.

First, a gaussian blur with kernal size 5 is applied to the drawing
to smooth the fringe of the lines. Then a Canny edge detector
with low threshold 50 and high threshold 150 is utilized to locate
possible edges for lines. Finally, the lines are identified using a
Hough line detector with distance resolution ρ = 1, angular res-
olution θ = 1◦, minimum line length 30 and maximum line gap
15 as hyperparameters.
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FIGURE 9. Sample synthetic drawings from given examples. Existing drawings are shown in (a), three synthesis results are shown in (b), (c) and
(d).
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